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20 Closures and their Evaluation

Title: Petter: Virtual Machines (20052019) e Closures are needed in the implementation of CBN for let-, let-rec expressions

as well as for actual paramaters of functions.

Date: Mon May 20 10:14:57 CEST 2019 e Before the value of a variable is accessed (with CBN), this value must be

available.

Duration- 6634 min e Otherwise, a stack frame must be created to determine this value.

e This task is performed by the instruction | eval.

Pages: 14
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eval can be decomposed into small actions: eval can be decomposed into small actions:

eval :lif (H[S[SP}]zﬂ,,,))I{ eval = if (H[S[SP]] = (C,.) {

mark0; // allocation of the stack frame mark0; // allocation of the stack frame
pushloc 3; // copying of the reference pushloc 3; // copying of the reference
apply0; // corresponds to apply apply0; // corresponds to apply

e A closure can be understood as a parameterless function. Thus, there is no need e A closure can be understood as a parameterless function. Thus, there is no need
for an ap-component. for an ap-component.

e Evaluation of the closure means evaluation of an application of this function to 0 e Evaluation of the closure means evaluation of an application of this function to 0
arguments. arguments.

e In constrastto mark A,  mark0 dumps the current PC. e Inconstrast to mark A, mark0 dumps the current PC.

e The difference between  apply and apply0 is that no argument vector is e The difference between apply and apply0 is that no argument vector is
put onto the stack. put onto the stack.
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In fact, the instruction update is the combination of the two actions:
popenv
rewrite 1

It overwrites the closure with the computed value.

[ 3
FP —= 42 | FP
L \ update
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23  The Translation of a Program Expression

Execution of a program e starts with

PC=0 SP=FP=GP=-1

Th* expression ¢ must not contain free variables.

The value of e should be determined and then a| halt | instruction should be
executed.

codee = |codeyel)0
halt |
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L —={ 1]
— PC
— | GP

eval can be decomposed into small actions:
eval =| if (H[S[SP]] =[(C]_ ) {]
mark0; // allocation of the stack frame
pushloc 3; // copying of the reference
apply0; // corresponds to apply
}
e A closure can be understood as a parameterless function. Thus, there is no need
for an ap-component.
e Evaluation of the closure means evaluation of an application of this function to 0
arguments.
e In constrast to mark A, mark0 dumps the current PC.
e The difference between apply and apply0 is that no argument vector is
put onto the stack.
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Remarks

The code schemata as defined so far produce| Spaghetti code.

Reason: Code for function bodies and closures placed directly behind the
instructions mkfunval resp. mkclos with a jump over this code.

Alternative: Place this code somewhere else, e.g. following the halt-instruction:
Advantage: Elimination of the direct jumps following mkfunval and mkclos.
Disadvantage: The code schemata are more complex as they would have to

accumulate the code pieces in a Code-Dump.

—

Solution

Disentangle the Spaghetti code in a subsequent optimization phase.
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e In order to construct a tuple, we collect sequence of references on the stack.
Then we construct a vector of these references in the heap using mkvec

e For returning components we use an indexed access into the tuple.

codey |(eg, ..., ex—1)|psd = |codec eg p sd

codec e; p (sd + 1)

codec ex_1 p (sd+k—1)

mkvec k

codey (#je) psd = |codey e psd

eval

In the case of CBV, we directly compute the values of the e;.
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L|Cons 7]»71\ L |Cons

E‘\ tlist A T

PC

..else {
S[SP+1] = S[SP]—s[1];
S[SP] = S[SP]—s[0];
SP++; PC = A;
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Deconstruction:  Accessing all components of a tuple simulataneously:

e=let|yo, ..., yk—1)|=e1 infey

This is translated as follows:

codey e psd = |codey e; psd

getvec k

codey e(sd +k)

slide k

where p’zp@? (L,sd+|z'+1| |i=0,...,k—1}.

The instruction  getvec k  pushes the components of a vector of length k onto the

stack:
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Example The (disentangled) body of the function app with app — (G,0) :

0 targ 2 3 pushglob 0 0 C: mark D
0 pushloc 0 4 pushloc 2 3 pushglob 2
1 eval 5 pushloc 6 4 pushglob 1
1 tlist A 6 mkvec 3 5 pushglob 0
0 pushloc 1 4 mkclos C 6 eval
1 eval 4 cons 6 apply
1 jump B 3 slide 2 1 D: update
2 A: pushloc 1 1 B: return 2

Remark

Datatypes with more than two constructors need a generalization of the tlist

instruction, corresponding to a switch-instruction.
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Example The (disentangled) body of the function app

targ 2
pushloc 0
eval

tlist A
pushloc 1
eval

jump B

N =R O = =2 O O

A: pushloc 1

Remark

pushglob 0
pushloc 2
pushloc 6
mkvec 3
mkelos C
cons

slide 2

= W A~ oW

B: return 2

with app — (G,0) :

C: mark D
pushglob 2
pushglob 1
pushglob 0
eval
apply

D: update

= o O O &~ W o

Datatypes with more than two constructors need a generalization of the tlist

instruction, corresponding to a switch-instruction.
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24.5 Closures of Tuples and Lists

The general schema for

codec (eg, ..., ex1) psd

codec [] psd

codec (e ::ep) p sd

codec

can be optimized for tuples and lists:

codey (eo,...,ex1) psd

codey [] psd =

codey (e1::e2) p sd
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codec ep p sd

codec e p (sd+ 1)

codec eg_1 p (sd +k—1)
mkvec k

nil

codec e1 p sd

codec ex p (sd + 1)

cons

24.5 Closures of Tuples and Lists

The general schema for

codec (eg, ..., k1) psd

codec [] p sd

codec (e1::e2) p sd

codec

can be optimized for tuples and lists:
codey (eq, ..., ex_1) psd codec eg p sd
codec e; p (sd + 1)
codec eg—1 p (sd +k —1)
mkvec k
codey [] psd nil
codey] (e1 ::e2)|p sd codec ey p sd
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codec e2 p (sd + 1)

cons



