Script generated by TTT

Title:
Date:
Duration:

Pages:

Example:

Seidl: Virtual_Machines (26.06.2012)
Tue Jun 26 14:02:39 CEST 2012
88:18 min

28

leta=17inlet f =funb — a+bin f 42

Disentanglement of the jumps produces:

0 loadc17 2 mark B 3 B slide2 1
1 mkbasic 5 loadc42 1 halt 2
1 pushloc0 6 mkbasic 0 A targl 2
2 mkvecl 6 pushloc 4 0 pushglob 0 2
2 mkfunval A 7 eval 1 eval 1
7 apply 1 getbasic 1

191

pushloc 1
eval
getbasic
add
mkbasic

return 1

Example:

Disentanglement of the jumps produces:

0 loadc17 2 markB 3 B slide2
1 mkbasic 5 loadc42 1 halt
1 pushloc0 6 mkbasic 0 A targl
2 mkvecl 6 pushloc4 0 pushglob 0
2 mkfunval A 7 eval 1 eval
7 apply 1 getbasic
191

leta=17inlet f =funb — a+bin f 42

|3 I e

[

pushloc 1
eval
getbasic
add
mkbasic

return 1

24 Structured Data

In the following, we extend our functional programming language by some

datatypes.

241 Tuples

Constructors: (.,...,.), k-ary withk > 0;
Destructors: #j for j € Ng (Projections)
We extend the syntax of expressions correspondingly:

e == ... | (eo,...,ex1) | #je

| let (xg,...,x,_1) =e1inep

192

® In order to construct a tuple, we collect sequence of references on the stack.
Then we construct a vector of these references in the heap using mkvec

* For returning components we use an indexed access into the tuple.

codey (eq,....e._1) psd = codeceppsd

codec ey p (sd +1)

codec er_q p (sd+k—1)

mkveck

codey (#je) psd = codey e psd

7‘ ey
S5

In the case of CBV, we directly compute the values of the e;.

193

Vig Vig
| |
- et j
- ||

if (S[SP] == (V,g))
S[SP] = v[jl;
else Error “Vector expected!”;

194

Inversion: Accessing all components of a tuple simulataneously:
e=let (yo,...,y—1) =e1iney

This is translated as foi))ws:

codeyepsd = codeyeypsd
getveck
codey e p' (sd + k)
slide k

where p'=p@&{yi— (L,sd+i+1)|i=0,...,k—1}.

The instruction getvec k pushes the components of a vector of length k onto
the stack:

195

24.2 Lists

Lists are constructed by the constructors:
[l “Nil”, the empty list;

w0

"Cons”, right-associative, takes an element and a list.

Access to list components is possible by match-expressions ...

Example: The append function app:
app = funly— match] with
[-yl

h=t — h=(appty)

accordingly, we extend the syntax of expressions:
24.3 Building Lists

e = ... |]| (er::e2)

L The new instructions nil and cons are introduced for building list nodes.
| (matchegwith [| = e | hat — ;)

We translate for CBN:

nil

Additionally, we need new heap objects: codey [[psd

codey (e::e2) psd codec ey p sd

empty list codec ez p (sd+1)
cons
s[0 s[1 .
. (0] [1] Note:
‘ L ‘ Cons | O ‘ & | non—empty list ~
/9 ¢ ¢ o With CBN: Closures are constructed for the arguments of “:”;
e With CBV: Arguments of “:” are evaluated :-)
198 199

24.3 Building Lists

The new instructions nil and cons are introduced for building list nodes.

We translate for CBN:

codey [] p sd nil

codey (e1::e2) psd = codecep psd

codec ez p (sd +1)

cons

S[SP-1] = new (L,Cons, S[SP-1], S[SP]);
SP- -;

Note:
o With CBN: Closures are constructed for the arguments of “:”;

o With CBV: Arguments of “:” are evaluated :-)

199 201

24.3 Building Lists
24.4 Pattern Matching
The new instructions nil and cons are introduced for building list nodes.

We translate for CBN: Consider the expression e = match e, with [| = e1 [t — e

codey [] psd = nil
codey (e1::e2) psd = Coda\fm psd Evaluation of e requires:
codc(/eg p(sd+1) « evaluation of eg;
cons o check, whether resulting value v is an L-object;
: e if v is the empty list, evaluation of ¢y ...
Note:
~ ~ o otherwise storing the two references of v on the stack and evaluation of es.
o With CBN: Closures are constructed for the arguments of “:"; 5 ‘ z

This corresponds to binding h and t to the two components of o.
o With CBV: Arguments of “:” are evaluated :-)

199 202

In consequence, we obtain (for CBN as for CBV):

codey ¢ p sd tlist A

codey e; p' (sd +2)
slide 2

h=S[SP];
if (H[h] I= (L,...)

where p'=p@{h— (L,sd+1),t+— (L,sd+2)}.

