Script generated by TTT

Title: Seidl: Virtual_Machines (13.06.2016)
Date: Mon Jun 13 10:23:34 CEST 2016
Duration: 89:50 min

Pages: 33

The Basic Idea

e We restore the oldBP from our current stack frame;

e We pop all stack frames on top of the local variables.

Accordingly, we translate the cut into the sequence:

prune

pushenv m

where m s the number of (still used) local variables of the clause.

340

38 Extension: The-Cut Operator

Realistic Prolog additionally provides an operator “I" (cut) which explicitly allows to

prune the search space of backtracking.

Example

branch(X,Y) <« p(X)|!la:(X,Y)

branch(X,Y) + | 92 (X,)i

Once the queries before the cut have succeeded, the choice is committed:

Backtracking will return only to backtrack points preceding the call to the left-hand

side ...

339

Example

Consider our example:

branch(X,Y) <« p(X), L, qi(X,Y)
branch(X,Y) + q(X,Y)

We obtain:
setbtp A: pushenv2 C. prune lastmark
try A mark C pushenv 2 putref 1
delbtp putref 1 putref 2
jump B call p/1 lastcall q1/2 2

341

pushenv 2
putref 1
putref 2

move 2 2

jump q2/2

Example

Consider our example:

branch(X,Y) <« p(X),La(X,Y)
branch(X,Y) + (X Y)

In fact, an optimized translation even yields here:

The new instruction prune simply restores the backtrack pointer:

setbtp A: pushenv2 C: prune putref 1 B: pushenv 2
try A mark C pushenv 2 putref 2 putref 1
delbtp putref 1 move 2 2 putref 2
jump B call p/1 jump qp /2 move 2 2
jump qz/2
342

e PO, (0),] 9,0)

If a clause is single, then (at least so far) we have not stored the old BP inside the

stack frame

For the cut to work also with single-clause predicates or try chains of length 1, we
insert an extra instruction setcut before the clausal code (or the jump):

344

FP —= | FP—={ |
e prune i
HP] HP -
BP = BPold;
343

The instruction
FP ——=

HP

TP

BP

setcut

L

setcut

BPold = BP;

345

just stores the current value of BP:

HP
P
BP

FP ——=

- .

The Final Example Negation by Failure
The predicate notP should succeed whenever p fails (and vice versa :-)

notP(X)

+— p(X),!, fail
notP(X) <«

where the goal fail never succeeds. Then we obtain for notP :

setbtp A: pushenv1l C: prune B: pushenv 1
try A mark C pushenv 1 popenv
delbtp putref 1 fail
jump B call p/1 popenv

346

39 Garbage Collection

e Both during execution of a MaMa- as well as a WiM-programs, it may happen

that some objects can no longer be reached through references.

e Obviously, they cannot affect the further program execution. Therefore, these

objects are called garbage.

e Their storage space should be freed and reused for the creation of other objects.

Caveat
The WiM provides some kind of heap de-allocation. This, however, only frees the

storage of failed alternatives !l!

347

XS Vel

The Final Example Negation by Failure
The predicate notP should succeed whenever p fails (and vice versa :-)

notP(X)

+— p(X),!, fail
notP(X) +

where the goal fail never succeeds. Then we obtain for notP :

setbtp A: pushenvl C: prune B: pushenv 1
try A mark C pushenv 1 popenv
delbtp putref 1 fail
jump B call p/1 popenv

346

Operation of a stop-and-copy-Collector

¢ Division of the heap into two parts, the to-space and the from-space — which,
after each collection flip their roles.

¢ Allocation with new in the current from-space.

¢ In case of memory exhaustion, call of the collector.

The Phases of the Collection

1. Marking of all reachable objects in the from-space.
2. Copying of all marked objects into the to-space.
3. Correction of references.

4. Exchange of from-space and to-space.

348

(1) Mark: Detection of live objects:
e all references in the stack point to live objects;

e every reference of a live object points to a live object.

Graph Reachability

349

(2) Copy: Copying of all live objects from the current from-space into the current
to-space. This means for every detected object:

e Copying the object;

e Storing a forward reference to thg ace pt thi old place

all references of the copied objects rwafd references in the

N

from-space.

352

350

351

355

360

353

356

362

Remarks

e Marking, copying and placing a forward reference can be squeezed into a single

pass.
A second pass then is only required to correct the references.

e If the heap objects are traversed in post-order, most of the references can be

corrected in the same pass.
Only references to not yet copied objects must be patched later-on.

e Overall, the run-time of gc is proportional only to the number of live objects.

(..—"—"\

,\?W

’Q\-\W?
"T“——“’“ r~A" e LV St

363

Caveat

The garbage collection of the WiM must harmonize with backtracking.

This means:

e The relative position of heap objects must not change during copying!
e The heap references in the trail must be updated to the new positions.

o If heap objects are collected which have been created before the last backtrack
point, then also the heap pointers in the stack must be updated.

364

Caveat

The garbage collection of the WiM must harmonize with backtracking.

This means:

e The relative position of heap objects must not change during copying!
e The heap references in the trail must be updated to the new positions.

o If heap objects are collected which have been created before the last backtrack
point, then also the heap pointers in the stack must be updated.

364

Remarks

e Marking, copying and placing a forward reference can be squeezed into a single

pass. 2

A second pass then is only required to correct the references.

e If the heap objects are traversed in post-order, most of the references can be b

corrected in the same pass.

Only references to not yet copied objects must be patched later-on.

e Qverall, the run-time of gc is proportional only to the number of live objects.

363 366

Remarks

e While marking still visits only live objects, copying requires a separate

*4“":' sequential pass over the from-space.
e Therefore, the run-time of copying is proportional to the total amount of
b a from-space.
FE e
L nd

367 369

Classes and Objects

370

Discussion

¢ We adopt the C++ perspective on classes and objects.

e We extend our implementation of C. In particular ...

Classes are considered as extensions of structs. They may comprise:
= attributes, i.e., data fields;

constructors;

member functions which either are virtual, i.e., are called depending on

the run-time type or non-virtual, i.e., called according to the static type
of an object.

static member functions which are like ordinary functions.

e We ignore visibility restrictions such as public, protected or private but

simply assume general visibility.

¢ We ignore multiple inheritance.

372

40

Example

int count =0;
class list {
int info;
class list * next;

list (int x) {

info = x; count++4; next = null;
H

virtual int last () {

if (next == null) return info;

else return next — last ();

371

Object Layout

|dea

e Only attributes and virtual member functions are stored inside the class !!

e The addresses of non-virtual or static member functions as well as of
constructors can be resolved at compile-time.

L)

The fields of a sub-class are appended to the corresponding fields of the
super—class ...

. in our Example:

info

next

last

373

|dea (cont.)

e The fields of a sub-class are appended to the corresponding fields of the

super-class.

Example
class mylist : list {

int morelnfo;

1
.. results in:
info
next
last
morelnfo

374

|dea (cont.)

e The fields of a sub-class are appended to the corresponding fields of the

super-class.

Example
class mylist : list {

int morelnfo;

t
.. results in:
info
next
last
morelnfo
374

