Script generated by TTT

Title: Seidl: Virtual_Machines (02.05.2016)
Date: Mon May 02 10:22:28 CEST 2016
Duration: 90:24 min

Pages: 37

13 Simple expressions

Expressions consisting only of constants, operator applications, and conditionals are
translated like expressions in imperative languages:

codeg bp sd = loadc b

codes (Oy ¢€) psd = codcm’@
opy

codes (e Da e2) psd = codeger ps
codegex p (@
opz2

109

The instruction new (fag, args) creates a corresponding object (B, C, F, V) in H and
returns a reference to it.

We distinguish three different kinds of code for an expression e:

70 codey ¢ — (generates code that) computes the Value of e, stores it in the heap

and returns a reference to it on top of the stack (the normal case);

e codeg ¢ — computes the value of e, and returns it on the top of the stack (only
for Basic types);

codec ¢ — does not evaluate e, but stores a Closure of e in the heap and returns
a reference to the closure on top of the stack.

We start with the code schemata for the first two kinds:

108

codeg (if ep then ey else e)

110

Remark

e p denotes the actual address environment, in which the expression is
translated.

e The extra argument sd, the stack difference, simulates the movement of the SP
when instruction execution modifies the stack. It is needed later to address
variables.

e The instructions op; and op, implement the operators 0y and Ly, in the same
way as the the operators neg and add implement negation resp. addition in the
CMa.

For all other expressions, we first compute the value in the heap and then
dereference the returned pointer:

codegepsd| = codeyepsd

getbasic

111

For codey and simple expressions, we define analogously:

codey b p sd = loadc b; mkbasic

codey (O e) p sd = codegep sd
opy; mkbasic

codey (e Uy e2) p sd = codeg ey psd

codegez p (sd+ 1)

op,,; mkbasic

codey (if eg then e else e) psd = codeg ep p sd
jumpz A
codey ey p sd
jump B

codey ep p sd

113

if (H[S[SP]] = (B,_))

Error “not basic!”;

else

[B[17]
getbasic

S[SP] = H[S[SP]].v;

112

mkbasic

S[SP] = new (B,S[SP]);

114

[B[17]

For codey and simple expressions, we define analogously:

codey b p sd = loadc b; mkbasic
codey (07 &) p sd = codeg e p sd

opy; mkbasic

codey (e Oy €2) p sd = codeg ey psd
codegey p (sd + 1)

op,; mkbasic

codey (ihen 1 else e;) psd codeg ey psd
jumpz A
codey ey p sd
jump B

codey e p sd

113

Accessing Global Variables

The bindings of global variables of an expression or a function are kept in a
vector in the heap (Global Vector).

They are addressed consecutively starting with 0.

When an F-object or a C-object are constructed, the Global Vector for the
function or the expression is determined and a reference to it is stored in the
gp-component of the object.

During the evaluation of an expression, the (new) register GP (Global Pointer)
points to the actual Global Vector.

In constrast, local variables should be administered on the stack ...

= General form of the address environment:

p:Vars — {L,G} x Z

116

14 Accessing Variables

We must distinguish between local and global variables.

Example Regard the function f :
let ¢=5
inlet f=fu — letb=ax*a
in b@
in c

The function f uses the global variable ¢ and the local variables a (as formal

parameter) and b (introduced by the inner let).

The binding of a global variable is determined, when the function is constructed

(static binding!), and later only looked up.

115

Accessing Local Variables

Local variables are administered on the stack, in stack frames.

Let e = e’ ep ... en_1 be the application of a function ¢’ to arguments ¢y, ..., en_1.

Caveat

The arity of ¢’ does not need to be .

e f may therefore receive less than n arguments (under supply);

e f may also receive more than n arguments, if ¢ is a functional type (over supply).

117

Possible stack organisations

"| ‘ em—1
—1 | |
| |
|
— | & |

+ Addressing of the arguments can be done relative to FP

The local variables of ¢ cannot be addressed relative to FP.

If ¢ is an n-ary function with n < m, i.e., we have an over-supplied function
application, the remaining m — n arguments will have to be shifted.

Alternative

118

+ The further arguments ap, . .

above the arguments.

., a;_1 and the local variables can be allocated

120

If ¢' evaluates to a function, which has already been partially applied to the

parameters ap, ...,dk_1, these have to be sneaked in underneath ep:

= [e |
— | |
|| |
| €
e]
FP —— >
119

Cm—1

Addressing of arguments and local variables relative to FP is no more possible.
(Remember: m is unknown when the function definition is translated.)

Way out

e We address both, arguments and local variables, relative to the stack pointer SP
m

e However, the stack pointer changes during program execution...

SP ——

sd

122

SP ———>

sd

_‘-p() Xo
N e
2 — L |
— Xk—1

e The y; have positive relative addresses 1,2,3, ..., that is: pyi = (L)

e The absolute address of v; is then spg+1i=(SP—sd)+i

124

e The differerence between the current value of SP and its value sp, at the entry
of the function body is called the stack distance, sd.

Fortunately, this stack distance can be determined at compile time for each
program point, by simulating the movement of the SP.

e The formal parameters xg, X1, X3, . . . successively receive the non-positive relative
addresses 0, —1,—2,..., ie., px;=(L,—i).

e The absolute address of the i-th formal parameter consequently is

spy—1i=(SP —sd) —i

The local let-variables 11, y2, ¥3, .. . will be successively pushed onto the stack:

123

With CBN, we generate for the access to a variable:

codey x psd = getvar xpsd

eval

The instruction eval checks, whether the value has already been computed or

whether its evaluation has to yet to be done g: will be treated later.

With CBV, we can just delete eval from the above code schema.

