Script generated by TTT

Title: Seidl: Virtual_Machines (13.06.2016)
Date: Mon Jun 13 10:23:34 CEST 2016
Duration: 89:50 min

Pages: 33

The Basic Idea

e We restore the oldBP from our current stack frame;

e We pop all stack frames on top of the local variables.

Accordingly, we translate the cut into the sequence:

prune

pushenv m

where m s the number of (still used) local variables of the clause.
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38 Extension: The-Cut Operator

Realistic Prolog additionally provides an operator “I" (cut) which explicitly allows to

prune the search space of backtracking.

Example

branch(X,Y) <« p(X)|!la:(X,Y)

branch(X,Y) + | 92 (X, )i

Once the queries before the cut have succeeded, the choice is committed:

Backtracking will return only to backtrack points preceding the call to the left-hand

side ...
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Example

Consider our example:

branch(X,Y) <« p(X), L, qi(X,Y)
branch(X,Y) + q(X,Y)

We obtain:
setbtp A:  pushenv2 C.  prune lastmark
try A mark C pushenv 2 putref 1
delbtp putref 1 putref 2
jump B call p/1 lastcall q1/2 2
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pushenv 2
putref 1
putref 2

move 2 2

jump q2/2



Example

Consider our example:

branch(X,Y) <« p(X),La(X,Y)
branch(X,Y) + (X Y)

In fact, an optimized translation even yields here:

The new instruction prune simply restores the backtrack pointer:

setbtp A:  pushenv2 C:  prune putref 1 B:  pushenv 2
try A mark C pushenv 2 putref 2 putref 1
delbtp putref 1 move 2 2 putref 2
jump B call p/1 jump qp /2 move 2 2
jump qz/2
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e PO, (0),] 9,0)

If a clause is single, then (at least so far) we have not stored the old BP inside the

stack frame

For the cut to work also with single-clause predicates or try chains of length 1, we
insert an extra instruction  setcut before the clausal code (or the jump):
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FP —= | FP—={ |
e prune i
HP ] HP -
BP = BPold;
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The instruction
FP ——=

HP

TP

BP

setcut

L

setcut

BPold = BP;
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just stores the current value of BP:

HP
P
BP

FP ——=

- .




The Final Example Negation by Failure
The predicate  notP  should succeed whenever p fails (and vice versa :-)

notP(X)

+— p(X),!, fail
notP(X) <«

where the goal  fail never succeeds. Then we obtain for  notP :

setbtp A:  pushenv1l C:  prune B:  pushenv 1
try A mark C pushenv 1 popenv
delbtp putref 1 fail
jump B call p/1 popenv
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39 Garbage Collection

e Both during execution of a MaMa- as well as a WiM-programs, it may happen

that some objects can no longer be reached through references.

e Obviously, they cannot affect the further program execution. Therefore, these

objects are called garbage.

e Their storage space should be freed and reused for the creation of other objects.

Caveat
The WiM provides some kind of heap de-allocation. This, however, only frees the

storage of failed alternatives !l!
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The Final Example Negation by Failure
The predicate  notP  should succeed whenever p fails (and vice versa :-)

notP(X)

+—  p(X),!, fail
notP(X) +

where the goal fail never succeeds. Then we obtain for  notP :

setbtp A:  pushenvl C: prune B:  pushenv 1
try A mark C pushenv 1 popenv
delbtp putref 1 fail
jump B call p/1 popenv

346

Operation of a stop-and-copy-Collector

¢ Division of the heap into two parts, the to-space and the from-space — which,
after each collection flip their roles.

¢ Allocation with new in the current from-space.

¢ In case of memory exhaustion, call of the collector.

The Phases of the Collection

1. Marking of all reachable objects in the from-space.
2. Copying of all marked objects into the to-space.
3. Correction of references.

4. Exchange of from-space and to-space.
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(1) Mark: Detection of live objects:
e all references in the stack point to live objects;

e every reference of a live object points to a live object.

Graph Reachability
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(2) Copy: Copying of all live objects from the current from-space into the current
to-space. This means for every detected object:

e Copying the object;

e Storing a forward reference to thg ace pt thi old place

all references of the copied objects rwafd references in the

N

from-space.
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Remarks

e  Marking, copying and placing a forward reference can be squeezed into a single

pass.
A second pass then is only required to correct the references.

e If the heap objects are traversed in post-order, most of the references can be

corrected in the same pass.
Only references to not yet copied objects must be patched later-on.

e  Overall, the run-time of gc is proportional only to the number of live objects.
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Caveat

The garbage collection of the WiM must harmonize with backtracking.

This means:

e The relative position of heap objects must not change during copying!
e The heap references in the trail must be updated to the new positions.

o If heap objects are collected which have been created before the last backtrack
point, then also the heap pointers in the stack must be updated.
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Caveat

The garbage collection of the WiM must harmonize with backtracking.

This means:

e The relative position of heap objects must not change during copying!
e The heap references in the trail must be updated to the new positions.

o If heap objects are collected which have been created before the last backtrack
point, then also the heap pointers in the stack must be updated.
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Remarks

e  Marking, copying and placing a forward reference can be squeezed into a single

pass. 2

A second pass then is only required to correct the references.

e If the heap objects are traversed in post-order, most of the references can be b

corrected in the same pass.

Only references to not yet copied objects must be patched later-on.

e Qverall, the run-time of gc is proportional only to the number of live objects.
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Remarks

e  While marking still visits only live objects, copying requires a separate

*4“":' sequential pass over the from-space.
e  Therefore, the run-time of copying is proportional to the total amount of
b a from-space.
FE e
L nd
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Classes and Objects
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Discussion

¢  We adopt the C++ perspective on classes and objects.

e We extend our implementation of C. In particular ...

Classes are considered as extensions of structs. They may comprise:
= attributes, i.e., data fields;

constructors;

member functions which either are virtual, i.e., are called depending on

the run-time type or non-virtual, i.e., called according to the static type
of an object.

static member functions which are like ordinary functions.

e We ignore visibility restrictions such as public, protected or private but

simply assume general visibility.

¢ We ignore multiple inheritance.
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Example

int count =0;
class list {
int info;
class list * next;

list (int x) {

info = x; count++4; next = null;
H

virtual int last () {

if (next == null) return info;

else return next — last ();
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Object Layout

|dea

e  Only attributes and virtual member functions are stored inside the class !!

e  The addresses of non-virtual or static member functions as well as of
constructors can be resolved at compile-time.

L)

The fields of a sub-class are appended to the corresponding fields of the
super—class ...

. in our Example:

info

next

last
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|dea (cont.)

e  The fields of a sub-class are appended to the corresponding fields of the

super-class.

Example
class mylist : list {

int morelnfo;

1
.. results in:
info
next
last
morelnfo
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|dea (cont.)

e  The fields of a sub-class are appended to the corresponding fields of the

super-class.

Example
class mylist : list {

int morelnfo;

t
.. results in:
info
next
last
morelnfo
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