Script generated by TTT

- Title: Sturm: Visual Navigation (22.05.2012)
- Tue May 22 10:17:32 CEST 2012 Date:
- Duration: 89:20 min
- Pages: 79

Visual Navigation for Flying Robots

Robot Control

Dr. Jürgen Sturm

 \Box

Organization - Exam

- Oral exams in teams (2-3 students)
- At least 15 minutes per student \rightarrow individual grades
- Questions will address
	- Material from the lecture
	- Material from the exercise sheets
	- Your mini-project

\Box

Control Architecture

DC Motors

- Maybe you built one in school
- **Stationary permanent magnet**
- Electromagnet induces torque
- Split ring switches direction of current

Visual Navigation for Flying Robots

Visual Navigation for Flying Robots

Dr. Jürgen Sturm, Computer Vision Group, TUM

\Box **Attitude + Motor Controller Boards**

BL-Ctrl
Motor-Regle
Adresse 1 Empfänger
35MHz BL-Ctr Flight-Ch Lipo Akku
11,1V BL-Ctrl
Motor-Regle
Adresse 2 MikroKont

Example: Mikrokopter Platform

Brushless Motors

- Used in most quadrocopters
- Permanent magnets on the axis
- Electromagnets on the outside
- Requires motor controller to switch currents
- \rightarrow Does not require brushes (less maintenance)

 \Box

Visual Navigation for Flying Robots

Dr. Jürgen Sturm, Computer Vision Group, TUM

\Box **Pulse Width Modulation (PWM)**

 \overline{a}

- Protocol used to control motor speed
- Remote controls typically output PWM

6

Dr. Jürgen Sturm, Computer Vision Group, TUM

Visual Navigation for Flying Robots

I2C Protocol

- Serial data line (SDA) + serial clock line (SCL)
- All devices connected in parallel
- " 7-10 bit address, 100-3400 kbit/s speed
- Used by Mikrocopter for motor control

 \Box

Kinematics and Dynamics

 \blacksquare Kinematics

Visual Navigation for Flying Robots

- Integrate acceleration to get velocity
- Integrate velocity to get position
- Dynamics
	- Actuators induce forces and torques
	- Forces induce linear acceleration
	- Torques induce angular acceleration
- What types of forces do you know?
- What types of torques do you know?

Visual Navigation for Flying Robots

Dr. Jürgen Sturm, Computer Vision Group, TUM

 \Box

Control Architecture

 \Box

Example: 1D Kinematics

- State $\mathbf{x} = \begin{pmatrix} x & \dot{x} & \ddot{x} \end{pmatrix}^\top \in \mathbb{R}^3$
- **Action** $u \in \mathbb{R}$
- **Process model**

$$
\mathbf{x}_t = \begin{pmatrix} 1 & \Delta t & 0 \\ 0 & 1 & \Delta t \\ 0 & 0 & 1 \end{pmatrix} \mathbf{x}_{t-1} + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} u_t
$$

- \blacksquare Kalman filter
- " How many states do we need for 3D?

Visual Navigation for Flying Robots

 11

Dynamics - Essential Equations

• Force (Kraft)

$$
m\ddot{\mathbf{x}} = \sum_i F_i
$$

" Torque (Drehmoment)

$$
J\boldsymbol{\alpha}=\sum_i\boldsymbol{\tau}_i
$$

\Box

Forces

- **Gravity** $F_{grav} = mg$
- **Friction**
	- **Stiction (static friction)** $F_{\text{stiction}} = c_s$ sign \dot{x}
	- Damping (viscous friction) $F_{\text{damping}} = D\dot{x}$

13

Torques

Torque results in angular acceleration $\tau = J\alpha$

15

(with $\alpha = \frac{d\omega}{dt}$, *J* moment of inertia)

- **Spring** $F_{\text{spring}} = K(x x_{\text{eq}})$
- Magnetic force

Visual Navigation for Flying Robots

• Definition $\tau = F \times r$

- Torques sum up $\tau_{\text{net}} = \sum \tau_i$

Fiction same as before...

 \blacksquare ...

