Script generated by TTT

Title: Seidl: Virtual_Machines (25.06.2013)
Date: Tue Jun 25 14:04:58 CEST 2013
Duration: 87:13 min

Pages: 43

45 The Language ThreadedC

We extend C by a simple thread concept. In particular, we provide functions for:

e generating new threads: create();
e terminating a thread: exit();
* waiting for termination of a thread: join();

e mutual exclusion: lock(), unlock(); ...

In order to enable a parallel program execution, we extend the abstract machine

(what else? :-)

Threads

382

46 Storage Organization

All threads share the same common code store and heap:

384

.. similar to the CMa, we have:

@]

NP

Code Store — contains the CMa program;

every cell contains one instruction;

Program-Counter — points to the next executable instruction;
Heap -

every cell may contain a base value or an address;

the globals are stored at the bottom;

New-Pointer - points to the first free cell.

For a simplification, we assume that the heap is stored in a separate segment.

The function

malloc() then fails whenever NI’ exceeds the topmost border.

w
@
o

.. similar to the CMa, we have:

n

NP

Code Store — contains the CMa program;

every cell contains one instruction;

Program-Counter — points to the next executable instruction;
Heap -

every cell may contain a base value or an address;

the globals are stored at the bottom;

New-Pointer — points to the first free cell.

For a simplification, we assume that the heap is stored in a separate segment.

The function

malloc() then fails whenever NI’ exceeds the topmost border.

w
2
@

Every thread on the other hand needs its own stack:

R
~ [

In constrast to the CMa, we have:

SSet

Warning:

Set of Stacks — contains the stacks of the threads;

every cell may contain a base value of an address;

common address space for heap and the stacks;

Stack-Pointer — points to the current topmost ocupied stack cell;

Frame-Pointer — points to the current stack frame.

 If all references pointed into the heap, we could use separate address spaces

for each stack.

Besides SI” and FP, we would have to record the number of the current stack

=)

o In the case of C, though, we must assume that all storage reagions live

within the same address space — only at different locations :-)

SP Und FP then uniquely identify storage locations.

o For simplicity, we omit the extreme-pointer ~EF.

387

47 The Ready-Queue

... where the instruction self pushes the content of the register CT onto
the (current) stack:

Idea:
Every thread has a unique number tid. .
e a CT CT
e A table TTab allows to determine for every tid the corresponding thread. (11 (1]
* Atevery point in time, there can be several executable threads, but only one
running thread (per processor :-) self
o the tid of the currently running thread is cept in the register CT (Current &

Thread).

e The function: tid self () returns the tid of the current thread.

Accordingly:
codeg self () p = self
388 389
¢ The remaining executable threads (more precisely, their tid’s) are o The remaining executable threads (more precisely, their tid’s) are
maintained in the queue RQ (Ready-Queue). maintained in the queue RQ (Ready-Queue).
¢ For queues, we need the functions: o For queues, we need the functions:
void enqueue (queue g, tid t), void enqueue (queue g, tid t),
tid dequeue (queue q) tid dequeue (queue q)
which insert a tid into a queue and return the first one, respectively ... which insert a tid into a queue and return the first one, respectively ...

390 390

TTab

\V

JDOAD
o a R

b

391 391

CT RO CT RQ

’—'—‘ TTab

TTab

enqueue(RQ, 13) enqueue(RQ, 13)

R NN
DENEE

392 392

CT RQ CT RQ
TTab [:::] [::J (__1___T__1 TTab [:::j
0 | [| E
l:l |:| CT = dequeue(RQ);
e [
393 394
If a call to dequeue () failed, it returns a value < 0 :-)
CT RO The thread table must contain for every thread, all information which is needed
TTab . for its execution. In particular it consists of the registers PC, SP und FP:

CT = dequeue(RQ):

NE NN

2 SP
pPC
0 FP

Interrupting the current thread therefore requires to save these registers:

void save () {
TTab[CT] [0] = FP;
TTab[CT] [1] = PC;
TTab[CT] [2] = SP;

Analogously, we restore these registers by calling the function: Analogously, we restore these registers by calling the function:

void restore () { void restore () {
FP = TTab[CT] [0]; FP = TTab[CT] [0];
PC = TTab[CT] [1]; PC = TTab[CT] [1];
SP = TTab[CT][2]; SP = TTab[CT] [2];
} +
Thus, we can realize an instruction yield which causes a thread-switch: Thus, we can realize an instruction yield which causes a thread-switch:
tid ct = dequeue (RQ); tid ct = dequeue (RQ);
if(ct>0){ if(ct > 0){
save (); enqueue (\RQ, CT); save (); enqueue (RQ, CT);
CT=ct; CT =ct;
restore (); restore ();
} }
Only if the ready-queue is non-empty, the current thread is replaced :-) Only if the ready-queue is non-empty, the current thread is replaced :-)
397 207

We insert thread switches at selected program points ...

L. . . e at the beginning of function bodies;
48 Switching between Threads snns

* before every jump whose target does not exceed the current PC ...

Problem: = rare =)

We want to give each executable thread a fair chance to be completed. .) i
The modified scheme for loops s = while (e) s then yields:

o Every thread must former or later be scheduled for running.

o Every thread must former or later be interrupted. codesp = A: codegep
jumpz B
Possible Strategies: code s p
e Thread switch only at explicit calls to a function yield() :-(yield
 Thread switch after every instruction —= too expensive :~(jump A

o Thread switch after a fixed number of steps —— we mustinstalla
counter and execute yield at dynamically chosen points :-(

Note:

If-then-else-Statements do not necessarily contain thread switches.

do-while-Loops require a thread switch at the end of the condition.

