Script generated by TTT

Title: Seidl: Theoretische Informatik

(03.06.2013)

Date: Mon Jun 03 10:15:22 CEST 2013

Duration: 92:26 min

Pages: 47

3.7 Der Cocke-Younger-Kasami-Algorithmus

Der CYK-Algorithmus entscheidet das Wortproblem für kontextfreie Grammatiken in Chomsky-Normalform.

Satz 3.44

Das Wortproblem ($w \in L(G)$?) ist für eine CFG G entscheidbar.

Beweis:

OE sei $w \neq \epsilon$. Wir eliminieren zuerst alle ϵ -Produktionen aus G (wie in Lemma 3.26).

Dann berechnen wir induktiv die Menge R aller von S ableitbaren Wörter $\in (V \cup \Sigma)^*$, die nicht länger als w sind:

- $S \in R$
- Wenn $\alpha B \gamma \in R$ und $(B \to \beta) \in P$ und $|\alpha \beta \gamma| \le |w|$, dann auch $\alpha \beta \gamma \in R$.

Man zeigt:

$$w \in L_V(G) \Leftrightarrow w \in R$$

wobei $L_V(G):=\{w\in (V\cup\Sigma)^*\mid S\to_G^*w\}.$ Da R endlich ist $(|R|\leq |V\cup\Sigma|^{|w|})$, ist $w\in R$ entscheidbar, und damit auch $w\in L_V(G)$, und damit auch $w\in L(G)$.

3.7 Der Cocke-Younger-Kasami-Algorithmus

Der CYK-Algorithmus entscheidet das Wortproblem für kontextfreie Grammatiken in Chomsky-Normalform.

Eingabe: Grammatik $G=(V,\Sigma,P,S)$ in Chomsky-Normalform, $w=a_1\ldots a_n\in \Sigma^*.$

3.7 Der Cocke-Younger-Kasami-Algorithmus

Der CYK-Algorithmus entscheidet das Wortproblem für kontextfreie Grammatiken in Chomsky-Normalform.

Eingabe: Grammatik $G=(V,\Sigma,P,S)$ in Chomsky-Normalform, $w=a_1\dots a_n\in \Sigma^*.$

Definition 3.45

$$V_{ij} := \{ A \in V \mid A \to_G^* a_i \dots a_j \}$$

3.7 Der Cocke-Younger-Kasami-Algorithmus

Der CYK-Algorithmus entscheidet das Wortproblem für kontextfreie Grammatiken in Chomsky-Normalform.

Eingabe: Grammatik $G=(V,\Sigma,P,S)$ in Chomsky-Normalform, $w=a_1\dots a_n\in \Sigma^*.$

Definition 3.45

$$V_{ij} := \{ A \in V \mid A \to_G^* a_i \dots a_j \} \quad \text{für } i \le j$$

Damit gilt:

$$w \in L(G) \quad \Leftrightarrow \quad S \in V_{1n}$$

3.7 Der Cocke-Younger-Kasami-Algorithmus

Der CYK-Algorithmus entscheidet das Wortproblem für kontextfreie Grammatiken in Chomsky-Normalform.

Eingabe: Grammatik $G=(V,\Sigma,P,S)$ in Chomsky-Normalform, $w=a_1\dots a_n\in \Sigma^*.$

Definition 3.45

$$V_{ij} := \{ A \in V \mid A \rightarrow_G^* a_i \dots a_j \}$$
 für $i \leq j$

Der CYK-Algorithmus berechnet die V_{ij} rekursiv nach wachsendem j-i:

$$V_{ii} = \{A \in V \mid (A \to a_i) \in P\}$$

3.7 Der Cocke-Younger-Kasami-Algorithmus

Der CYK-Algorithmus entscheidet das Wortproblem für kontextfreie Grammatiken in Chomsky-Normalform.