 \Box

\Box

Visual Navigation for Flying Robots

Example: Spring-Damper System

12

- Combination of spring and damper
- Forces $F = F_{\text{damping}} + F_{\text{spring}}$
- **Resulting dynamics** $m\ddot{x} = D\dot{x} + K(x x_{eq})$

Dr. Jürgen Sturm, Computer Vision Group, TUM

Visual Navigation for Flying Robots

 $\mathbf r$

 F

Dynamics of a Quadrocopter

- **Each propeller induces force and torque by** accelerating air
- Gravity pulls quadrocopter downwards

\Box

Vertical and Horizontal Acceleration

- **Thrust** $F_{\text{thrust}} = F_1 + F_2 + F_3 + F_4$
- Acceleration $\ddot{\mathbf{x}}_{\text{global}} = R_{RPY} F_{\text{thrust}} F_{\text{grav}}$

 \Box

Vertical Acceleration

Thrust $F_{\text{thrust}} = F_1 + F_2 + F_3 + F_4$

Dr. Jürgen Sturm, Computer Vision Group, TUM

 \Box

Visual Navigation for Flying Robots

Pitch (and Roll)

- Attitude changes when opposite motors generate unequal thrust
- Induced torque $\tau = (F_1 F_3) \times \mathbf{r}$
- Induced angular acceleration

Torques

- **•** Definition $\tau = F \times r$
- **Torques sum up** $\tau_{\text{net}} = \sum \tau_i$
- **Torque results in angular acceleration** $\tau = J\alpha$ (with $\alpha = \frac{d\omega}{dt}$, *J* moment of inertia)
- **Fiction same as before...**

 \Box

Cascaded Control

 \Box

Pitch (and Roll)

- Attitude changes when opposite motors generate unequal thrust
- Induced torque $\tau = (F_1 F_3) \times \mathbf{r}$
- Induced angular acceleration

\Box **Assumptions of Cascaded Control**

• Dynamics of inner loops is so fast that it is not visible from outer loops

23

• Dynamics of outer loops is so slow that it appears as static to the inner loops

Cascaded Control

 \Box

Visual Navigation for Flying Robots

 \Box

Cascaded Control Example

- Motor control happens on motor boards (controls every motor tick)
- Attitude control implemented on microcontroller with hard real-time (at 1000 Hz)
- Position control (at $10 250$ Hz)
- Trajectory (waypoint) control (at $0.1 1$ Hz)

 \Box

Feedback Control - Generic Idea

Feedback Control - Example

24

Dr. Jürgen Sturm, Computer Vision Group, TUM

Measurement Noise

• What effect has noise in the measurements?

- Poor performance for K=1
- How can we fix this?

 \Box

What do High Gains do?

" High gains are always problematic (K=2.15)

 \Box

Proper Control with Measurement Noise

" Lower the gain... (K=0.15)

Visual Navigation for Flying Robots 28 Dr. Jürgen Sturm, Computer Vision Group, TUM

\Box What happens if sign is messed up?

 \blacksquare Check K=-0.5

Saturation

- In practice, often the set of admissible controls u is bounded
- This is called (control) saturation

 \Box

Delays

- In practice most systems have delays
- " Can lead to overshoots/oscillations/destabilization

One solution: lower gains (why is this bad?)

33

Block Diagram

Delays

" What is the total dead time of this system?

Smith Predictor

- Allows for higher gains
- Requires (accurate) model of plant

Smith Predictor

- " Time delay (and plant model) is often not known accurately (or changes over time)
- What happens if time delay is **over**estimated?

 \Box

Smith Predictor

- Plant model is available
- 5 seconds delay
- Results in perfect compensation
- Why is this unrealistic in practice?

 \Box

Smith Predictor

- Time delay (and plant model) is often not known accurately (or changes over time)
- What happens if time delay is **under**estimated?

Position Control

\Box

Rigid Body Kinematics

- Consider a rigid body
- Free floating in 1D space, no gravity
- " How does this system evolve over time?

Rigid Body Kinematics

- Consider a rigid body
- Free floating in 1D space, no gravity
- " How does this system evolve over time?
- **Example:** $x_0 = 0, \dot{x}_0 = 0$

 \Box

Visual Navigation for Flying Robots

Rigid Body Kinematics

42

- Consider a rigid body
- Free floating in 1D space, no gravity
- " How does this system evolve over time?

Rigid Body Kinematics

- Consider a rigid body
- Free floating in 1D space, no gravity
- In each time instant, we can apply a force F

45

PD Control

- Results in acceleration $\ddot{x} = F/m$
- **•** Desired position $x_{\text{des}} = 1$

Visual Navigation for Flying Robots

 \Box

\Box

 \Box

P Control

• What happens for this control law?

$$
u_t = K(x_{\text{des}} - x_{t-1})
$$

• This is called proportional control

PD Control

• What happens for this control law?

 $u_t = K_P(x_{\text{des}} - x_{t-1}) + K_D(\dot{x}_{\text{des}} - x_{t-1})$

• What if we set **higher** gains?

