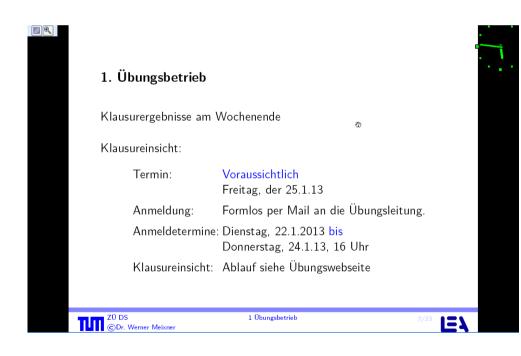
Script generated by TTT

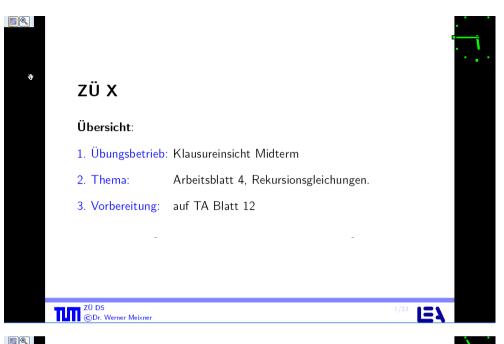
Title: Meixner: test2 (16.01.2013)

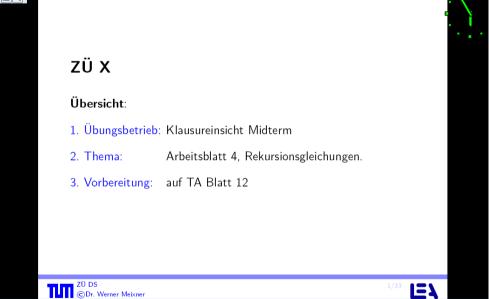
Date: Wed Jan 16 17:45:17 CET 2013

Duration: 91:35 min

Pages: 39







2. Thema: Arbeitsblatt, Rekursionsgleichungen

2.1 Beispiele von Rekursionen

$$L_n = \left(\frac{1+\sqrt{5}}{2}\right)^n + \left(\frac{1-\sqrt{5}}{2}\right)^n$$

$$L_{n+1} = L_n + L_{n-1} \,.$$

 \bigcirc Man zeige mit vollständiger Induktion, dass L_n für jedes \square

2. Thema: Arbeitsblatt, Rekursionsgleichungen

2.1 Beispiele von Rekursionen

Erinnerung:

Lukaszahlen auf Übungsblatt 5. HA 4:

Für alle $n \in \mathbb{N}_0$ definieren wir

$$L_n = \left(\frac{1+\sqrt{5}}{2}\right)^n + \left(\frac{1-\sqrt{5}}{2}\right)^n.$$

1 Zeigen Sie mit direktem Beweis für alle $n \in \mathbb{N}$ die Gleichung

$$L_{n+1} = L_n + L_{n-1} \, .$$

2 Man zeige mit vollständiger Induktion, dass L_n für jedes $n \in \mathbb{N}_0$ eine natürliche Zahl ist.

ZÜ DS ©Dr. Werner Meixner

2.1 Beispiele von Rekursionen

Schreibweise der Rekursion nach Vorlesung:

$$f_{n+2} - f_{n+1} - f_n = 0$$
, $\forall n \ge 0$.

$$f_0 = 2, \quad f_1 = 1$$

Lösung der vollständigen Rekursionsgleichung:

$$f_n = \left(\frac{1+\sqrt{5}}{2}\right)^n + \left(\frac{1-\sqrt{5}}{2}\right)^n \;, \quad \forall n \ge 0 \;.$$

Lösung der vollständigen Rekursionsgleichung:

$$f_n = \left(\frac{1+\sqrt{5}}{2}\right)^n + \left(\frac{1-\sqrt{5}}{2}\right)^n, \quad \forall n \ge 0$$

ZÜ DS ©Dr. Werner Meixner

Schreibweise der Rekursion nach Vorlesung:

$$f_{n+2} - f_{n+1} - f_n = 0$$
, $\forall n \ge 0$.

Die Rekursion kann als induktive Definition einer Folge $(f_n)_{n\geq 0}$ dienen.

$$f_0 = 2$$
, $f_1 = 1$

ZÜ DS ©Dr. Werner Meixner

Lösung der vollständigen Rekursionsgleichung:

$$f_n = \left(\frac{1+\sqrt{5}}{2}\right)^n + \left(\frac{1-\sqrt{5}}{2}\right)^n, \quad \forall n \ge 0$$

Schreibweise der Rekursion nach Vorlesung:

$$f_{n+2} - f_{n+1} - f_n = 0$$
, $\forall n \ge 0$.

