Script generated by TTT

Title: Seidl: Theoretische_Informatik

(18.07.2013)

Date: Thu Jul 18 16:06:40 CEST 2013

Duration: 31:15 min

Pages: 22

HAMILTON

Gegeben: Ungerichteter Graph G

Problem: Enthält G einen Hamilton-Kreis, dh einen geschlossenen

Pfad, der jeden Knoten gehau einmil enthält

Satz 5.36

HAMILTON ist NP-vollständig.

TRAVELLING SALESMAN (TSP)

Gegeben: Eine $n \times n$ Matrix $M_{ij} \in \mathbb{N}$ von "Entfernungen" und eine Zahl $k \in \mathbb{N}$

PARTITION

Gegeben: Zahlen $a_1, \ldots a_n \in \mathbb{N}$.

Problem: Gibt es $I \subseteq \{1, \ldots, n\}$ mit $\sum_{i \in I} a_i = \sum_{i \notin I} a_i$?

Satz 5.34

PARTITION ist NP-vollständig.

PARTITION

Gegeben: Zahlen $a_1, \ldots a_n \in \mathbb{N}$.

Problem: Gibt es $I \subseteq \{1, \ldots, n\}$ mit $\sum_{i \in I} a_i = \sum_{i \notin I} a_i$?

Satz 5.34

PARTITION ist NP-vollständig.

Beweis: RUCKSACK \leq_p PARTITION

HAMILTON

Gegeben: Ungerichteter Graph G

Problem: Enthält G einen Hamilton-Kreis, dh einen geschlossenen

Pfad, der jeden Knoten genau einmal enthält?

Satz 5.36

HAMILTON ist NP-vollständig.

HAMILTON

 ${\sf Gegeben} \colon \operatorname{\sf Ungerichteter} \operatorname{\sf Graph} G$

Problem: Enthält G einen Hamilton-Kreis, dh einen geschlossenen

Pfad, der jeden Knoten genau einmal enthält?

TRAVELLING SALESMAN (TSP)

Gegeben: Eine $n \times n$ Matrix $M_{ij} \in \mathbb{N}$ von "Entfernungen"

und eine Zahl $k \in \mathbb{N}$

TRAVELLING SALESMAN (TSP)

Gegeben: Eine $n \times n$ Matrix $M_{ij} \in \mathbb{N}$ von "Entfernungen"

und eine Zahl $k \in \mathbb{N}$

Problem: Gibt es eine "Rundreise" (Hamilton-Kreis) der Länge

 $\leq k$?

Satz 5.37

TSP ist NP-vollständig.

TRAVELLING SALESMAN (TSP)

Gegeben: Eine $n \times n$ Matrix $M_{ij} \in \mathbb{N}$ von "Entfernungen"

und eine Zahl $k \in \mathbb{N}$

Problem: Gibt es eine "Rundreise" (Hamilton-Kreis) der Länge

 $\leq k$?

Satz 5.37

TSP ist NP-vollständig.

Beweis: HAMILTON \leq_p TSP

 $(\{1,\ldots,n\},E) \mapsto (M,n)$

wobei

$$M_{ij} := \begin{cases} 1 & \text{falls } \{i, j\} \in E \\ 2 & \text{sonst} \end{cases}$$

TRAVELLING SALESMAN (TSP)

Gegeben: Eine $n \times n$ Matrix $M_{ij} \in \mathbb{N}$ von "Entfernungen"

und eine Zahl $k \in \mathbb{N}$

Problem: Gibt es eine "Rundreise" (Hamilton-Kreis) der Länge

 $\leq k$?

Satz 5.37

TSP ist NP-vollständig.

Beweis: HAMILTON \leq_p TSP

FÄRBBARKEIT (COL)

Gegeben: Ein ungerichteter Graph (V, E) und eine Zahl k.

Problem: Gibt es eine Färbung der Knoten V mit k Farben,

so dass keine zwei benachbarten Knoten die gleiche

Farbe haben?

Satz 5.38

FÄRBBARKEIT ist NP-vollständig für $k \geq 3$.

FÄRBBARKEIT (COL)

Gegeben: Ein ungerichteter Graph (V, E) und eine Zahl k.

Problem: Gibt es eine Färbung der Knoten V mit k Farben,

so dass keine zwei benachbarten Knoten die gleiche

Farbe haben?

Satz 5.38

FÄRBBARKEIT ist NP-vollständig für k > 3.

Beweis:

3KNF-SAT $≤_p$ 3FÄRBBARKEIT

Die NP-Bibel, der NP-Klassiker:

Michael Garey and David Johnson.

Computers and Intractability: A Guide to the Theory of NP-Completeness. 1979.

FÄRBBARKEIT (COL)

Gegeben: Ein ungerichteter Graph (V, E) und eine Zahl k.

Problem: Gibt es eine Färbung der Knoten V mit k Farben.

so dass keine zwei benachbarten Knoten die gleiche

Farbe haben?

Satz 5.38

FÄRBBARKEIT ist NP-vollständig für k > 3.

Beweis:

3KNF-SAT $≤_p$ 3FÄRBBARKEIT

Satz 5.39

2FÄRBBARKEIT ∈ P

Die NP-Bibel, der NP-Klassiker:

Michael Garey and David Johnson.

Computers and Intractability: A Guide to the Theory of NP-Completeness. 1979.

Despite the 23 years that have passed since its publication, I consider Garey and Johnson the single most important book on my office bookshelf.

Lance Fortnow, 2002.

Man weiß nicht ob P = NP.

Man weiß nicht ob P = NP. Aber man weiß (Ladner 1975)

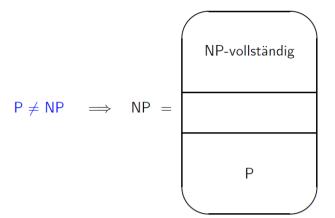
$$P \neq NP \implies NP =$$

Man weiß nicht ob P = NP. Aber man weiß (Ladner 1975)

$$\mathsf{P} \neq \mathsf{NP} \quad \Longrightarrow \quad \mathsf{NP} = \boxed{ \qquad \qquad }$$

Man weiß nicht ob P = NP. Aber man weiß (Ladner 1975)

Man weiß nicht ob P = NP. Aber man weiß (Ladner 1975)



Kurt Gödel.

Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik, 1931.

Kurt Gödel 1906 (Brünn) -1978 (Princeton)

Kurt Gödel.

Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik, 1931.