49

PD Control

• What happens for this control law?

 $u_t = K_P(x_{\text{des}} - x_{t-1}) + K_D(\dot{x}_{\text{des}} - x_{t-1})$

What if we set lower gains?

Gravity compensation

- Add as an additional term in the control law
	- $u_t = K_P(x_{\text{des}} x_{t-1}) + K_D(\dot{x}_{\text{des}} x_{t-1}) + F_{\text{grav}}$
- Any known (inverse) dynamics can be included

Visual Navigation for Flying Robots 52 Dr. Jürgen Sturm, Computer Vision Group, TUM

PD Control

• What happens when we add gravity?

PD Control

- What happens when we have systematic errors? (noise with non-zero mean)
- **Example: unbalanced quadrocopter, wind, ...**
- Does the robot ever reach its desired location?

PID Control

I Idea: Estimate the system error (bias) by integrating the error

$$
u_t = K_P(x_{\text{des}} - x_t) + K_D(\dot{x}_{\text{des}} - \dot{x}_t) + K_I \int x_{\text{des}} - x_t \text{d}t
$$

Proportional+Derivative+Integral Control

PID Control

I Idea: Estimate the system error (bias) by integrating the error

$$
u_t = K_P(x_{\text{des}} - x_t) + K_D(\dot{x}_{\text{des}} - \dot{x}_t) + K_I \int x_{\text{des}} - x_t \text{d}t
$$

- Proportional+Derivative+Integral Control
- For steady state systems, this can be reasonable
- Otherwise, it may create havoc or even disaster (wind-up effect)

\Box

PID Control

I Idea: Estimate the system error (bias) by integrating the error

$$
u_t = K_P(x_{\text{des}} - x_t) + K_D(\dot{x}_{\text{des}} - \dot{x}_t) + K_I \int x_{\text{des}} - x_t \text{d}t
$$

- Proportional+Derivative+Integral Control
- For steady state systems, this can be reasonable
- Otherwise, it may create havoc or even disaster (wind-up effect)

55

Visual Navigation for Flying Robots

```
Dr. Jürgen Sturm, Computer Vision Group, TUM
```
 \Box

Example: Wind-up effect

- Quadrocopter gets stuck in a tree \rightarrow does not reach steady state
- What is the effect on the I-term?

Visual Navigation for Flying Robots

De-coupled Control

- Sowfar, we considered only single-input, singleoutput systems (SISO)
- Real systems have multiple inputs + outputs
- MIMO (multiple-input, multiple-output)
- In practice, control is often de-coupled

 \Box

Example: Ardrone

Cascaded control

- Inner loop runs on embedded PC and stabilizes flight
- Outer loop runs externally and implements position control

Visual Navigation for Flying Robots

 \Box

How to Choose the Coefficients?

- Gains too large: overshooting, oscillations
- Gains too small: long time to converge
- **E** Heuristic methods exist
- In practice, often tuned manually

 \Box

Ardrone: Inner Control Loop

• Plant input: motor torques

$$
\mathbf{u}_{inner} = \begin{pmatrix} \tau_1 & \tau_2 & \tau_3 & \tau_4 \end{pmatrix}^\top
$$

• Plant output: roll, pitch, yaw rate, z velocity

Ardrone: Outer Control Loop

- Outer loop sees inner loop as a plant (black box)
- Plant input: roll, pitch, yaw rate, z velocity

$$
\mathbf{u}_\mathrm{outer} = \begin{pmatrix} \omega_x & \omega_y & \dot{\omega}_z & \dot{z} \end{pmatrix}
$$

• Plant output:

Visual Navigation for Flying Robots

$$
\mathbf{x}_{\text{outer}} = \begin{pmatrix} x & y & z & \psi \end{pmatrix}
$$

PID Control - Summary

61

PID is the most used control technique in practice

- P control \rightarrow simple proportional control, often enough
- PI control \rightarrow can compensate for bias (e.g., wind)
- PD control \rightarrow can be used to reduce overshoot (e.g., when acceleration is controlled)
- PID control \rightarrow all of the above

Mechanical Equivalent

• PD Control is equivalent to adding springdampers between the desired values and the current position

Visual Navigation for Flying Robots

Dr. Jürgen Sturm, Computer Vision Group, TUM

\Box

Optimal Control

62

What other control techniques do exist?

- Linear-quadratic regulator (LQR)
- Reinforcement learning
- Inverse reinforcement learning
- \blacksquare ... and many more

 \mathbb{Z}

Optimal Control

- " Find the controller that provides the best performance
- Need to define a measure of performance
- What would be a good performance measure?
	- Minimize the error?
	- Minimize the controls?
	- Combination of both?