Eingabe: Grammatik $G=(V,\Sigma,P,S)$ in Chomsky-Normalform, $w=a_1\dots a_n\in \Sigma^*.$

Definition 3.45

$$V_{ij} := \{ A \in V \mid A \to_G^* a_i \dots a_j \} \quad \text{für } i \le j$$

Damit gilt:

$$w \in L(G) \quad \Leftrightarrow \quad S \in V_{1n}$$

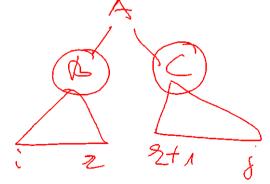
Der CYK-Algorithmus berechnet die V_{ij} rekursiv nach wachsendem j-i:

$$V_{ii} = \{ A \in V \mid (A \to a_i) \in P \}$$

Der CYK-Algorithmus berechnet die V_{ij} rekursiv nach wachsendem j-i:

$$V_{ii} = \left\{ A \in V \mid (A \to a_i) \in P \right\}$$

$$V_{ij} = \left\{ A \in V \mid \overrightarrow{A} \to BC \right\} \in V_{ik}, C \in V_{k+1,j}.$$
 für $i < j$



Der CYK-Algorithmus berechnet die V_{ij} rekursiv nach wachsendem j-i:

$$V_{ii} = \{A \in V \mid (A \to a_i) \in P\}$$

$$V_{ij} = \{A \in V \mid \exists i \leq k < j, B \mid V_{ik}, C \in V_{k+1,j}.\} \quad \text{für } i < j$$

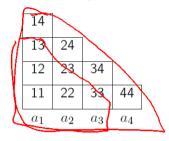
Korrektheitsbeweis: Induktion nach j-i.

Der CYK-Algorithmus berechnet die V_{ij} rekursiv nach wachsendem j-i:

$$\begin{array}{rcl} V_{ii} & = & \{A \in V \mid (A \rightarrow a_i) \in P\} \\ \\ V_{ij} & = & \left\{A \in V \mid \begin{array}{c} \exists i \leq k < j, \ B \in V_{ik}, \ C \in V_{k+1,j}. \\ \\ (A \rightarrow BC) \in P \end{array}\right\} \quad \text{für } i < j \end{array}$$

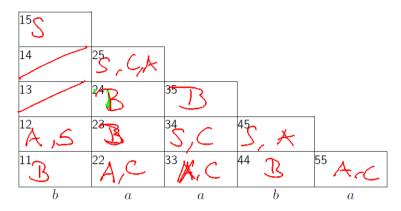
Korrektheitsbeweis: Induktion nach j-i.

Die V_{ij} als Tabelle (mit ij statt V_{ij}):



Beispiel 3.46

$$\begin{array}{ccc} S & \rightarrow & AB \mid BC \\ A & \rightarrow & BA \mid a \\ B & \rightarrow & CC \mid b \\ C & \rightarrow & AB \mid a \end{array}$$



Satz 3.47

Der CYK-Algorithmus entscheidet das Wortproblem $w \in L(G)$ für eine fixe CFG G in Chomsky-Normalform in Zeit $O(|w|^3)$.

Satz 3.47

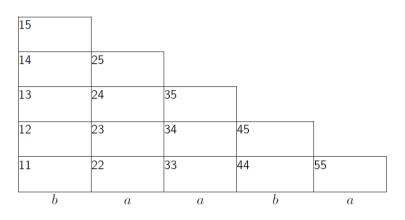
Der CYK-Algorithmus entscheidet das Wortproblem $w \in L(G)$ für eine fixe CFG G in Chomsky-Normalform in Zeit $O(|w|^3)$.

Beweis:

Sei n:=|w|. Es werden $\frac{n(n-1)}{2}\in O(n^2)$ Mengen V_{ij} berechnet.

Beispiel 3.46

$$\begin{array}{ccc} S & \rightarrow & AB \mid BC \\ A & \rightarrow & BA \mid a \\ B & \rightarrow & CC \mid b \\ C & \rightarrow & AB \mid a \end{array}$$



Satz 3.47

Der CYK-Algorithmus entscheidet das Wortproblem $w \in L(G)$ für eine fixe CFG G in Chomsky-Normalform in Zeit $O(|w|^3)$.