Every loop should contain (at least) one thread switch :-)

Loop-Unroling reduces the number of thread switches.

At the translation of switch-statements, we created a jump table behind the
code for the alternatives. Nonetheless, we can avoid thread switches here.

At freely programmed uses of jumpi aswellas jumpz we should
also insert thread switches before the jump (or at the jump target).

If we want to reduce the number of executed thread switches even further,
we could switch threads, e.g., only at every 100th call of yield ...

400

49 Generating New Threads

We assume that the expression: s = create (eg, ¢1) first evaluates the
expressions ¢; to the values f, @ and then creates a new thread which computes

fla).
If thread creation fails, s returns the value —1.

Otherwise, s returns the new thread’s tid.

Tasks of the Generated Code:
e Evaluation of the ¢;;

o Allocation of a new run-time stack together with a stack frame for the
evaluation of f (a);

o Generation of a new tid;
o Allocation of a new entry in the TTab;

» Insertion of the new tid into the ready-queue.

401

The translation of s then is quite simple:

codegsp = codegegp
codeg e p
initStack

initThread
where we assume the argument value occupies 1 cell :-)

For the implementation of initStack we need a run-time function
newStack() which returns a pointer onto the first element of a new stack:

402

newStack ()

L

If the creation of a new stack fails, the value 0 is returned.

SP I:l—)- SP I:l—)-
initStack

newStack();

if (S[SP]) {
S[S[SP]+1] =-1;
S[S[SP]+2] = f;
S[S[SP1+3] =
S[SP-1] = S[SP[;S

t
else S[SP =SP -2] =-1;

404

Note:

o The continuation address f points to the (fixed) code for the termination
of threads.

» Inside the stack frame, we no longer allocate space for the EP —= the
return value has relative address —2.

o The bottom stack frame can be identified through FPold =-1 :-)

In order to create new thread ids, we introduce a new register TC (Thread
Count).

Initially, TC has the value 0 (corresponds to the tid of the initial thread).

Before thread creation, TC is incremented by 1.

405

Note:

¢ The continuation address f points to the (fixed) code for the termination
of threads.

¢ Inside the stack frame, we no longer allocate space for the EP' —— the
return value has relative address —2.

o The bottom stack frame can be identified through FPold =-1 :-)

In order to create new thread ids, we introduce a new register TC (Thread
Count).

Initially, TC has the value 0 (corresponds to the tid of the initial thread).

Before thread creation, TC is incremented by 1.

405

SP [} P [
initStack

11 (32
S[S[SP]+1] = -1;
S[S[SP]+2] = f;
S[S[SP]+3] = S[SP-1];
S[SP-1] = S[SP]; SP--
}

else S[SP = SP - 2] =-1;

404

Note:

e The continuation address f points to the (fixed) code for the termination
of threads.

o Inside the stack frame, we no longer allocate space for the EP —= the
return value has relative address —2.

¢ The bottom stack frame can be identified through FPold =-1)

In order to create new thread ids, we introduce a new register TC (Thread
Count).

Initially, TC has the value 0 (corresponds to the tid of the initial thread).

Before thread creation, TC is incremented by 1.

405

SP =[] SP [
T

init Thread

A

406

initStack —

newStack();

if (S[SP]) {
S[S[SP]+1] =-1;
S[S[SP]+2] =§;
S[S[SP]+3] = S[SP-1];
S[SP-1] = S[SP]; SP--

b
else S[SP =SP -2] =-1;

404

P] P
TC T«
initThread
(=]

[T 1] N

406

SP [=]] sP]
TC T(
init Thread
[—]

if (S[SP] = 0) {
tid = ++TCount;
TTab[tid][0] = S[SP]-1;
TTab[tid][1] = S[SP-1];
TTab[tid][2] = S[SP];
S[--SP] = tid;
enqueue(RQ, tid);

406 407
Therefore, we translate:
50 Terminating Threads code exit (e); p = codegep
term
Termination of a thread (usually :-) returns a value. There are two (regular) ways t
nex

to terminate a thread:

1. The initial function call has terminated. Then the return value is the return

value of the call.

2. The thread executes the statement exit (¢); Then the return value equals

the value of e.
Warning;:
e We want to return the return value in the bottom stack cell.

¢ exit may occur arbitrarily deeply nested inside a recursion. Then we
de-allocate all stack frames ...

e ... and jump to the terminal treatment of threads at address f

408

The instruction term is explained later :-)

The instruction exit successively pops all stack frames:

result = S[SP];

while (FP # -1) {
SP = FP-2;
FP = S[FP-1];
}

S[SP] = result;

409

P

410

The instruction next activates the next executable thread:

incontrastto yield the current thread is not inserted into RO .

sp
PC
FP

RO
CT[4] 3] T]
L7
L2]
f .
mniERER

next

411

RQ
cTmEl.]
SP [39] |
PC [4]
kP [21]

_

| E
7 EN
2]

Therefore, we translate:

code exit (e); p = codegep
exit

term

ext

The instruction term is explained later :-)

The instruction exit successively pops all stack frames:

result = S[SP];
while (FP # -1) {
SP = FP-2;
FP = S[FP-1];
}

S[SP] = result;

409

FP [

exit

410

FP

pidy