Die Rekursion kann als *induktive Definition* einer Folge $(f_n)_{n\geq 0}$ dienen.

Die Rekursionsgleichung hat die folgenden Eigenschaften:

linear: multiplikative Koeffizienten konstante Koeffizienten: 1,-1,-1 homogen: rechte Seite ist gleich 0

Ordnung 2: bis zum 2ten Indexvorgänger.

Anfangsbedingungen:

$$f_0 = 2, \quad f_1 = 1.$$

Lösung der vollständigen Rekursionsgleichung:

$$f_n = \left(\frac{1+\sqrt{5}}{2}\right)^n + \left(\frac{1-\sqrt{5}}{2}\right)^n, \quad \forall n \ge 0.$$

Beispiel

Fibonaccizahlen:

$$f_n = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^n, \quad \forall n \ge 0$$

ZÜ DS ©Dr. Werner Meixner

E

Lösung der vollständigen Rekursionsgleichung:

$$f_n = \left(\frac{1+\sqrt{5}}{2}\right)^n + \left(\frac{1-\sqrt{5}}{2}\right)^n, \quad \forall n \ge 0.$$

Unter der vollständigen Rekursionsgleichung versteht man die Rekursionsgleichung zusammen mit den Anfangsbedingungen (siehe Arbeitsblatt 4).

Beispiel

Fibonaccizahlen:

Rekursionsgleichung wie bei Lukaszahlen. Anfangsbedingungen: $f_0 = 0$, $f_1 = 1$

$$f_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n , \quad \forall n \ge 0$$

2.2 Arbeitsblatt 4: Lösung homogener linearer Rekursionen

$$f_{n+d} + q_1 \cdot f_{n+d-1} + \dots + q_d \cdot f_n = 0, \quad \forall n \ge 0.$$
 (1)

Zur allgemeinen Lösung der Gleichung (1) stellen wir zunächst das charakteristische Polynom $q^R(z)$ auf und bestimmen dessen Nullstellen.

$$q^{R}(z) = z^{d} + q_{1}z^{d-1} + \dots + q_{d-1}z + q_{d}.$$
 (2)

Beispiel Lukaszahlen:

$$\alpha_{1/2} = \frac{-q_1 \pm \sqrt{q_1^2 - 4q_2}}{2}$$
$$= \frac{1 \pm \sqrt{5}}{2}.$$

(Forts. Allgemeine Lösung)

Die Folge $(f_n)_{n\geq 0}$ ist genau dann eine Lösung der Rekursion (1), wenn es Zahlen $c_{i,j}$ für $i=1,2,\ldots,k$ und $j=0,1,\ldots,d_i-1$ gibt, so dass für alle n > 0 gilt:

$$f_n = \sum_{i=1}^k p_i(n) \cdot \alpha_i^n \qquad \text{mit} \qquad (3)$$

$$p_{i}(n) = \sum_{j=0}^{d_{i}-1} c_{i,j} \cdot n^{j}$$

$$= c_{i,0} + c_{i,1} \cdot n + \dots + c_{i,d_{i}-1} \cdot n^{d_{i}-1}.$$
(4)

E7

Beispiel Lukaszahlen:

Allgemeine Lösung:

$$f_n = p_1(n) \cdot \alpha_1^n + p_2(n) \cdot \alpha_2^n$$

$$= (c_{1,0}) \cdot \alpha_1^n + (c_{2,0}) \cdot \alpha_2^n$$

$$= c_{1,0} \cdot \left(\frac{1+\sqrt{5}}{2}\right)^n + c_{2,0} \cdot \left(\frac{1-\sqrt{5}}{2}\right)^n.$$

2.2 Arbeitsblatt 4: Lösung homogener linearer Rekursionen

Spezielle Lösung

Für jeden Koeffizientenvektor $(c_{i,j})$ der Länge d erhält man mit Formel (3) eine spezielle Lösung der Rekursion (1).

Für beliebig vorgegebene Zahlen $a_0, a_1, \ldots, a_{d-1}$ kann man die Parameter $c_{i,j}$ so wählen, dass die folgenden Gleichungen als sogenannte Anfangsbedingungen der Rekursionsgleichung erfüllt sind.

$$f_0 = a_0, \ f_1 = a_1, \ \dots, f_{d-1} = a_{d-1}.$$
 (5)

ZÜ DS ©Dr. Werner Meixner

2.2 Arbeitsblatt 4: Lösung homogener linearer Rekursionen

Beispiel Lukaszahlen:

$$f_n = p_1(n) \cdot \alpha_1^n + p_2(n) \cdot \alpha_2^n$$

$$\begin{array}{rcl} 2 & = & c_{1,0} \cdot \left(\frac{1+\sqrt{5}}{2}\right)^0 + c_{2,0} \cdot \left(\frac{1-\sqrt{5}}{2}\right)^0 \; , \\ \\ 1 & = & c_{1,0} \cdot \left(\frac{1+\sqrt{5}}{2}\right)^1 + c_{2,0} \cdot \left(\frac{1-\sqrt{5}}{2}\right)^1 \; . \end{array}$$