Beweis:

Sei n := |w|. Es werden $\frac{n(n+1)}{2} \in O(n^2)$ Mengen V_{ij} berechnet.

Satz 3.47

Der CYK-Algorithmus entscheidet das Wortproblem $w \in L(G)$ für eine fixe CFG G in Chomsky-Normalform in Zeit $O(|w|^3)$.

Beweis:

Sei n:=|w|. Es werden $\frac{n(n-1)}{2}\in O(n^2)$ Mengen V_{ij} berechnet.

$$V_{ij} = \left\{ A \in V \mid \begin{array}{c} \exists i \leq k < j, \ B \in V_{ik}, C \in V_{k+1,j}. \\ (A \to BC) \in P \end{array} \right\} \quad (i < j)$$

Für jede dieser Mengen werden

Satz 3.47

Der CYK-Algorithmus entscheidet das Wortproblem $w \in L(G)$ für eine fixe CFG G in Chomsky-Normalform in Zeit $O(|w|^3)$.

Beweis:

Sei n:=|w|. Es werden $\frac{n(n-1)}{2}\in O(n^2)$ Mengen V_{ij} berechnet.

$$V_{ij} = \left\{ A \in V \mid \begin{array}{c} \exists i \leq k < j, \ B \in V_{ik}, \ C \in V_{k+1,j}. \\ (A \to BC) \in P \end{array} \right\} \quad (i < j)$$

Für jede dieser Mengen werden

- j i < n Werte für k betrachtet,
- für jedes k wird für alle Produktionen $A \to BC$ untersucht, ob $B \in V_{ik}$ und $C \in V_{k+1,j}$, wobei $|V_{ik}|, |V_{k+1,j}| \le |V|$.

Gesamtzeit: $O(n^3)$

Satz 3.47

Der CYK-Algorithmus entscheidet das Wortproblem $w \in L(G)$ für eine fixe CFG G in Chomsky-Normalform in Zeit $O(|w|^3)$.

Beweis:

Sei n:=|w|. Es werden $\frac{n(n-1)}{2}\in O(n^2)$ Mengen V_{ij} berechnet.

$$V_{ij} = \left\{ A \in V \mid \begin{array}{c} \exists i \leq k < j, \ B \in V_{ik}, \ C \in V_{k+1,j}. \\ (A \to BC) \in P \end{array} \right\} \quad (i < j)$$

Für jede dieser Mengen werden

- j i < n Werte für k betrachtet,
- für jedes k wird für alle Produktionen $A \to BC$ untersucht, ob $B \in V_{ik}$ und $C \in V_{k+1,j}$, wobei $|V_{ik}|, |V_{k+1,j}| \le |V|$.

Gesamtzeit: $O(n^3)$

Denn |P| und |V| sind Konstanten unabhängig von n.

Satz 3.47

Der CYK-Algorithmus entscheidet das Wortproblem $w \in L(G)$ für eine fixe CFG G in Chomsky-Normalform in Zeit $O(|w|^3)$.

Beweis:

Sei n:=|w|. Es werden $\frac{n(n-1)}{2}\in O(n^2)$ Mengen V_{ij} berechnet.

$$V_{ij} = \left\{ A \in V \mid \begin{array}{c} \exists i \leq k < j, \ B \in V_{ik}, \ C \in V_{k+1,j}. \\ (A \to BC) \in P \end{array} \right\} \quad (i < j)$$

Für jede dieser Mengen werden

- j i < n Werte für k betrachtet,
- für jedes k wird für alle Produktionen $A \to BC$ untersucht, ob $B \in V_{ik}$ und $C \in V_{k+1,j}$, wobei $|V_{ik}|, |V_{k+1,j}| \le |V|$.

