Script generated by TTT

Title: Seidl: Virtual_Machines (02.05.2016)

Date: Mon May 02 10:22:28 CEST 2016

Duration: 90:24 min

Pages: 37

13 Simple expressions

Expressions consisting only of constants, operator applications, and conditionals are translated like expressions in imperative languages:

$$\operatorname{code}_{\mathcal{B}} b \, \rho \operatorname{sd} = \operatorname{loadc} b$$
 $\operatorname{code}_{\mathcal{B}} (\Box_1 e) \, \rho \operatorname{sd} = \operatorname{code}_{\mathcal{B}} e \operatorname{sd} \operatorname{op}_1$
 $\operatorname{code}_{\mathcal{B}} (e_1 \Box_2 e_2) \, \rho \operatorname{sd} = \operatorname{code}_{\mathcal{B}} e_1 \, \rho \operatorname{sd} \operatorname{code}_{\mathcal{B}} e_2 \, \rho \operatorname{sd} + 1$
 op_2

The instruction new (tag, args) creates a corresponding object (B, C, F, V) in H and returns a reference to it.

We distinguish three different kinds of code for an expression e:

code_V e — (generates code that) computes the Value of e, stores it in the heap and returns a reference to it on top of the stack (the normal case);

- code_B e computes the value of e, and returns it on the top of the stack (only for Basic types);
 - code_C e does not evaluate e, but stores a Closure of e in the heap and returns a reference to the closure on top of the stack.

We start with the code schemata for the first two kinds:

108

Remark

- p denotes the actual address environment, in which the expression is translated.
- The extra argument sd, the stack difference, simulates the movement of the SP when instruction execution modifies the stack. It is needed later to address variables.
- The instructions op₁ and op₂ implement the operators □₁ and □₂, in the same
 way as the the operators neg and add implement negation resp. addition in the
 CMa.
- For all other expressions, we first compute the value in the heap and then dereference the returned pointer:

$$code_B e \rho sd = code_V e \rho sd$$
getbasic

111

For $code_V$ and simple expressions, we define analogously:

112

S[SP] = new (B,S[SP]);

For code_V and simple expressions, we define analogously:

113

Accessing Global Variables

- The bindings of global variables of an expression or a function are kept in a vector in the heap (Global Vector).
- They are addressed consecutively starting with 0.
- When an F-object or a C-object are constructed, the Global Vector for the function or the expression is determined and a reference to it is stored in the gp-component of the object.
- During the evaluation of an expression, the (new) register GP (Global Pointer) points to the actual Global Vector.
- In constrast, local variables should be administered on the stack ...

⇒ General form of the address environment:

$$\rho: Vars \rightarrow \{L,G\} \times \mathbb{Z}$$

14 Accessing Variables

We must distinguish between local and global variables.

Example Regard the function f:

let c = 5in let $f = \mathbf{fun}(a) \rightarrow \mathbf{let}(b) = a * a$ in $b \leftarrow c$

The function f uses the global variable c and the local variables a (as formal parameter) and b (introduced by the inner let).

The binding of a global variable is determined, when the function is constructed (static binding!), and later only looked up.

115

Accessing Local Variables

Local variables are administered on the stack, in stack frames.

Let $e \equiv e'e_0 \dots e_{m-1}$ be the application of a function e' to arguments e_0, \dots, e_{m-1} .

Caveat

The arity of e' does not need to be m.

- f may therefore receive less than n arguments (under supply);
- f may also receive more than n arguments, if t is a functional type (over supply).

- + Addressing of the arguments can be done relative to FP
- The local variables of e' cannot be addressed relative to FP.
- If e' is an n-ary function with n < m, i.e., we have an over-supplied function application, the remaining m n arguments will have to be shifted.

118

Alternative

 $+\,$ The further arguments a_0,\ldots,a_{k-1} and the local variables can be allocated above the arguments.

— If e' evaluates to a function, which has already been partially applied to the parameters a_0, \ldots, a_{k-1} , these have to be sneaked in underneath e_0 :

119

— Addressing of arguments and local variables relative to FP is no more possible. (Remember: m is unknown when the function definition is translated.)

Way out

- We address both, arguments and local variables, relative to the stack pointer SP
- However, the stack pointer changes during program execution...

122

- The y_i have positive relative addresses 1, 2, 3, ..., that is: $\rho y_i = (L, i)$.
- The absolute address of y_i is then $\operatorname{sp}_0 + i = (\operatorname{SP} \operatorname{sd}) + i$

- The difference between the current value of SP and its value sp₀ at the entry
 of the function body is called the stack distance, sd.
- Fortunately, this stack distance can be determined at compile time for each program point, by simulating the movement of the SP.
- The formal parameters x_0, x_1, x_2, \dots successively receive the non-positive relative addresses $0, -1, -2, \dots$, i.e., $\rho x_i = (L, -i)$.
- The absolute address of the *i*-th formal parameter consequently is

$$\mathrm{sp}_0 - i = (\mathrm{SP} - \mathrm{sd}) - i$$

• The local **let**-variables y_1, y_2, y_3, \ldots will be successively pushed onto the stack:

123

With CBN, we generate for the access to a variable:

$$code_V x \rho sd = getvar x \rho sd$$

$$eval$$

The instruction eval checks, whether the value has already been computed or whether its evaluation has to yet to be done \P will be treated later.