The (compile-time) macro getvar is defined by:

getvarxpsd = let(ti)=pxin
match t with
L — pushloc &Q)
| G — pushglob i

end

125

S8,
Y

]

The access to local variables:

pushloc n

Sﬂ |
N @ - I S
<

S[SP+1] =4SP - n]}SP++;

126

The access to local variables:

S[SP£1] =S[SP - n; SP++;

126

Correctness a rgument

Let sp and sd be the values of the stack pointer resp. stack distance before the
execution of the instruction. The value of the local variable with address i is loaded

from S[a] with

a=sp—(sd—i)= (sp—sd)+i=sp,+i

.. exactly as it should be.

127

The access to global variables is much simpler:

pushglob i I

-

A

G —=[[[[T | G —=N[[[T [|

I—‘i
1
SP=5P +1;
S[SP] = GP—v]i;

128

Example
Regard e=(b+c) for p={b~ (L, 1),c— (G,0)} and sd=1. 15 let-Expressions
With CBN, we obtain:
As a warm-up let us first consider the treatment of local variables.
codey e pf = getvarbpl pushloc 0 Let e=lety; =ejin...lety, =e,iney be a nested let-expression.
eval eval The translation of ¢ must deliver an instruction sequence that
getbasic getbasic e allocates local variables vy, ..., yu;
retv 2 hglob 0
getvarcp pus glo e in the case of
eval eval CBV: evaluates e1,...,e, and binds the y; to their values;
¥
getbasic a getbasic CBN: constructs closures for the e, ..., e, and binds the y; to them;
add — add o evaluates the expression ep and returns its value.
mkbasic e mkbasic
Here, we consider the non-recursive case only, i.e. where y; only depends on
Y1, ..., Yj-1. We obtain for CBN:
120 130
Y
q @ A2
codey epsd = codec ey psd codey epsd = coded b1 psd
codec e2 p1 (sd +1) ﬁ& X -+ 2 codecz p1 (sd +1)
g) ey (20
codec €, pp—1 (sd+n — l codec ey Py—1 (sd+n—1)
codey g py (sd +n) codey ep py (sd +n)
slide n // deallocates local variables slide n // deallocates local variables
where pj=p® {yi> (Lsd+i)|i=1,...,]} where pi=p®@{y;— (Lsd+i)[i=1,...,j}.
In the case of CBV, we use codey for the expressions ey, ..., e,. In the case of CBV, we use codey for the expressions ey, ..., e,.
Caveat! Caveat!
All the e; must be associated with the same binding for the global variables! All the e; must be associated with the same binding for the global variables!
3. =% < :-g\(ngJ—)(L,M;)
D fn ¢ N
131 131

Example

Consider the expression
e=leta=19inletb=axaina+b

for p =) and sd = 0. We obtain (for CBV):

0 loadc 19 3 getbasic 3 pushlo@
1 mkbasic 3 mul 4 getbasic
1 pushloc 0 2 mkbasic 4 add
2 getbasic /% pushloc® 3 mkbasic
2 pushloc 1 3 getbasic 3 slide2
A w{) /6 = (4
132

16 Function Definitions

The definition of a function f requires code that allocates a functional value for f in
the heap. This happens in the following steps:

e Creation of a Global Vector with the binding of the free variables;
e Creation of an (initially empty) argument vector;

e Creation of an F-Object, containing references to theses vectors and the start
address of the code for the body;

Separately, code for the body has to be generated.

Thus,

134

The instruction slide k deallocates again the space for the locals:

—{] (T

slide k

S[SP-K] = S[SP];
SP=SP-k;

133

codey (fun xp...x1 —+e)psd = getvar zp p sd

getvar z p (sd + 1)

getvar z,_1 p (sd+g—1)
mkvec g
mkfunval A
jump B
A: targk
codey e p’ 0
return k
B:

where {20, .., zg1} = free(fun xo ... xe1 —)
and o={xi—(L—i)|i=0,...k=1}U{z— (G j)|j=0,...,g—1}

135

16 Function Definitions

The definition of a function f requires code that allocates a functional value for f in

the heap. This happens in the following steps:
e Creation of a Global Vector with the binding of the free variables;
e Creation of an (initially empty) argument vector;

e Creation of an F-Object, containing references to theses vectors and the start
address of the code for the body;

Separately, code for the body has to be generated.

Thus,

134

D
/

e

il
!

mkvec g

h =new (V,n);

SP=SP-g+1;

for (i=0; i<g; i++)
h—v[i] =S[SP +i];

S[SP] = h;

136

where
and

where
and

codey (fun xp...x¢ 1 4}4) sd =

135

codey (fun xp...x1 —+e)psd =

\"- p(

sd+g—1

mkfunval A
jump B

targ k
codeye g’ 0

return k

B:

fmf(fun Xg... X1 e)
p={x—> L -0)|i=0,... . k-1}U{z— (Gj)|j=0,...,g -1}

getvar zp p sd

getvar z p (sd + 1)

getvar z,_1 p (sd+g—1)
mkvec g

mkfunval A

jump B

targ k

codey e p’ 0

return k

B:

{20, .., zg1} = free(fun xo ... xe1 —)
o={xi—(L—i)|i=0,...k=1}U{z— (G j)|j=0,...,g—1}

135

a =new (V,0);
S[SP] = new (F, A, a, S[SP]);

137

Example

Regard f=funb—+a+b for p={a—(L,1)}and sd=1
codey f p1 produces:

1 pushloc 0 0 pushglob 0 2 getbasic
2 mkvec 1 1 eval 2 add

2 mkfunval A 1 getbasic 1 mkbasic
2 jump B 1 pushloc1 1 return 1
0 A: targl 2 eval 2 B:

The secrets around targk and return k will be revealed later.

138