Gesamtzeit: $O(n^3)$

Denn |P| und |V| sind Konstanten unabhängig von n.

[Konstruktion jeder Menge V_{ii} : O().

Erweiterung

Der CYK-Algorithmus kann so erweitert werden, dass er nicht nur das Wortproblem entscheidet, sondern auch die Menge der Syntaxbäume für die Eingabe berechnet.

Realisierung:

ullet V_{ij} ist die Menge der Syntaxbäume mit Rand $a_i \dots a_j$

Erweiterung

Der CYK-Algorithmus kann so erweitert werden, dass er nicht nur das Wortproblem entscheidet, sondern auch die Menge der Syntaxbäume für die Eingabe berechnet.

Realisierung:

- ullet V_{ij} ist die Menge der Syntaxbäume mit Rand $a_1 \dots a_{j}$
- Statt A enthält V_{ij} einen Syntaxbaum, dessen Wurzel mit A beschriftet ist.

Erweiterung

Der CYK-Algorithmus kann so erweitert werden, dass er nicht nur das Wortproblem entscheidet, sondern auch die Menge der Syntaxbäume für die Eingabe berechnet.

Realisierung:

- V_{ij} ist die Menge der Syntaxbäume mit Rand $a_i \dots a_j$.
- \bullet Statt A enthält V_{ij} einen Syntaxbaum, dessen Wurzel mit A beschriftet ist.

Vorschau

Für CFGs sind folgende Probleme nicht entscheidbar:

Vorschau

Für CFGs sind folgende Probleme nicht entscheidbar:

• Äquivalenz: $L(G_1) = L(G_2)$?

Vorschau

Für CFGs sind folgende Probleme nicht entscheidbar:

• Äquivalenz: $L(G_1) = L(G_2)$?

• Schnittproblem: $L(G_1) \cap L(G_2) = \emptyset$?

Vorschau

Für CFGs sind folgende Probleme nicht entscheidbar:

• Äquivalenz: $L(G_1) = L(G_2)$?

• Schnittproblem: $L(G_1) \cap L(G_2) = \emptyset$?

• Regularität: L(G) regulär?

Vorschau

Für CFGs sind folgende Probleme nicht entscheidbar:

• Äquivalenz: $L(G_1) = L(G_2)$?

• Schnittproblem: $L(G_1) \cap L(G_2) = \emptyset$?

• Regularität: L(G) regulär?

ullet Mehrdeutigkeit: Ist G mehrdeutig?

Vorschau

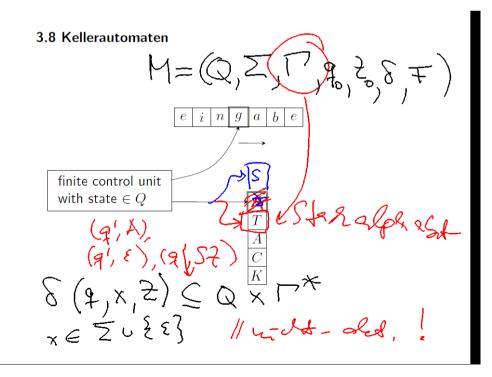
Für CFGs sind folgende Probleme nicht entscheidbar:

• Äquivalenz $L(G_1) = L(G_2)$?

• Schnittproblem: $L(G_1) \cap L(G_2) = \emptyset$?

ullet Regularität: L(G) regulär?

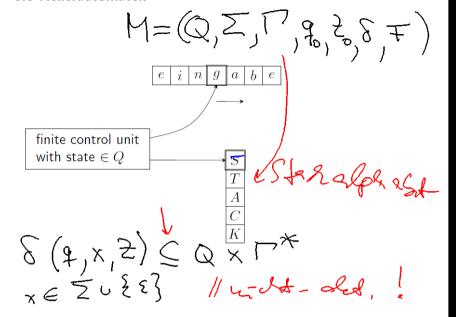
ullet Mehrdeutigkeit: Ist G mehrdeutig?



