Script generated by TTT

Title: Seidl: Virtual_Machines (26.04.2016)
Date: Tue Apr 26 10:22:20 CEST 2016
Duration: 91:14 min

Pages: 36

Actions when terminating the call:

1. Storing of the return value

Restoring of the registers FP, EP

return
Jumping back into the code of f, i.e.,
Restauration of the PC
4. Popping the stack } slide

81

Actions when entering g:

AR I S

Evaluating the actual parameters
Saving of FP, EP

Determining the start address of g
Setting of the new FP

Saving PC and

Jump to the beginning of g
Setting of new EP

Allocating of local variables

80

} mark

are part of f
} call
} enter

are partof g
} alloc

Accordingly, we obtain for a call to a function with at least one parameter and one

return value:

where

codeg gler,...,eq) p

m s the size of the actual parameters.

82

codeg e; p

coder g p
call
slide (m —1)

e Similar to declared arrays, function names are interpreted as constant pointes
onto function code. Thus, the R-value of this pointer is the start address of the
function.

e Caveat! Fora variable int (%)() g; the two calls

(=8)() und 8()

are equivalent! By means of normalization, the dereferencing of function pointers
can be considered as redundant.

e During passing of parameters, these are copied.

Consequently,

coder f p = loadc(pf) f name of a function
codeg (*¢) p = codegep e function pointer
codeg e p = codepep
move k e a structure of size k
where
84

e Similar to declared arrays, function names are interpreted as constant pointes
onto function code. Thus, the R-value of this pointer is the start address of the
function.

e Caveat! Fora variable int (x)() g; the two calls

()0 und & g0

are equivalent! By means of normalization, the dereferencing of function pointers
can be considered as redundant.

e During passing of parameters, these are copied.

Consequently,

codeg f p = loadc(pf) f name of a function
codeg () p = codegep e function poeinter
codeg e p = codepep

move k e a structure of size k

where

84

Remark

e Of every expression which is passed as a parameter, we determine the R-value

—— call-by-value passing of parameters.

e The function g may as well be denoted by an expression, whose R-value provids
the start address of the called function ...

83

movek

for (i = k-1; i=0; i)
S[SP+i] = S[S[SP]+il;
SP = SP+k-1;

85

Remark

e Of every expression which is passed as a parameter, we determine the R-value

—= call-by-value passing of parameters.

e The function g may as well be denoted by an expression, whose R-value provids
the start address of the called function ...

E

S

83

The instruction call saves the return address and sets FP and PC onto the new

T P

tmp = S[SPJ;

values.

87

The instruction mark saves the registers FP and EP onto the stack.

FP
EP

FP
EP
mark
S[SP+1] = EP;
S[SP+2] = FP;
SP =SP + 2;
86

The instruction slide copies the return values into the correct memory cell:

slide m

tmp = S[SP];
SP = SP-m;
S[SP] = tmp;

88

Accordingly, we translate a function definition:

f

code tf (specs){V defs ss} p =
: ent %—EP

allo allocate the local variables

code ss pg

return // return from call
where q = with
max = maximal length of the local stack
k = size of the local variables
Pf = address environment for f

v

The instruction alloc k

| |

takes specs, V_defs and p into account

89

allocates memory for locals on the stack.

k
alloc k

SP =SP + k;

91

The instruction enter q sets the EP to the new value. If not enough space is

available, program execution terminates.

D enter q

EP =SP + q;
if (EP > NP)

Error (“Stack Overflow”);

90

]

The instruction return pops the current stack frame. This means it restores the

registers PC, EP and FP and returns the return value on top of the stack.

S

\VENAN

o~
e
L
return
=
| V]

rc [p
e [
e [e]

PC = S[FP]; EP = S[FP-2];

if (EP > NP) Error ("Stack Overflow™);

SP = FP-3; FP = S[SP+2];

92

9.4 Access to Variables, Formal Parameters and Returning of

Values
Accesses to local variables or formal parameters are relative to the current FP.
Accordingly, we modify coder for names of variables.
For px = (tag,j) we define

loadcj tag=0G
coder xp=
loadrcj tag=1L

93

As an optimization, we introduce analogously to loadaj and storea] the new

instructions loadr j and storer j

loadr j = loadrc j
load

storer j = Ioaﬁj;
store

95

The instruction

loadrc j computes the sum of FP and j.

loadrej

FP FP £+

The code for
address —3.

Example

we generate:

SP++;
S[SP] = FP+;

94

return ¢; corresponds to an assignment to a variable with relative

code returne; p = codeg e p
storer -3

retum

For function

int fac (int x) {
if (x < 0) return 1,

else return x * fac (x — 1);

96

_fac: enterq
alloc 0

'-l loadr -3

loadc 0

leq
jumpz A

loadc 1 A: loadr -3

storer -3 1
return

jump B

where ppc:xe (L,—3) and q=5.

