Script generated by TTT

20 Closures and their Evaluation

Title: Petter: Virtual Machines (20052019) e Closures are needed in the implementation of CBN for let-, let-rec expressions

as well as for actual paramaters of functions.

Date: Mon May 20 10:14:57 CEST 2019 e Before the value of a variable is accessed (with CBN), this value must be

available.

Duration- 6634 min e Otherwise, a stack frame must be created to determine this value.

e This task is performed by the instruction | eval.

Pages: 14

162

eval can be decomposed into small actions: eval can be decomposed into small actions:

eval :lif (H[S[SP}]zﬂ,,,))I{ eval = if (H[S[SP]] = (C,.) {

mark0; // allocation of the stack frame mark0; // allocation of the stack frame
pushloc 3; // copying of the reference pushloc 3; // copying of the reference
apply0; // corresponds to apply apply0; // corresponds to apply

e A closure can be understood as a parameterless function. Thus, there is no need e A closure can be understood as a parameterless function. Thus, there is no need
for an ap-component. for an ap-component.

e Evaluation of the closure means evaluation of an application of this function to 0 e Evaluation of the closure means evaluation of an application of this function to 0
arguments. arguments.

e In constrastto mark A, mark0 dumps the current PC. e Inconstrast to mark A, mark0 dumps the current PC.

e The difference between apply and apply0 is that no argument vector is e The difference between apply and apply0 is that no argument vector is
put onto the stack. put onto the stack.

163 163

In fact, the instruction update is the combination of the two actions:
popenv
rewrite 1

It overwrites the closure with the computed value.

[3
FP —= 42 | FP
L \ update

172

23 The Translation of a Program Expression

Execution of a program e starts with

PC=0 SP=FP=GP=-1

Th* expression ¢ must not contain free variables.

The value of e should be determined and then a| halt | instruction should be
executed.

codee = |codeyel)0
halt |

193

L —={ 1]
— PC
— | GP

eval can be decomposed into small actions:
eval =| if (H[S[SP]] =[(C]_) {]
mark0; // allocation of the stack frame
pushloc 3; // copying of the reference
apply0; // corresponds to apply
}
e A closure can be understood as a parameterless function. Thus, there is no need
for an ap-component.
e Evaluation of the closure means evaluation of an application of this function to 0
arguments.
e In constrast to mark A, mark0 dumps the current PC.
e The difference between apply and apply0 is that no argument vector is
put onto the stack.
163
Remarks

The code schemata as defined so far produce| Spaghetti code.

Reason: Code for function bodies and closures placed directly behind the
instructions mkfunval resp. mkclos with a jump over this code.

Alternative: Place this code somewhere else, e.g. following the halt-instruction:
Advantage: Elimination of the direct jumps following mkfunval and mkclos.
Disadvantage: The code schemata are more complex as they would have to

accumulate the code pieces in a Code-Dump.

—

Solution

Disentangle the Spaghetti code in a subsequent optimization phase.

194

e In order to construct a tuple, we collect sequence of references on the stack.
Then we construct a vector of these references in the heap using mkvec

e For returning components we use an indexed access into the tuple.

codey |(eg, ..., ex—1)|psd = |codec eg p sd

codec e; p (sd + 1)

codec ex_1 p (sd+k—1)

mkvec k

codey (#je) psd = |codey e psd

eval

In the case of CBV, we directly compute the values of the e;.

197

L|Cons 7]»71\ L |Cons

E‘\ tlist A T

PC

..else {
S[SP+1] = S[SP]—s[1];
S[SP] = S[SP]—s[0];
SP++; PC = A;

209

Deconstruction: Accessing all components of a tuple simulataneously:

e=let|yo, ..., yk—1)|=e1 infey

This is translated as follows:

codey e psd = |codey e; psd

getvec k

codey e(sd +k)

slide k

where p’zp@? (L,sd+|z'+1| |i=0,...,k—1}.

The instruction getvec k pushes the components of a vector of length k onto the

stack:

199

Example The (disentangled) body of the function app with app — (G,0) :

0 targ 2 3 pushglob 0 0 C: mark D
0 pushloc 0 4 pushloc 2 3 pushglob 2
1 eval 5 pushloc 6 4 pushglob 1
1 tlist A 6 mkvec 3 5 pushglob 0
0 pushloc 1 4 mkclos C 6 eval
1 eval 4 cons 6 apply
1 jump B 3 slide 2 1 D: update
2 A: pushloc 1 1 B: return 2

Remark

Datatypes with more than two constructors need a generalization of the tlist

instruction, corresponding to a switch-instruction.

210

Example The (disentangled) body of the function app

targ 2
pushloc 0
eval

tlist A
pushloc 1
eval

jump B

N =R O = =2 O O

A: pushloc 1

Remark

pushglob 0
pushloc 2
pushloc 6
mkvec 3
mkelos C
cons

slide 2

= W A~ oW

B: return 2

with app — (G,0) :

C: mark D
pushglob 2
pushglob 1
pushglob 0
eval
apply

D: update

= o O O &~ W o

Datatypes with more than two constructors need a generalization of the tlist

instruction, corresponding to a switch-instruction.

210

24.5 Closures of Tuples and Lists

The general schema for

codec (eg, ..., ex1) psd

codec [] psd

codec (e ::ep) p sd

codec

can be optimized for tuples and lists:

codey (eo,...,ex1) psd

codey [] psd =

codey (e1::e2) p sd

211

codec ep p sd

codec e p (sd+ 1)

codec eg_1 p (sd +k—1)
mkvec k

nil

codec e1 p sd

codec ex p (sd + 1)

cons

24.5 Closures of Tuples and Lists

The general schema for

codec (eg, ..., k1) psd

codec [] p sd

codec (e1::e2) p sd

codec

can be optimized for tuples and lists:
codey (eq, ..., ex_1) psd codec eg p sd
codec e; p (sd + 1)
codec eg—1 p (sd +k —1)
mkvec k
codey [] psd nil
codey] (e1 ::e2)|p sd codec ey p sd

211

codec e2 p (sd + 1)

cons