Anwendungsgebiete von Kellerautomaten/

- Syntaxanalyse von Programmiersprachen
- Analyse von Programmen mit Rekursion

3.8 Kellerautomaten



Definition 3.48

ullet Ein PDA M akzeptiert $w \in \Sigma^*$ mit Endzustand gdw

$$(q_0, w, Z_0) \to_M^* (f, \epsilon, \gamma) \text{ für ein } f \in F, \ \gamma \in \Gamma^*.$$

Definition 3.48

• Ein PDA M akzeptiert $w \in \Sigma^*$ mit Endzustand gdw

$$(q_0, w, Z_0) \to_M^* (f, \epsilon, \gamma)$$
 für ein $f \in F, \gamma \in \Gamma^*$.

$$I_{\mathcal{O}}(M) := \{ w \mid \exists f \in F, \gamma \in \Gamma^*. \ (q_0, w, Z_0) \to_M^* (f, \epsilon, \gamma) \}$$

Definition 3.48

ullet Ein PDA M akzeptiert $w \in \Sigma^*$ mit Endzustand gdw

$$(q_0, w, Z_0) \to_M^* (f, \epsilon, \gamma)$$
 für ein $f \in F, \gamma \in \Gamma^*$.

$$L_F(M) := \{ w \mid \exists f \in F, \gamma \in \Gamma^*. (q_0, w, Z_0) \rightarrow_M^* (f, \epsilon, \gamma) \}$$

• Ein PDA M akzeptiert $w \in \Sigma^*$ mit leeren Keller gdw

$$(q_0, w, Z_0) \to_M^* (q, \epsilon, \epsilon)$$
 für ein $q \in Q$.

Definition 3.48

 \bullet Ein PDA M akzeptiert $w \in \Sigma^*$ mit Endzustand gdw

$$(q_0, w, Z_0) \to_M^* (f, \epsilon, \gamma)$$
 für ein $f \in F, \gamma \in \Gamma^*$.

$$L_{\mathcal{F}}(M) := \{ w \mid \exists f \in F, \gamma \in \Gamma^*. (q_0, w, Z_0) \to_M^* (f, \epsilon, \gamma) \}$$

ullet Ein PDA M akzeptiert $w \in \Sigma^*$ mit leeren Keller gdw

$$(q_0, w, Z_0) \to_M^* (q, \epsilon, \epsilon)$$
 für ein $q \in Q$.

$$L_{\epsilon}(M) := \{ w \mid \exists q \in Q. \ (q_0, w, Z_0) \to_M^* (q, \epsilon, \epsilon) \}$$

Definition 3.48

 \bullet Ein PDA M akzeptiert $w \in \Sigma^*$ mit Endzustand gdw

$$(q_0, w, Z_0) \to_M^* (f, \epsilon, \gamma)$$
 für ein $f \in F, \gamma \in \Gamma^*$.

$$L_F(M) := \{ w \mid \exists f \in F, \gamma \in \Gamma^*. \ (q_0, w, Z_0) \to_M^* (f, \epsilon, \gamma) \}$$

 \bullet Ein PDA M akzeptiert $w \in \Sigma^*$ mit leeren Keller gdw

$$(q_0, w, Z_0) \to_M^* (q, \epsilon, \epsilon)$$
 für ein $q \in Q$.

$$L_{\epsilon}(M) := \{ w \mid \exists q \in Q. \ (q_0, w, Z_0) \to_M^* (q, \epsilon, \epsilon) \}$$

Konvention: Wir blenden die F-Komponente von M aus, wenn wir nur an $L_{\epsilon}(M)$ interessiert sind.