Then we define:

where
P =
k =

97

codepl) =

_f1:

empty address environment;
global address environment;

size of the global variables

99

loadr -3
loadc 1
sub

mark

—

loadc _fac
call
slide 0

enter (k+4)
alloc (k+1)
mark

loadc main
call

slide k

halt

code F_def, p

code F_def, p

L.,

W e

mul
storer -3
return

return

[~ 8

10 Translation of Whole Programs

Before program execution, we have:

SP = -1 FP =EP = -1 PC=0 NP = MAX
Let p=V_defs F_def, ... F_def,, denote a program where F_def; is the
definition of a function f; of which one is called main
The code for the program p consists of:
e code for the function definitions F_ def;;
¢ code for the allocation of global variables;
e code for the call of int main();

e the instruction halt which returns control to the operating system together
with the value at address 0.

98

The Translation of Functional
Programming Languages

100

A program is an expression e of the form:

e == b | x| (Oye) | (e1 Ozea)

11 The language PuF

if e then e; else e;)
e Xpq 4)@

let x; =e in ep)

We only regard a mini-language PuF (“Pure Functions”).
We do not treat, as yet:

. letrec x; =e¢y and...and x, = e, in ¢
o Side effects; 1 1 n n 0)

e Data structures; $ An expression is therefore

e Exceptions. R e a basic value, a variable, the application of an operator, or

e a function-application, a function-abstraction, or

e a let-expression, i.e. an expression with locally defined variables, or

s a let-rec-expression, i.e. an expression with simultaneously defined local
variables.

For simplicity, we only allow int as basic type.

101 102

Example A program is an expression e of the form:

e u= b | x| (Oie) | (e1 Ozea)

The following we &wn function comp, he factorial oF aesiral number:

if e then e, else ¢;)
let rec fac

ifx<1thenl o

I f 1 | (e"eo-..ex1)

else x - fac (x — 1) | (fun xp... 21 —€)
| (let x; =e;in eg)

| (

As usual, we only use the i letrec x; =e¢j and...and x, = e, in &)

There are two Semantics: An expression is therefore
CBV: Arguments are evaluated before they are passed to the function (as in SML); e a basic value, a variable, the application of an operator, or
CBN: Arguments are passed unevaluated; they are only evaluated when their value e a function-application, a function-abstraction, or

is needed (as in Haskell). e a let-expression, i.e. an expression with locally defined variables, or

X —_ . -~ — ¢ a let-rec-expression, i.e. an expression with simultaneously defined local
ED,&' R - variables.

L

_,\’\ C ’} For simplicity, we only allow int as basic type.

103 102

Example

The following well-known function computes the factorial of a natural number:
let rec fac = funx — ifx<1thenl
else x - fac (x — 1)
in fac 7

As usual, we only use the minimal amount of parentheses.

There are two Semantics:
CBV: Arguments are evaluated before they are passed to the function (as in SML);

CBN: Arguments ated; they are only evaluated when their value

is needed

K

103

12 Architecture of the MaMa

We know already the following components:

c O [|
0 1 r pPC
C = Code-store — contains the MaMa-program;
each cell contains one instruction;
PC = Program Counter — points to the instruction to be executed next;

104

Example

The following well-known function computes the factorial of a natural number:

let rec fac = fun x — ifx <1thenl
else x - fac (x — 1)
infac 7

As usual, we only use the minimal amount of parentheses.

There are two Semantics:
CBV: Arguments are evaluated before they are passed to the function (as in SML);

CBN: Arguments are passed unevaluated; they are only evaluated when their value
is needed (as in Haskell).

103

s [1]

0 T SP

FP
S = Runtime-Stack — each cell can hold a basic value or an address;
SP = Stack-Pointer — points to the topmost occupied cell;
as in the CMa implicitely represented;

FP = Frame-Pointer — points to the actual stack frame.

105

We also need a heap H: ... it can be thought of as an abstract data type, being capable of holding data
objects of the following form:

v

Basic Value

Tag

Code Pointer ﬁ% Closure
ap

Value

J B0 o

. Function
Heap Pointer ‘ ‘ |

vi0] L v[n-1]
‘ v | n ‘ | | | | Vector
106 107
We also need a heap H: The instruction new (tag, args) creates a corresponding object (B, C, F, V) in H and

returns a reference to it.

Tag We distinguish three different kinds of code for an expression e:

codey ¢ — (generates code that) computes the Value of e, stores it in the heap

. and returns a reference to it on top of the stack (the normal case);
Code Pointer

codeg ¢

computes the value of ¢, and returns it on the top of the stack (only

Value for Basic types);

codec ¢ — does not evaluate e, but stores a Closure of ¢ in the heap and returns

U BB o

. a reference to the closure on top of the stack.
Heap Pointer

We start with the code schemata for the first two kinds:

106 108

The instruction new (fag, args) creates a corresponding object (B, C, F, V) in H and
returns a reference to it.

We distinguish three different kinds of code for an expression e:

e codey ¢ — (generates code that) computes the Value of ¢, stores it in the heap

and returns a reference to it on top of the stack (the normal case);

e codeg ¢ — computes the value of ¢, and returns it on the top of the stack (only
for Basic types);

codec ¢ — does not evaluate e, but stores a Closure of e in the heap and returns
a reference to the closure on top of the stack.

We start with the code schemata for the first two kinds:

108

