Script generated by TTT

Title:
Date:
Duration:

Pages:

Petter: Virtual Machines (14.05.2019)
Tue May 14 10:15:22 CEST 2019
96:20 min

27

17 Function Application

Function applications correspond to function calls in C.

The necessary actions for the evaluation of | ¢’ ey ... e,_1| are:

e Allocation of a stack frame;

e Transfer of the actual parameters , i.e. with:

CBV:
CBN:

Evaluation of the actual parameters;
Allocation of closures for the actual parameters;

o Evaluation of the expression ¢’ to an F-object;

e Application of the function.

Thus for CBN,

138

16 Function Definitions

The definition of a function f requires code that allocates af functional value for f|in

the heap. This happens in the following steps:

e Creation of a|Global Vector with the binding of the free variables;

e Creation of an (initially empty) argument vector;

e Creation of an F-Object, containing references to these vectors and the start

address of the code for the body;

Separately, code for the body has to be generated.

Thus,

133

A Slightly Larger Example

leta=17inlet f =funb — a+blin f 42

For CBV and sd =0 we obtain:

0 loadc 17 2 jump B 2 getbasic 5
1 mkbasic 0 A: targ 1 2 add 6
1 pushloc 0 0 pushglob 0 1 mkbasic 6
2 mkvec 1 1 getbasic 1 return 1 7
2 mkfunval A 1 pushloc 1 |2 B: mark C | 3

140

loadc 42
mkbasic
pushloc|4
apply
slide 2

A Slightly Larger Example
leta=17inlet|f =funb —a+pin f 42

For CBV and sd =0 we obtain:

0 loadc 17 2 jump B 2 getbasic
1 mkbasic 0 A: targ 1 2 add

1 pushloc 0 0 pushglob 0 1 mkbasic
2 mkvec 1 1 getbasic 1 return 1
2 mkfunval A 1 pushloc1 2 B: mark C

140

w N o o o

loadc 42
mkbasic
pushloc 4
apply

C: slide 2

Different from the CMa, the instruction mark A already saves the return address:

mark A

FP ——= FP

GP [}—==V[1

S[SP+1] = GP;
S[SP+2] = FP;
S[SP+3] = A;
FP=SP=SP+3;

142

])

ST)

17 Function Application

Function applications correspond to function calls in C.
The necessaly actions for the evaluation of e ey ... e,_1 are:

o Allocation of a stack frame;

e Transfer| of the actual parameters , i.e. with:
CBV: Evaluation of the actual parameters;
CBN: Allocation of closures for the actual parameters;

o Evaluatibn of the expression ¢/ to an F-ohject;

e Application of the function.

Thus for CBN,

The instruction apply unpacks the F-object, a reference to which (hopefully)
resides on top of the stack, and continues execution at the address given there:

Gp [] GP [>
PC

apply
VIn[T T T]
DjJ EEEE -
[[=—" = []
[~ = []
i T~ |

h =S[SP]; GP =h—gp; PC=h—cp;
if (H[h] = (F--)) for (i=0; ij h—ap—m; i++)
Error “no fun”; S[SP+i] = h—ap—v[i];
else { SP=SP+h—ap—n-1;
¥

143

Different from the CMa, the instruction mark A already saves the return address:

mark A

]
FP ——= FP)

GP [J—= IS I e M B O

S[SP+1] = GP;
S[SP+2] = FP;
S[SP+3] = A;
FP=SP=SP+3;

142

The instruction apply unpacks the F-object, a reference to which (hopefully)
resides on top of the stack, and continues execution at the address given there:

6P [] GP [
PC [] apply PC

T T N

=[]
—{]

h =S[SP]; GP =h—gp; PC=h—cp;

if (H[h] '=(E_,)) for (i=0; ij h—ap—n; i++)
Error “no fun”; S[SP+i] = h—ap—vl[i];

else { SP =8P +h—ap—n-1;

¥

143

The instruction apply unpacks the F-object, a reference to which (hopefully)
resides on top of the stack, and continues execution at the address given there:

Gp[]
pC []

o
{

e

h =S[SP]; GP =h—gp; PC=h—cp;

if (H[h] = (F--)) for (i=0; ij h—ap—m; i++)
Error “no fun”; S[SP+i] = h—ap—v[i];

else { SP=SP +h—ap—n-1;

143

18 Over— and Undersupply of Arguments

The first instruction to be executed when entering a function body, i.e., after an

This instruction checks whether there are enough arguments to evaluate the body.
Only if this is the case, the execution of the code for the body is started.
Otherwise, i.e. in the case of under-supply, a new F-object is returned.