 \mathbb{R} Visual Navigation for Flying Robots 65 Dr. Jürgen Sturm, Computer Vision Group, TUM

 \Box

Reinforcement Learning

- In principle, any measure can be used
- Define reward for each state-action pair

 $R(x_t, u_t)$

- Find the policy (controller) that maximizes the expected future reward
- " Compute the expected future reward based on
	- Known process model
	- Learned process model (from demonstrations)

 \Box

Linear Quadratic Regulator

Given:

Discrete-time linear system

$$
x_{k+1} = Ax_k + Bu_k
$$

" Quadratic cost function

$$
J = \sum_{k=0}^{\infty} \left(x_k^T Q x_k + u_k^T R u_k \right)
$$

Goal: Find the controller with the lowest cost \rightarrow **LQR** control

66

Visual Navigation for Flying Robots

Dr. Jürgen Sturm, Computer Vision Group, TUM

 \Box

Inverse Reinforcement Learning

- Parameterized reward function
- Learn these parameters from expert demonstrations and refine
- **Example: [Abbeel and Ng, ICML 2010]**

Reinforcement Learning

- In principle, any measure can be used
- Define reward for each state-action pair

 $R(x_t, u_t)$

- Find the policy (controller) that maximizes the expected future reward
- Compute the expected future reward based on
	- Known process model
	- Learned process model (from demonstrations)

Dr. Jürgen Sturm, Computer Vision Group, TUM

\Box

Interesting Papers at ICRA 2012

67

- Flying robots are a hot topic in the robotics community
- 4 out of 27 sessions on flying robots
- Robots: quadrocopters, nano quadrocopters, fixed-wing airplanes
- Sensors: monocular cameras, Kinect, motion capture, laser-scanners

 $\mathcal{L}_{\mu\nu}$

69

Inverse Reinforcement Learning

- Parameterized reward function
- Learn these parameters from expert demonstrations and refine
- **Example: [Abbeel and Ng, ICML 2010]**

Visual Navigation for Flying Robots

Dr. Jürgen Sturm, Computer Vision Group, TUM

Autonomous Indoor 3D Exploration with a Micro-Aerial Vehicle Shaojie Shen, Nathan Michael, and Vijay Kumar

68

- Map a previously unknown building
- Find good exploration frontiers in partial map

70

Decentralized Formation Control with Variable Shapes for Aerial Robots Matthew Turpin, Nathan Michael, and Vijay Kumar

- Move in formation (e.g., to traverse a window)
- Avoid collisions
- Dynamic role switching

Visual Navigation for Flying Robots

71 Dr. Jürgen Sturm, Computer Vision Group, TUM

 \Box **On-board Velocity Estimation and Closed-loop Control of a Quadrotor UAV based on Optical Flow** Volker Grabe, Heinrich H. Bülthoff, and Paolo Robuffo Giordano

Ego-motion from optical flow using homography constraint

73

Use for velocity control

Dr. Jürgen Sturm, Computer Vision Group, TUM

Versatile Distributed Pose Estimation and Sensor Self-Calibration for an Autonomous MAV Stephan Weiss, Markus W. Achtelik, Margarita Chli, Roland Siegwart

- IMU, camera
- **EKF** for pose, velocity, sensor bias, scale, intersensor calibration

Visual Navigation for Flying Robots

Dr. Jürgen Sturm, Computer Vision Group, TUM

 \Box **Autonomous Landing of a VTOL UAV on a Moving Platform Using Image-based Visual Servoing** Daewon Lee, Tyler Ryan and H. Jin. Kim

72

- Tracking and landing on a moving platform
- Switch between tracking and landing behavior

Visual Navigation for Flying Robots

74

ENSIGNAL EXAMPLE IS CONCOCLETE TRANSFER TO Ground Sensors from a UAV Brent Griffin and Carrick Detweiler

" Quadrocopter transfers power to light a LED

 \Box

ICRA Papers

- Will put them in our paper repository
- Remember password (or ask by mail)
- See course website

Using Depth in Visual Simultaneous **Localisation and Mapping**

Sebastian A. Scherer, Daniel Dube and Andreas Zell

- Combine PTAM with Kinect
- Monocular SLAM: scale drift
- Kinect: has small maximum range

76

Visual Navigation for Flying Robots

Dr. Jürgen Sturm, Computer Vision Group, TUM

 \mathbb{Z}