Script generated by TTT

Title: Seidl: Virtual Machines (16.06.2014)
Date: Mon Jun 16 10:46:44 CEST 2014
Duration: 43:59 min

Pages: 24

41 Calling Member Functions

Static member functions are considered as ordinary functions)
For non-static member functions, we distinguish two forms of calls:

(1) directly: flex,... en)

(2) relative to an object: 5\:32,)
=/
Nom

Idea:

e The case (1) is considered as an abbreviation of this.f (ez, ..., ¢,)

s The objectis passed to |f as an implicit first argument :-)

e If |f isnon-virtuall proceed as with an ordinary call of a function

e If |f isvirtualfinsdrtan indirect call | =-)

379

)

=)

A non-virtual function:

coda:, es,....eu)l p = |coder e, p

codeg ez p

code, e, p

mark
loade _f

call

slide m

where (T
o

m = space for the actual parameters

Note:

The pointer to the object is obtained by computing the [-value of e; :-)

380

A virtual function:

C()dL‘K es,...,eq] p = |codege,p

coder ez p
_> coder | e1| p
mark
loads 2
loadc b

add ; load

call

|slidem

where [(V,5)] = pc(f)

C=classof ¢

m = space for the actual parameters

381

The instruction load[. |10ads relative to the stack pointer:

i loadsj

42

SISP+1] = S[SFjl;
SP++;

382

... in the Example:

The recursive call

next | last ()
B

in the body of the viftual method last is translated into:

vloadm 1 |

loads 2
loadc 2
add
load

call

383

42 Defining Member Functions

In general, a definition of a member function for class € looks as follows:

d =t fllaxa,... lhxy) {ss}

Idea:

e |f istreated like an ordinary function with one extra implicit argument

e Inside f apointer this to the current object has relative address -3
=)

e Object-local data must be addressed relative to this ...

384

codep d p = _f: ‘ enter q // Setting the EP
‘ // Allocating the local variables
code ss py
// Leaving the function
where q = maxS+m where

max$s = maximal depth of the local stack

m = space for the local variables

k = space for the formal parameters (including this)

21 = local address environment

385

... in the Example:

_last:

enter 6
alloc 0
loadm 1
loadc 0
€q
jumpz A

loadm 0
storer -3

return

loadm 1

mark

loads 2
loadc 2
add
load
call
storer -3

refurn

A virtual function:
codey (e2,...,en) p = codege,p

coder e2 p

coder e p

mark
loads 2
loadc b
add; load
call
slidem
where (V,b) = pclf)
C=classof ¢

m = space for the actual parameters

381

"OR\(\.\ by

ker VL'Uﬁ(- (918[6()

S[SP+1] = S[SP—j];

SP++;

43 Calling Constructors

Every new object should be initialized by (perhaps implicitly) calling a

constructor. We distinguish two forms of object creations:

(1) directly: x = Clea,...,eq);

(2) indirectly: | new C (ez, ..., e,)

Idea for (2):

e | Allocate space for the object and return a pointer to it on the stack; |

e |Initalize the fields for virtual functions;

e |Pass the object pointer as first parameter to a call to the constructor;

e [roceed as with an ordinary call of a (non-virtual) member function

» Unboxed objects are considered later ...

387

)

codeg new C (ez,...,e,) p = loadc|C]|

new Assume that the class C lists the virtual functions f1,..., f, for C with
. — the offsets and initial addresses: b; and a;, respectively:
initVirtual C g
codeg e, p
" Then:
initVirtual C = dup
coder ez p loadc by ; add
loads m loads relative to S :-)
loadc ay ; store
mark
pop
loade _C
call dup
opm+ 1
pop m-+ loadc b, ; add
where m = space for the actual parameters. loadc a, ; store
pop
Before calling the constructor, we initialize all fields of virtual functions.
The pointer to the object is copied into the frame by an extra instruction :-)
388 389
coder new C (ez,...,¢,) p = loadc|C|
Assume that the class € lists the virtual functions f1,..., f, for C with

loads relative to SPP =)

where m = space for the actual parameters.

Before calling the constructor, we initialize all fields of virtual functions.

The pointer to the object is copied into the frame by an extra instruction :-)

388

the offsets and initial addresses: b; and

Then:

initVirtual C =

respectively:

loadc by ;

loadd ayf; store
4—__-_-

pop

dup
loadc b, ; add

load ; store
—_—

pop

389

44 Defining Constructors
... in the Example:

In general, a definition of a constructor for class € looks as follows:

_list: enter 3 lpada 1 loadc 0
alloc 0 loadc 1 storem 1
d = |C(trxa,..., 0 X ss
(2 w L) loadr -4 add pop

storem () storea 1 return
pop pop

Idea:

e Treat the constructor as a definition of an ordinary member function :-)

390 39
— 1

40 Object Lay Yoty

44 Defining Constructors Idea: C ‘{d—‘q- hed = O ’.

e Only attributes and virtual member functions are stored inside the class !!
In general, a definition of a constructor for class C looks as follows: e The addresses of non-virtual or s

d = C(lbxy... . 4hxy) {ss} e The fields of a sub-clasg = s = g fields of the

Idea: ... in our Example:
info
e Treat the constructor as a definition of an ordinary member function :-) next
last

390 373

Discussion:

The constructor may issue further constructors for attributes if desired :-)

The constructor may call a constructor of the super class B as first action:

code B (ey,...,en); p = | coder e, p

coder ez p

| loadr — 3 |
1 I
loadc _B
call
popm+1

where m = space for the actual parameters.

The constructor is applied to the current object of the calling constructor!

392

45 Initializing Unboxed Objects

Problem:

The same constructor application can be used for initializing several variables:

x=2x1 =C(ex...,e,)

Idea:
e Allocate sufficient space for a temporary copy of a new C object.
e Initialize the temporary copy.

e Assign this value to the variables to be intialized :-)

393

codeg C (ez,...,eq) p :| stalloc |C| I

initVirtual C

codeg e, p

codeg ez p

| loads m I

mark

loadc _C

call
popm +2
where m = space for the actual parameters.
Note:
The instruction stallocm islike mallocm but allocates on the stack :-)

We assume that we have assignments between complex types :-)

394

stalloc m

=

SP = SP+m+1;
S[SP] = SP-m;

395

=

stalloc m
m

SP = SP+m+1;
S[SP] = SP—m;

395