Beispiel Lukaszahlen:

Allgemeine Lösung:

$$f_n = p_1(n) \cdot \alpha_1^n + p_2(n) \cdot \alpha_2^n$$

$$= (c_{1,0}) \cdot \alpha_1^n + (c_{2,0}) \cdot \alpha_2^n$$

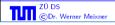
$$= c_{1,0} \cdot \left(\frac{1+\sqrt{5}}{2}\right)^n + c_{2,0} \cdot \left(\frac{1-\sqrt{5}}{2}\right)^n.$$

Beispiel Lukaszahlen:

Allgemeine Lösung

$$f_n = p_1(n) \cdot \alpha_1^n + p_2(n) \cdot \alpha_2^n.$$

$$\begin{array}{rcl} 2 & = & c_{1,0} \cdot \left(\frac{1+\sqrt{5}}{2}\right)^0 + c_{2,0} \cdot \left(\frac{1-\sqrt{5}}{2}\right)^0 \; , \\ \\ 1 & = & c_{1,0} \cdot \left(\frac{1+\sqrt{5}}{2}\right)^1 + c_{2,0} \cdot \left(\frac{1-\sqrt{5}}{2}\right)^1 \; . \end{array}$$



Bemerkung:

Im Allgemeinen wird das Gleichungssystem mit Methoden der linearen Algebra gelöst.

2.2 Arbeitsblatt 4: Lösung homogener linearer Rekursionen

Erzeugende Funktion einer speziellen Lösung

$$F(z) = \frac{p(z)}{q(z)} \tag{6}$$

$$q(z) = 1 + q_1 z + q_2 z^2 + \dots + q_d z^d$$
 (7)

Erzeugende Funktion einer speziellen Lösung

Die erzeugende Funktion F(z) einer speziellen Lösung $(f_n)_{n\geq 0}$ der Rekursion (1) mit den Anfangsbedingungen (5) ist gleich der rationalen Funktion

$$F(z) = \frac{p(z)}{q(z)} \tag{6}$$

mit dem zum charakteristischen Polynom (2) reflektierten Polynom

$$q(z) = 1 + q_1 z + q_2 z^2 + \dots + q_d z^d \tag{7}$$

und einem Polynom p(z), das sich aus dem Ansatz der vollständigen Rekursion ergibt.

Vollständige Rekursion

Die vollständige Rekursionsgleichung beschreibt die Gleichung (1 zusammen mit den Anfangsbedingungen (5) und ist wie folgt definiert.

Seien $f_n=0$ für alle n<0. Beachten Sie die bekannte Definitior der Deltafunktion $\delta_{i,j}$ mit $\delta_{i,i}=1$ für alle i und $\delta_{i,j}=0$ für alle $i\neq j$.

Dann lautet die vollständige Rekursionsgleichung für alle n > 0

$$f_n + q_1 \cdot f_{n-1} + \dots + q_d \cdot f_{n-d}$$

$$= e_0 \cdot \delta_{n,0} + e_1 \cdot \delta_{n,1} + \dots + e_{d-1} \cdot \delta_{n,d-1}.$$
(8)

16/33

Dabei sind die Parameter e_i mit den Anfangsbedingungen (5) durch die folgenden Gleichungen verknüpft.

Das gesuchte Polynom p(z) ist nun gegeben durch

$$p(z) = e_0 + e_1 z + e_2 z^2 + \dots + e_{d-1} z^{d-1}.$$
 (9)

Damit gilt für die erzeugende Funktion

$$F(z) = \frac{e_0 + e_1 z + e_2 z^2 + \ldots + e_{d-1} z^{d-1}}{1 + q_1 z + q_2 z^2 + \ldots + q_d z^d}$$

Beispiel Lukaszahlen:

Berechnung der erzeugenden Funktion F(z).

$$q(z) = 1 - z - z^2$$

$$e_0 = 2$$

$$e_1 = a_1 + q_1 a_0 = 1 - 1 \cdot 2 = -1$$

Es folg

$$p(z) = 2 - z.$$

Ergebnis

$$F(z) = \frac{2-z}{1-z-z^2}$$

mit Paihanantwicklung

$$F(z) = \sum_{n>0} f_n z^n$$

3. Vorbereitung TA Blatt 12

3.1 VA 1

ZÜ DS ©Dr. Werner Meixner

Seien $(a_n)_{n\geq 0}$ und $(b_n)_{n\geq 0}$ zwei Folgen reeller Zahlen. Weiter seier A(z) und B(z) entsprechend ihre erzeugenden Funktionen, d.h.

$$A(z) = \sum_{n=0}^{\infty} a_n z^n \qquad \text{bzw.} \qquad B(z) = \sum_{n=0}^{\infty} b_n z^n$$

Zeigen Sie, dass die nachfolgend angegebenen Folgen $(c_n)_{n\geq 0}$ und ihre erzeugende Funktion $C(z)=\sum_{n=0}^{\infty}c_nz^n$ jeweils die angegebene Beziehung erfüllen.

