Script generated by TTT

Title: Seidl: Virtual_Machines (05.06.2013)
Date: Wed Jun 05 16:00:37 CEST 2013
Duration: 88:08 min

Pages: 46

Example:

For our example term f(g(X,Y),a,Z) and
p={X—~1Y—2Z—3} weobtain:

ustruct £/3 Ay up B> Bs: son 2 putvar 2

son 1 uatom a putstruct g/2
ustruct g/2 A> As: check 1 son 3 putatom a
son 1 putref 1 uvar 3 putvar 3

uref 1 putvar 2 up By putstruct £/3
son 2 putstructg/2 Ajp: check1 bind

uvar 2 bind putref1 Bi:

Code size can grow quite considerably — for deep terms. In practice, though,
deep terms are “rare” :-)

Example:

For our example term f(g(X,Y),a,Z) and
p={X—1Y—2272+—3} weobtain:

ustruct f/3 Ay up B, Bo: son 2 putvar 2

son 1 uatom a putstruct g/2
ustructg/2 A; As: check1 son 3 putatom a
son 1 putref 1 uvar 3 putvar 3

uref 1 putvar 2 up By putstruct f/3
son 2 putstruct g/2 Az check1 bind

uvar 2 bind putref 1 By:

Code size can grow quite considerably — for deep terms. In practice, though,
deep terms are “rare” :-)

31 Clauses

Clausal code must
o allocate stack space for locals;
» evaluate the body;

o free the stack frame (whenever possible :-)

Let r denote the clause: (X, LX) =81 8
Let {X;,..., X, } denote the set of locals of r and p the address environment:

pXi=i

Remark: The first k locals are always the formals :-)

Then we translate:

codec r = pushenvm

codeg g1 p

codeg gn P

popenv

The instruction popenv restores FI’ and PC and tries to pop the current stack

frame.

It should succeed whenever program execution will never return to this stack

frame :-)

// allocates space for locals

The instruction pushenv m sets the stack pointer:

pushenv m
m
" E v

SP=FP + m;

Example:

Consider the clause r:

a(X,Y) « f(:‘_{, X1), a(XL Y}

Then codecr yields:

pushenv 3 mar/-—> A:

putref 1
putvar 3
call f/2

mar@.ﬁ B:

putref 3
putref 2
calla/2

popenv

32 Predicates

A predicate q/k is defined through a sequence of clauses rr=r...7,.
The translation of q/k provides the translations of the individual clauses r;.

In particular, we have for f =1

codeprr = codecr

If g/k is defined through several clauses, the first alternative must be tried.
On failure, the next alternative must be tried

— backtracking :-)

321 Backtracking

o Whenever unifcation fails, we call the run-time function backtrack().

o The goal is to roll back the whole computation to the (dynamically :-) latest
goal where another clause can be chosen —— the last backtrack point.

¢ In order to undo intermediate variable bindings, we always have recorded
new bindings with the run-time function trail().

e The run-time function trail() stores variables in the data-structure
trail:

T[] o
0 LQT_T []

TP — Trail Pointer

points to the topmost occupied Trail cell

283

The current stack frame where backtracking should return to is pointed at by the
extra register DBI:

FP
BP

A backtrack point is stack frame to which program execution possibly returns.

* We need the code address for trying the next alternative (negative
continuation address);

o We save the old values of the registers HP, T’ and BP.

e Note: The new BP will receive the value of the current FP :-)

For this purpose, we use the corresponding four organizational cells:

FP ——=| posCont. | 0
FPold |-1

HPold |-2

TPold |-3

BPold |-4

negCont. | -b

[
&
@

For more comprehensible notation, we thus introduce the macros:

posCont = S[FP]

FPold = S[FP—1]
HPold = S§[FP-2]
TPold = S[FP-3]
BPold = S[FP—4]
negCont = §[FP—5]

for the corresponding addresses.

Remark:

Occurrence on the left == saving the register
Occurrence on the right == restoring the register
286

Calling the run-time function void backtrack() yields:

FP | S
— _—
N backtrack();]
HP 142 | HP 44 42
TP 17 TP 17 | @—=—17
BP . BP — [
PC i PC 13{_\ £

void backtrack() {
FP = BP; HP = HPold;
reset (TPold, TP);
TP = TPold; PC = negCont;
}

where the run-time function reset() undoes the bindings of variables
established since the backtrack point.

287

32.2 Resetting Variables

[dea:

o The variables which have been created since the last backtrack point can be
removed together with their bindings by popping the heap !!! =)

o This works fine if younger variables always point to older objects.

¢ Bindings of old variables to younger objects, though, must be reset
manually :-(

e These are therefore recorded in the trail.

Functions void trail(ref u) and void reset (ref y, ref x) can
thus be implemented as:

void trail (ref u) { void reset (ref x, ref y) {
if (u < S[BP-2]) { for (ref u=y; x=<u; u--)
TP = TP+1; H[T[ull = (R,T[ul);
TITP] = u; }
}
H

Here, S[BP-2] represents the heap pointer when creating the last backtrack
point.

32.3 Wrapping it Up

Assume that the predicate g/k is defined by the clauses rq,...,rf (f > 1).