With CBV, we can just delete eval from the above code schema.

The (compile-time) macro getvar is defined by:

getvar
$$x \rho$$
 sd = let $(t,i) = \rho x$ in match t with
$$L \to \text{pushloc} \left(\text{sd} - i \right)$$
 | $G \to \text{pushglob i}$ end

The access to local variables:

126

The access to local variables:

Let sp and sd be the values of the stack pointer resp. stack distance before the execution of the instruction. The value of the local variable with address i is loaded from S[a] with

$$a = sp - (sd - i) = (sp - sd) + i = sp_0 + i$$

... exactly as it should be.

127

The access to global variables is much simpler:

Example

Regard $e\equiv (b+c)$ for $\rho=\{b\mapsto (L,1), c\mapsto (G,0)\}$ and $\mathrm{sd}=1.$ With CBN, we obtain:

129

$$\begin{array}{rcl} \operatorname{code}_{V} e \, \rho \, \operatorname{sd} & = & \operatorname{code}_{C} \, e_{1} \, \rho \, \operatorname{sd} & & & & \\ & \operatorname{code}_{C} \, e_{2} \, \rho_{1} \, (\operatorname{sd} + 1) & & & & & \\ & \cdots & & & & & \\ & \operatorname{code}_{C} \, e_{n} \, \rho_{n-1} \, (\operatorname{sd} + n - 1) & & & & \\ & \operatorname{code}_{V} \, e_{0} \, \rho_{n} \, (\operatorname{sd} + n) & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\$$

where $\rho_j = \rho \oplus \{y_i \mapsto (L, \operatorname{sd} + i) \mid i = 1, \dots, j\}.$

In the case of CBV, we use $code_V$ for the expressions e_1, \ldots, e_n .

Caveat!

All the e_i must be associated with the same binding for the global variables!

15 let-Expressions

As a warm-up let us first consider the treatment of local variables.

Let $e \equiv \text{let } y_1 = e_1 \text{ in } ... \text{let } y_n = e_n \text{ in } e_0$ be a nested let-expression.

The translation of e must deliver an instruction sequence that

- allocates local variables y_1, \ldots, y_n ;
- in the case of

CBV: evaluates e_1, \ldots, e_n and binds the y_i to their values;

CBN: constructs closures for the e_1, \ldots, e_n and binds the y_i to them;

 \bullet evaluates the expression e_0 and returns its value.

Here, we consider the non-recursive case only, i.e. where y_j only depends on y_1, \ldots, y_{j-1} . We obtain for CBN:

130

$$\begin{array}{rcl} \operatorname{code}_{V} e \, \rho \, \operatorname{sd} & = & \operatorname{code}_{C} \, \rho_{1} \, \rho \, \operatorname{sd} \\ & \operatorname{code}_{C} \, \rho_{2} \, \rho_{1} \, (\operatorname{sd} + 1) \\ & \cdots & & \operatorname{Code}_{C} \, e_{n} \, \rho_{n-1} \, (\operatorname{sd} + n - 1) \\ & \operatorname{code}_{V} \, e_{0} \, \rho_{n} \, (\operatorname{sd} + n) \\ & & \operatorname{slide} \, n & \text{// deallocates local variables} \end{array}$$

where $\rho_i = \rho \oplus \{y_i \mapsto (L, \operatorname{sd} + i) \mid i = 1, \dots, j\}.$

In the case of CBV, we use $code_V$ for the expressions e_1, \ldots, e_n .

Caveat!

All the e_i must be associated with the same binding for the global variables!

Example

Consider the expression

for $\rho = \emptyset$ and sd = 0. We obtain (for CBV):

 0
 loadc 19
 3
 getbasic
 3
 pushloc 1

 1
 mkbasic
 3
 mul
 4
 getbasic

 1
 pushloc 0
 2
 mkbasic
 4
 add

 2
 getbasic
 3
 mkbasic

 2
 pushloc 1
 3
 getbasic
 3
 slide 2

132

16 Function Definitions

The definition of a function f requires code that allocates a functional value for f in the heap. This happens in the following steps:

- Creation of a Global Vector with the binding of the free variables;
- Creation of an (initially empty) argument vector;
- Creation of an F-Object, containing references to theses vectors and the start address of the code for the body;

Separately, code for the body has to be generated.

Thus.