E7

巨7

3. Vorbereitung TA Blatt 12

3.1 VA 1

Seien $(a_n)_{n\geq 0}$ und $(b_n)_{n\geq 0}$ zwei Folgen reeller Zahlen. Weiter seien A(z) und B(z) entsprechend ihre erzeugenden Funktionen, d.h.

$$A(z) = \sum_{n=0}^{\infty} a_n z^n \qquad \text{bzw.} \qquad B(z) = \sum_{n=0}^{\infty} b_n z^n.$$

Zeigen Sie, dass die nachfolgend angegebenen Folgen $(c_n)_{n\geq 0}$ und ihre erzeugende Funktion $C(z) = \sum_{n=0}^{\infty} c_n z^n$ jeweils die angegebene Beziehung erfüllen.

• Mit $c_n := a_n + b_n$ für alle $n \in \mathbb{N}_0$ gilt

$$C(z) = A(z) + B(z).$$

$$C(z) = \sum_{n=0}^{\infty} (a_n + b_n) z^n$$

= $\sum_{n=0}^{\infty} a_n z^n + \sum_{n=0}^{\infty} b_n z^n = A(z) + B(z)$

3.1 VA 1

 $oldsymbol{0}$ Mit $c_n:=a_{n+1}$ für alle $n\in\mathbb{N}_0$ gilt

$$C(z) = \frac{1}{z}(A(z) - a_0).$$

$$C(z) = \sum_{n=0}^{\infty} a_{n+1} z^n = \sum_{k=1}^{\infty} a_k z^{k-1}.$$

= $\frac{1}{z} \left(\sum_{n=0}^{\infty} a_n z^n - a_0 \right) = \frac{1}{z} (A(z) - a_0)$

3 Mit $c_0 := 0$ und $c_n := a_{n-1}$ für alle $n \in \mathbb{N}$ gilt

$$C(z) = z \cdot A(z)$$
.

Lösung:

$$C(z) = \sum_{n=1}^{\infty} a_{n-1} z^n$$

= $\sum_{k=0}^{\infty} a_k z^{k+1} = z \cdot (\sum_{n=0}^{\infty} a_n z^n) = z \cdot A(z)$.

Begründung: Operationen im Ring der formalen Potenzreihen.

• Mit $c_n := (n+1) \cdot a_n$ für alle $n \in \mathbb{N}_0$ gilt

$$C(z) = \frac{d}{dz}(z \cdot A(z)).$$

$$C(z) = \sum_{n=0}^{\infty} (n+1)a_n z^n$$

= $\frac{d}{dz} (\sum_{n=0}^{\infty} a_n z^{n+1}) = \frac{d}{dz} (z \cdot \sum_{n=0}^{\infty} a_n z^n)$

ZÜ DS ©Dr. Werner Meixner

 $\textbf{ 9} \ \, \mathsf{Mit} \, \, \mathsf{Mit} \, \, c_n := n \cdot a_n \, \, \mathsf{für} \, \, \mathsf{alle} \, \, n \in \mathbb{N}_0 \, \, \mathsf{gilt} \, \,$

$$C(z) = z \cdot \frac{d}{dz} A(z) .$$

$$C(z) = \sum_{n=0}^{\infty} n a_n z^n$$
$$= z \cdot \sum_{n=1}^{\infty} n a_n z^{n-1} = z \cdot \frac{d}{dz} \sum_{n=0}^{\infty} a_n z^n$$

ZÜ DS ©Dr. Werner Meixner

E

 $\bullet \ \mathsf{Mit} \ c_n := \textstyle \sum_{i=0}^n a_i \ \mathsf{für \ alle} \ n \in \mathbb{N}_0 \ \mathsf{gilt}$

$$C(z) = \frac{A(z)}{1 - z} \,.$$

$$\frac{A(z)}{1-z} = \left(\sum_{n=0}^{\infty} a_n z^n\right) \cdot \left(\sum_{n=0}^{\infty} z^n\right)$$
$$= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} a_k z^k \cdot 1 \cdot z^{n-k}\right)$$
$$= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} a_k\right) z^n = C(z)$$

 $m{0}$ Mit $c_n:=\sum_{i=0}^n a_i b_{n-i}$ für alle $n\in\mathbb{N}_0$ gilt

$$C(z) = A(z) \cdot B(z)$$
.

E