We provide code for:

o setting up the backtrack point;
¢ successively trying the alternatives;

o deleting the backtrack point.

This means:

codeprr = q/k: | setbtp

try Af'—l

jump Af

Ay: codecrn

A codecry
Note:
o We delete the backtrack point before the last alternative :-)

o We jump to the last alternative — never to return to the present frame

Example:
s(X) + t(X)
s(X) + X=a

The translation of the predicate s yields:

s/1: setbtp A: pushenvl B: __pushenv]

try A mark C putref 1

delbtp putref 1 uatom a

jump B callt/1 popenv
C: popenv

The instruction setbtp saves the registers HP?, TP, B:

" el
:9 L
/ — setbtp

HP HP
TP TP
BP BP

HPold = HP;
TPold =TF;
BFPold = BP;
BP =FP;

The instruction

try A

tries the alternative at address A and updates the

negative continuation address to the current PC:

FP

HP
TP
BP

PC

try A

HP
TP
BP

negForts = PC;
PC=A;

FP

The instruction delbtp restores the old backtrack pointer:

FP]
= delbtp
HP ;—’ HP
TP L TP
BP] BP
BP = BPold;
295

FP —=

S

32.4 Popping of Stack Frames

Recall the translation scheme for clauses:

codec r

= pushenvm

popenv

The present stack frame can be popped ...

e if the applied clause was the last (or only); and

codeg g1 9

o if all goals in the body are definitely finished.

the backtrack point is older

FP > BP

=)

The instruction popenv restores the registers FI” and PC and possibly pops

the stack frame:

FP ——| 42

popenv

BP l—l-i BP

if (FP > BP) SP = FP - 6;
PC = posCont;

FP

FP = FPold;
Warning: popenv may fail to de-allocate the frame !!!
297

FP 42

33 Queries and Programs

The translation of a program: p=rri...rr,?g
consists of:

popenv

e an instruction no for failure;

rc [] — PC
sp [+ [BP

o code for evaluating the query g;

o code for the predicate definitions rr;.

if (FP > BP) SP = FP - 6;
PC = posCont;
FP = FPold; —— initialization of registers

== allocation of space for the globals

Preceding query evaluation:

If popping the stack frame fails, new data are allocated on top of the stack. When

S edi ; ev ion:
returning to the frame, the locals still can be accessed through the FI? =) ucceeding query evaluation

—— returning the values of globals

298 299
codep = init A The instruction init A is defined by:
pushenv d
codeg g p P
halt d init A HP
TP
A: no BP
codep rry
coder rr BP=FP=5P =5;
where free(g) = {Xy,...,X;} andpisgivenby pX;=i. 2{?% i C;A[’Z] -1
S[3]=0;
The instruction haltd ... BP = FP;
e ... terminates the program execution;
e ... returns the bindings of the d globals; Ataddress “A” for a failing goal we have placed the instruction no for

printing no to the standard output and halt :-)
e ... causes backtracking — if demanded by the user :-)

The instruction init A is defined by:

FP
init A HP
P
BP

BP=FP=5P=5;

S[0] = A;
s[1]=5[2]=-1;
S[3] = 0;
BP = FP;

At address “A” for a failing goal we have placed the instruction no for
printing no to the standard output and halt :-)

The instruction init A is defined by:

FP FP
HP init A HP
TP TP
BP BP

BP=FP=SP=5;
S[0] = A;
S[1]=S[2] = -1;
S[3]=0;

BP = FP;

At address “A” for a failing goal we have placed the instruction no for
printing no to the standard output and halt :-)

The Final Example:

HX) =X =0 (X) + 5(X) s(X) e X=a
p < q(X),t(X) s(X) « t(X) ? p

The translation yields:

init N popenv q/1: pushenv1 E:

pushenv0 p/0: pushenv1 mark D

mark A mark B putref 1

call p/0 putvar 1 call s/1
A: halt 0 callq/1 D: popenv G:
N: no B: mark C s/1: setbtp E:
t/1: pushenv 1 putref 1 try E

putref 1 call t/1 delbtp

uatom b C: popenv jump F

pushenv 1
mark G
putref 1
call t/1
popenv
pushenv 1
putref 1
uatom a

popenv

34 Last Call Optimization

Consider the app predicate from the beginnning:

app(X,Y,Z) + X=[],Y=2Z
app(X,Y,Z) « X=[H|X], Z=[H|Z], app(X",Y,Z")

We observe:
o The recursive call occurs in the last goal of the clause.
® Such a goal is called last call.
—— we try to evaluate it in the current stack frame !!!

— after (successful) completion, we will not return to

the current caller !!!