Beispiel 3.49

Die Sprache
$$L=\{ww^R\mid w\in\{0,1\}^*\}$$
 wird vom PDA
$$M=(\{p,q,r\},$$

Beispiel 3.49

Die Sprache
$$L = \{ww^R \mid w \in \{0,1\}^*\}$$
 wird vom PDA
$$M = (\{p,q,r\}, \, \{0,1\}, \, \{0,1,Z_0\},$$

Beispiel 3.49

Die Sprache
$$L = \{ww^R \mid w \in \{0,1\}^*\}$$
 wird vom PDA
$$M = (\{p,q,r\},\,\{0,1\},\,\{0,1,Z_0\},\,p,\,Z_0,\,\delta,$$

Beispiel 3.49

Die Sprache
$$L = \{ww^R \mid w \in \{0,1\}^*\}$$
 wird vom PDA
$$M = (\{p,q,r\}, \ \{0,1\}, \ \{0,1,Z_0\}, \ p, \ Z_0, \ \delta, \ \{r\})$$

$$\delta(p,a,Z) = \{(p,aZ)\} \quad \text{für } a \in \{0,1\}, \ Z \in \{0,1,Z_0\}$$

Beispiel 3.49

Die Sprache $L = \{ww^R \mid w \in \{0,1\}^*\}$ wird vom PDA

$$M = (\{p, q, r\}, \{0, 1\}, \{0, 1, Z_0\}, p, Z_0, \delta, \{r\})$$

$$\delta(p, a, Z) = \{(p, aZ)\} \quad \text{für } a \in \{0, 1\}, \ Z \in \{0, 1, Z_0\}$$

$$\delta(p,\epsilon,Z) \hspace{0.2in} = \hspace{0.2in} \left\{ (q,\,Z) \right\} \hspace{0.2in} \text{ für } Z \in \{0,1,Z_0\}$$

Beispiel 3.49

Die Sprache $L = \{ww^R \mid w \in \{0,1\}^*\}$ wird vom PDA

$$M = (\{p, q, r\}, \{0, 1\}, \{0, 1, Z_0\}, p, Z_0, \delta, \{r\})$$

$$\delta(p, a, Z) = \{(p, aZ)\} \text{ für } a \in \{0, 1\}, Z \in \{0, 1, Z_0\}$$

$$\delta(p,\epsilon,Z) = \{(q,Z)\} \quad \text{für } Z \in \{0,1,Z_0\}$$

$$\delta(q, a, a) = \{(q, \epsilon)\} \quad \text{für } a \in \{0, 1\}$$

Beispiel 3.49

Die Sprache $L = \{ww^R \mid w \in \{0,1\}^*\}$ wird vom PDA

$$M = (\{p, q, r\}, \{0, 1\}, \{0, 1, Z_0\}, p, Z_0, \delta, \{r\})$$

$$\delta(p, a, Z) = \{(p, aZ)\} \text{ für } a \in \{0, 1\}, Z \in \{0, 1, Z_0\}$$

$$\delta(p, \epsilon, Z) = \{(q, Z)\} \quad \text{für } Z \in \{0, 1, Z_0\}$$

$$\delta(q, a, a) = \{(q, \epsilon)\} \quad \text{für } a \in \{0, 1\}$$

$$\delta(q, \epsilon, Z_0) = \{(r, \epsilon)\}$$

Beispiel 3.49

Die Sprache $L = \{ww^R \mid w \in \{0,1\}^*\}$ wird vom PDA

$$M = (\{p, q, r\}, \{0, 1\}, \{0, 1, Z_0\}, p, Z_0, \delta, \{r\})$$

$$\delta(p, a, Z) = \{(p, aZ)\} \text{ für } a \in \{0, 1\}, Z \in \{0, 1, Z_0\}$$

$$\delta(p,\epsilon,Z) = \{(q,Z)\} \quad \text{für } Z \in \{0,1,Z_0\}$$

$$\delta(q, a, a) = \{(q, \epsilon)\} \quad \text{für } a \in \{0, 1\}$$

$$\delta(q, \epsilon, Z_0) = \{(\mathbf{q}, \epsilon)\}$$

sowohl mit Endzustand als auch mit leerem Keller akzeptiert.