The instruction slide k deallocates again the space for the locals:

S[SP-k] = S[SP];SP = SP - k;

133

 $\operatorname{code}_V\left(\operatorname{\mathbf{fun}} x_0 \dots x_{k-1} \to e\right) \rho \operatorname{sd} = \operatorname{getvar} z_0 \rho \operatorname{sd}$ $\operatorname{getvar} z_1 \rho \left(\operatorname{\mathbf{sd}} + 1\right)$ \ldots $\operatorname{getvar} z_{g-1} \rho \left(\operatorname{\mathbf{sd}} + g - 1\right)$ $\operatorname{\mathbf{mkvec}} g$ $\operatorname{\mathbf{mkfunval}} A$ $\operatorname{\mathbf{jump}} B$ $A: \operatorname{\mathbf{targ}} k$ $\operatorname{\mathbf{code}}_V e \rho' 0$ $\operatorname{\mathbf{return}} k$ $B: \ldots$

where $\{z_0,\ldots,z_{g-1}\} = \mathit{free}(\mathbf{fun}\ x_0\ldots x_{k-1} \to e)$ and $\rho' = \{x_i \mapsto (L,-i) \mid i=0,\ldots,k-1\} \cup \{z_j \mapsto (G,j) \mid j=0,\ldots,g-1\}$

16 Function Definitions

The definition of a function f requires code that allocates a functional value for f in the heap. This happens in the following steps:

- Creation of a Global Vector with the binding of the free variables;
- Creation of an (initially empty) argument vector;
- Creation of an F-Object, containing references to theses vectors and the start address of the code for the body;

Separately, code for the body has to be generated.

Thus,

134


```
\operatorname{code}_{V}\left(\operatorname{\mathbf{fun}}\,x_{0}\dots x_{k-1}\to e\right)\rho\operatorname{sd} = \underbrace{\left(\operatorname{\mathbf{getvar}}\,z_{0}\,\rho\operatorname{sd}\right)}_{\operatorname{\mathbf{getvar}}\,z_{1}\,\rho\left(\operatorname{sd}+1\right)} \\ \underbrace{\left(\operatorname{\mathbf{getvar}}\,z_{1}\,\rho\left(\operatorname{sd}+g-1\right)\right)}_{\operatorname{\mathbf{mkvec}}\,g} \\ \operatorname{\mathbf{mkfunval}}\,A \\ \operatorname{\mathbf{jump}}\,B \\ A: \operatorname{\mathbf{targ}}\,k \\ \operatorname{\mathbf{code}}_{V}\,e\,\rho'\,0 \\ \operatorname{\mathbf{return}}\,k \\ B: \dots \\ \underbrace{\left(\operatorname{\mathbf{getvar}}\,z_{n-1}\,\rho\left(\operatorname{sd}+g-1\right)\right)}_{\operatorname{\mathbf{p'}}\,=\,\{x_{i}\,\mapsto\,(L,-i)\mid i=0,\dots,k-1\}} \cup \{z_{j}\mapsto(G,j)\mid j=0,\dots,g-1\}
```

135

$$\operatorname{code}_{V}\left(\operatorname{\mathbf{fun}}\,x_{0}\ldots x_{k-1}\to e\right)\rho\operatorname{\mathbf{sd}} = \operatorname{\mathbf{getvar}}\,z_{0}\,\rho\operatorname{\mathbf{sd}}$$

$$\operatorname{\mathbf{getvar}}\,z_{1}\,\rho\left(\operatorname{\mathbf{sd}}+1\right)$$

$$\ldots$$

$$\operatorname{\mathbf{getvar}}\,z_{g-1}\,\rho\left(\operatorname{\mathbf{sd}}+g-1\right)$$

$$\operatorname{\mathbf{mkvec}}\,g$$

$$\operatorname{\mathbf{mkfunval}}\,A$$

$$\operatorname{\mathbf{jump}}\,B$$

$$A:\,\operatorname{\mathbf{targ}}\,k$$

$$\operatorname{\mathbf{code}}_{V}\,e\,\rho'\,0$$

$$\operatorname{\mathbf{return}}\,k$$

$$B:\,\ldots$$

$$\operatorname{\mathbf{re}}\quad\{z_{0},\ldots,z_{g-1}\}=\operatorname{\mathit{free}}(\operatorname{\mathbf{fun}}\,x_{0}\ldots x_{k-1}\to e)$$

$$\rho'=\{x_{i}\mapsto(L,-i)\mid i=0,\ldots,k-1\}\cup\{z_{j}\mapsto(G,j)\mid j=0,\ldots,g-1\}$$

137

Example

Regard $f\equiv {
m fun}\ b o a+b$ for $ho=\{a\mapsto (L,1)\}$ and ${
m sd}=1.$ ${
m code}_V\ f\
ho\ 1$ produces:

```
pushloc 0
                      0 pushglob 0
                                       2
                                              getbasic
      mkvec 1
                                              add
2
                      1 eval
      mkfunval A
                      1 getbasic
                                              mkbasic
      jump B
                      1 pushloc 1
                                             return 1
                                       1
0 A: targ 1
                      2 eval
                                       2 B: ...
```

The secrets around targ k and return k will be revealed later.

138