Consider a clause r: p(Xy . X)) 81, G
with m locals where @ = q(fl, ..., ty). The interplay between codec and
codeg:

codecr = pushenv m

codeg g1 p

codeg gn—1p

/.7- mark B

codeag t1 p

codey ty, p

" call qfﬁ\

Replacement: mark B = lastms
call g/h; popenv —=*lastcall q/h m)

Consider a clause r: p(Xy, .o, X)) & 810 8

with m locals where gn = q(h, ..., t;). The interplay between codec and

codeg:
codecr = pushenv m

codeg g1 p

codeg g1 p
lastmark

codes t p

codey ty, p

lastcall g/h m

Replacement: mark B —— lastmark

call q/h; popenv. ——= lastcall ¢/h m

w
=
5

If the current clause is not last or the g1, ..., g,—1 have created backtrack points,

then FP <BP :-)

Then lastmark creates a new frame but stores a reference to the predecessor:

lastmark

BP —= B —={ |
P —={42 FP —=42]
=

if (FP < BD) |
SP=SP + 6;
S[SP] = posCont; S[SP-1] = FPold;

If FP>BP then lastmark doesnothing :-)

306

If FP <BP,then lastcallq/hm behaveslike anormal callq/h.
Otherwise, the current stack frame is re-used. This means that:
e the cells S[FP+1], S[FP+2], ..., S[FP+h] receive the new values and

e q/hcanbejumpedto :-)

lastcallg/hm = if (FP < BP) call q/h;
else |
move m h;

jump q/h;

The difference between the old and the new addresses of the parameters
just equals the number of the local variables of the current clause :-))

m

Example:

Consider the clause:

] a(X,Y) « (X, X1),a(%, ¥)

h The last-call optimization for codecr yields:
args. A

— o lastcall (q/h,m) — 0 mark A A: lastmark
o fjm] ! pushenv 3 putref 1 putref 3
locals | —— — A A

e

1 i e A putvar 3 putref 2
FP—>= | FP—>= | call £/2 lastcall a/2 3
BP —={ | PC |:| BP g PC

308 309
Example:

Example:

Consider the clause: Consider the last clause of the app predicate:

a(X,Y) « (X, X1),a(X,,Y) app(X,Y,Z) « X=[H|X], Z=[H|Z'], app(X’, Y, Z")

The last-call optimization for codecr vyields:
Here, the last call is the only one :-) Consequently, we obtain:

mark A A: lastmark
A: pushenv 6 uref 4 bind
pushenv 3 putref 1 putref 3) o
putref 1 B: putvar4 son 2 E: putref5
putvar 3 putref 2)
ustruct [[| /2B putvar 5 uvar 6 putref 2
call £/2 lastcall a/2 3 »
son 1 putstruct [|]/2 up E putref 6
N uvar 4 bind D: check4 move 63
Note:
o son 2 C: putref3 putref 4 jump app/3
If the clause is last and the last literal is the only one, we can skip lastmark and uvar 5 ustruct [|] /2D putvar 6
can replace lastcall g/h m with the sequence move mn; jump p/n :-)) up C son 1 putstruct [|] /2

Example:

Consider the last clause of the app predicate:

app(X,Y.Z) « X=[H|X'], Z=[H|Z, app(X", Y, 2"

Here, the last call is the only one :-) Consequently, we obtain:

A: pushenv 6

putref 1 B: putvar4

ustruct [|]/2 B putvar 5

son 1 putstruct [|] /2

uvar 4 bind D:
son 2 C: putref3

uvar 5 ustruct [|]/2D

up C son 1

uref 4

son 2

uvar 6

up E

check 4

putref 4
putvar 6
putstruct [|]/2

bind
putref 5
putref 2
putref 6
move 6 3

jump app/3

35 Trimming of Stack Frames

[dea:
o Order local variables according to their life times;

* Pop the dead variables — if possible :-}

35 Trimming of Stack Frames

[dea:

o Order local variables according to their life times;

o Pop the dead variables — if possible :-}

Example: %

Consider t‘hebau:-u.

a(X, Z) + p1(X, X1), p2(X1, X2), p3(X2, X3), ps(X3, Z)

o PR

313

A3

—

After every non-last goal with dead variables, we insert the instruction

trim m
J m
FP —a= FP —a=

if (FP > BP)
SP=FP + m;

w
o

trim

Example (continued):

a(X, Z) + p1(X, X1), p2(X1, X2), p3(X2, X3), ps(X3, Z)

Ordering of the variables: cl/ J/

p={X—12—2X3—-3X—4X;—5}

The resulting code:

36

app (X,V,0)

Clause Indexing

Observation:

Often, predicates are implemented by case distinction on the first argument.

pushenv5 — A: mark B mark C lastmark — Inspecting the first argument, many alternatives can be excluded :-)
: (5 4 3
mark A putref 5 putref 4 putref — Failure is earlier detected :-)
putref 1 putvar 4 putvar3 putref 2
)) — Backtrack points are earlier removed. :-))
putvar 5 call pp/2 call p3/2 lastcall ps/23
call py /2 B trim 4 C trim3 = Stack frames are earlier popped :-)))
317 318
Example: The app-predicate:
app(X, Y, Z) =[lLy=2z

— X
app(X,Y,2) + X=[H|X], Z=[H|Z], app(X", Y, Z')

N7

o If the root constructor is [], only the first clause is applicable.

e If the root constructor is [|], only the second clause is applicable.
o Every other root constructor should fail !!

o Only if the first argument equals an unbound variable, both alternatives
must be tried ;-)