The test for number of arguments uses: SP - FP

145

The instruction apply unpacks the F-object, a reference to which (hopefully)
resides on top of the stack, and continues execution at the address given there:

GP[]

pC [] PC

h =S[SP]; GP =h—gp; PC=h—cp;
if (H[h] '= (E-,.)) for (i=0; ij h—ap—n; i++)
Error “no fun”; S[SP+i] = h—ap—vl[i];
else { SP=SP + h—ap—n-1;
143

For the implementation of the new instruction, we must fix the organization of a

stack frame:

SP %é local stack
7
Arguments
[FP =] pcaa [0 [
FPold -1 3 org. cells
GPold -2
141

G [J——> 1]

18 Over— and Undersupply of Arguments

The first instruction to be executed when entering a function body, i.e., after an
apply is targk.

This instruction checks whether there are enough arguments to evaluate the body.
Only if this is the case, the execution of the code for the body is started.
Otherwise, i.e. in the case of under-supply, a new F-object is returned.

The test for number of arguments uses: SP - FP

145

18 Over— and Undersupply of Arguments

The first instruction to be executed when entering a function body, i.e., after an

apply is tar

This instruction checks whether there are enough arguments to evaluate the body.
Only if this is the case, the execution of the code for the body is started.

Otherwise, i.e. in the case of under-supply, a new F-object is returned.

The test for number of arguments uses: SP - FP

145

targ k is a complex instruction.

We decompose its execution in the case of under-supply into several steps:

targ k = if (SP-FP < k) {
mkvec0; /| creating the argumentvector
wrap; // wrapping into an F — object
popenv; // popping the stack frame

The combination of these steps into one instruction is a kind of optimization.

146

The instruction wrap wraps the argument vector together with the global vector

and PC-1 into an F-object:

7‘)»

|

6p——{V]]
PC! PC

S[SP] = new (F, PC-1, S[SP], GP);

148

ap _gp

Ffa]]
] e QEWJ

o —=[V[]

The instruction wrap wraps the argument vector together with the global vector

and PC-1 into an F-object:

] wrap

F——>{V]

G ——>[V[]
PC PC

S[SP] = new (F, PC-1, S[SP], GP);

148

targ k is a complex instruction.

We decompose its execution in the case of under-supply into several steps:

targk = if (SP-FP <k) {
mkvecO; // creating the argumentvector
wrap; // wrapping into an F — object
popenv; // popping the stack frame

The combination of these steps into one instruction is a kind of optimization.

146

Case: Over-supply

0

156

Case: Over-supply

— slide k — apply

FP ——— FP ———

156

apply
FP ——=

19 let-rec-Expressions

Consider the expression e¢=1letrecy; =ejand...and y, =e, ine
The translation of e must deliver an instruction sequence that
o allocates local variables y1, ..., yu;

e in the case of
CBV: evaluates ey,..., e, and binds the y; to their values;
CBN: constructs closures for the ey, ..., e, and binds the y; to them;

e evaluates the expression eg and returns its value.

Caveat

In a let-rec expression, the definitions can use variables that will be allocated only
later! == Dummy-values are put onto the stack before processing the
definition.

157

19 let-rec-Expressions

Consider the expression ¢ =: letirecly; =ejand...and y, = e, in e
The translation of e must deliver an instruction sequence that
e allocates local variables|yy, ..., yu;

e in the case of
CBV: evaluates ey,..., ¢, and binds the y; to their values;
CBN: constructs closures for the ey, ..., e, and binds the y; to them;

e evaluates the expression ey and returns its value.

Caveat

In a let-rec expression, the definitions can use variables that will be allocated only
later! == | Dummy-values|are put onto the stack before processing the
definition.

157

For CBN, we obtain for e = letrec y; =e¢; and...and y, = e, in ¢

codey epsd = |allocn // allocates local variables
codec ey p (sd +n)

rewrite n

codec ey p’ (sd + n)
rewrite 1
codey eg P (sd + n)

slide n // de-allocates local variables

where o =p®{yi— (L,sd+1i) |i=1,...,n}.

In the case of CBV, we also use codey for the expressions ey, ..., e,.

Caveat

Recursive definitions of basic values are undefined with CBV!!!

158

The instruction rewrite n overwrites the contents of the heap cell pointed to by
the reference at S[SP—n]:

—={ [x]

rewrite n

= .
A AR

H[S[SP-n]] = H[S[SP]];
SP=SP-1;

e The reference S[SP —n] remains unchanged!

e Only its contents is changed!

161

Example

Consider the expression
e=letrecf=funxy — if y <1thenxelse f(x+y)(y—1)in f1

for p =0 and sd = 0. We obtain (for CBV):

0 alloc 1 0 A: targ 2 4 loadc 1

1 pushloc 0 0 5 mkbasic

2 mkvec 1 1 return 2 5 pushloc 4

2 mkfunval A 2 B: rewrite 1 6 apply

2 jumpB 1 mark C 2 C: slide 1
159

20 Closures and their Evaluation

e Closures are needed in the implementation of CBN for let-, let-rec expressions
as well as for actual paramaters of functions.

e Before the value of a variable is accessed (with CBN), this value must be
available.

e Otherwise, a stack frame must be created to determine this value.

e This task is performed by the instruction eval.

162

