Script generated by TTT

Title: Petter: Virtual Machines (07.05.2019)
Date: Tue May 07 10:13:52 CEST 2019
Duration: 70:12 min
Pages: 11
As an exercise translate s1=b=(&a)+2; and s = %(b+3)[0] =5;
codeg (61t e) p = codererp
coderesr p
loadc |¢|
mul

code (s152) p

= loadc 7

add /sub if ey has type tx or t]]

loadc 2
loadc 10

mul

/] size of int[10]
// scaling

add
loadc 17

store

pop

/] endof s

64

loadc 5
loadc 17

load

loadc 3
loadc 10 // size of int[10]
mul // scaling

add
store
pop // endofsy

9.2 Determining Address Environments

We distinguish two kinds of variables:
1. global/extern that are defined outside of functions;

2. local/intern/automatic (inkluding formal parameters) which are defined inside
functions.

E
The address environment p maps names onto pairs (tag,a) € {G,L} x Z
Caveat
e |n general, there are further refined grades of visibility of variables.

e Different parts of a program may be translated relative to different address

environments!

73

9.3 Calling/Entering and Exiting/Leaving Functions

Assume that f is the current function, i.e., the caller, and f calls the function g, i.e.,
the callee.

The code for the call must be distributed between the caller and the callee.

The distribution can only be such that the code depending on information of the
caller must be generated for the caller and likewise for the callee.

Caveat

The space requirements of the actual parameters is only known to the caller ...

78

Remark

e Of every expression which is passed as a parameter, we determine the R-value

——| call-by-value| passing of parameters.

e The function ¢ may as well be denoted by an expression, whose R-value provids

the start address of the called function ...

The code for return ¢; corresponds to an assignment to a variable with relative
address —3.

codg returne; |p = coder e p
storer -3
return
Example For function

int fac (int x) {
if (x < 0) return 1;

else return x xfac (x — 1);

we generate:

95

The instruction return pops the current stack frame. This means it restores the
registers PC, EP and FP and returns the return value on top of the stack.

PC PC [p]
FP p FP |]
EP return EP
L e |
\4

PC = S[FR]; EP = S[FP-2];
if (EP > NP) Error (“Stack Overflow");
SP = FP-3] FP = S[SP+2];

91

The instruction return pops the current stack frame. This means it restores the
registers PC, EP and FP and returns the return value on top of the stack.

PC L PC [p]
FP P FP |]
L Le]
€
s

EP return EP

i

=

PC = S[FP]; EP = S[FP-2];
if (EP > NP) Error (“Stack Overflow");
SP = FP-3; FP = S[SP+2];

91

Then we define:

codepl = enter (k+ 4)
alloc (k+1)
mark
loadc _main
call
slide k
halt

_f1: code F_def; p1

fu: code F_def, py

where () = empty address environment;
pj = global address environment before definition of f;;
k = size of the global variables
98
Example

The following well-known function computes the factorial of a natural number:

let rec fac = fun x —iflx <1 then 1
elsg x - fac (x — 1)

in/fac 7

As usual, we only use the minimal amount of parentheses.

There are two Semantics:
CBV: Arguments are evaluated before they are passed to the function (as in SML);

CBN: Arguments are passed unevaluated; they are only evaluated when their value
is needed (as in Haskell).

102

A program is an expression e of the form:
e u= b | x| (Oye) | (e102e2)
| (if eg then ¢, else ¢;)
| (eep...ex1)
| (fun xp... xp 1 —e)
| (let x1=e1in ep)
|

let rec x1 =e¢;and...and x, = e, in ¢;)

An expression is therefore
e a basic value, a variable, the application of an operator, or
e a function-application, a function-abstraction, or
e a let-expression, i.e. an expression with locally defined variables, or
e a let-rec-expression, i.e. an expression with simultaneously defined local
variables.

For simplicity, we only allow int as basic type.

101

Example

The following well-known function computes the factorial of a natural number:

let rec fac = fun x — ifx <1 then 1
else x - fac (x — 1)
infac7

As usual, we only use the minimal amount of parentheses.

There are two Semantics:
CBV: Arguments are evaluated before they are passed to the function (as in SML);

CBN: Arguments are passed unevaluated; they are only evaluated when their value
is needed (as in Haskell).

102