The new instruction tlist A does the necessary checks and (in the case of
Cons) allocates two new local variables:

Cons

tlis
H=

| !

... else |
S[SP+1] = S[SP]—s[1];
S[SP] = S[SP]—s[0];
SP++; PC = A;

205

L0 = (G

Example: The (disentangled) body of the function app with

app — (G,0):
0 targ 2
0 pushloc 0
1 eval
1 tlist A
0 pushloc 1
1 eval
1 jump B
2 A shloc 1
Note:

b= () & Y (L, 2)

3 pushglob 0 0 _C markD

4 pushloc 2 pushglob 2
5 prehloc s pushglob 1
6 ; 5 pushglob 0
4)— 6 eval

4 cons M apply

3 slide 2 1 D: update

1 B: return 2

Datatypes with more than two constructors need a generalization of the tlist
instruction, corresponding to a switch-instruction :-)

206

In consequence, we obtain (for CBN as for CBV):

codeyepsd = codey e p sd
tlist A
codey ey p sd
jump B
A: codeye; p (5&‘1 + 2)
slide 2

where p'=p@{h— (L,sd+1),t+— (L,sd+2)}.

The new instruction tlist A does the necessary checks and (in the case of
Cons) allocates two new local variables:

203

Example: The (disentangled) body of the furiction

app — (G,0):
0 targ 2
0 pushloc 0
1 eval
1 tlist A
0 pushloc 1
1 eval
1 jump B
2 A: pushlocl

Note:

“pp € o

app with

3 pushglob 0 mark D

4 pushloc 2 pushglob 2
5 pushloc 6 4 pushglob 1
6 mkvec 3 5 pushglob 0
4 mkclos C 6 eval

4 cons 6 apply

3 slide 2 1 D: update

1 B: return 2

Datatypes with more than two constructors need a generalization of the tlist
instruction, corresponding to a switch-instruction :-)

206

24.5 Closures of Tuples and Lists

The general schema for codec can be optimized for tuples and lists:

codec (e, ..., e_1) psd = codey (ey,...,e_1) psd = codec e psd
codec ey p (sd+1)
codec ex_1 [[:-d +k— 1)
mkvec k
codec [] psd = codey [] psd = nil
codec (e1: e2) p sd = codey (e1:ez) psd = codec ey psd
codec ey p (sd+1)
cons
207

25 Last Calls

A function application is called last call in an expression e if this application
could deliver the value for e.

A last call usually is the outermost application of a defining expression.

A function definition is called tail recursive if all recursive calls are last calls.
Examples:

rt (h:y)isalastcall in matchx with [| — y |h=t —rt(h:y)
f(x—1)isnotalastcallin ifx <1thenlelsexxf (x—1)

Observation: Last calls in a function body need no new stack frame!

Automatic transformation of tail recursion into loops!!!

208

The code for a last call | = (e’ ¢g ... ey,) inside a function f with k arguments
must

1. allocate the arguments ¢; and evaluate ¢’ to a function (note: all this inside
f's frame!);

2. deallocate the local variables and the k consumed arguments of f;

3. execute an apply.

codeylpsd = codecey 1psd

codec em_2 (:‘d +1)

codecegp (sd+m—1)

codey ¢’ p (sd +m) // Evaluation of the function
mover (m+1) // Deallocation of r cells
apply

where r = sd + k is the number of stack cells to deallocate.

Example:
The body of the function

@ funx y — matchxwith[] — y|ha:t —rt(huy)

0 targ2 1 1 pushglob 0

0 pushloc0 5 eval

1 eval 2 A pushlocl 5 move 4 3
1 tlistA 3 pushloc 4 _9 apply

0 pushloc1 1 cons m
1 eval 3 return 2

pushloc 1

Since the old stack frame is kept, return 2 will only be reached by the direct
jump at the end of the []-alternative.

move rk

SP=SP-k-r1;

for (i=1; i<k; i++)
S[SP+i] = S[SP+i+r];

SP=5P +k;

’f@%:txé/fﬁiﬂ%—,

6&&6 (C*)«>. q? X~ 7> 26 The Language Proll
1C ,r

Here, we just consider the core language Iroll (“Prolog-light” :-). In particular,
we omit:

The Translation ¢ o8

Languages
_____; o arithmetic;

/3_ o the cut operator;

o self-modification of programs through assert and retract.

Example:

bigger(X,Y)
bigger(X,Y)
bigger(X,Y)
bigger(X,Y)
is_bigger(X,Y)
is_bigger(X,Y)

-
-
-
-
-

—

X = elephant,Y = horse

X = horse, Y = donkey

X = donkey, Y = dog

X = donkey, Y = monkey
bigger(X,Y)

bigger(X, Z), is_bigger(Z,Y)

? is_bigger(elephant, dog)

