Script generated by TTT

Title: Seidl: Theoretische_Informatik

(06.05.2013)

Date: Mon May 06 10:21:26 CEST 2013

Duration: 86:48 min

Pages: 75

Der Algorithmus zur Minimierung eines DFA:

2.11 Minimierung endlicher Automaten

- Beispiele
- 4 Algorithmen
- Minimalitätsbeweis

Der Algorithmus zur Minimierung eines DFA:

- Entferne alle von q_0 aus nicht erreichbaren Zustände.
- 2 Berechne die *äquivalenten* Zustände des Automaten.

Der Algorithmus zur Minimierung eines DFA:

- Entferne alle von q_0 aus nicht erreichbaren Zustände.
- 2 Berechne die äquivalenten Zustände des Automaten.

Der Algorithmus zur Minimierung eines DFA:

- Entferne alle von q_0 aus nicht erreichbaren Zustände.
- 2 Berechne die *äquivalenten* Zustände des Automaten.
- Sollabiere den Automaten durch Zusammenfassung aller äquivalenten Zustände.

Zustände p und q sind unterscheidbar wenn es $w \in \Sigma^*$ gibt mit $\hat{\delta}(p,w) \in F$ und $\hat{\delta}(q,w) \notin F$ oder umgekehrt.

Zustände sind äquivalent wenn sie nicht unterscheidbar sind, d.h. wenn für alle $w \in \Sigma^*$ gilt:

$$\hat{\delta}(p, w) \in F \quad \Leftrightarrow \quad \hat{\delta}(q, w) \in F$$

Der Algorithmus zur Minimierung eines DFA:

- Entferne alle von q_0 aus nicht erreichbaren Zustände.
- 2 Berechne die *äquivalenten* Zustände des Automaten.
- **3** Kollabiere den Automaten durch Zusammenfassung aller äquivalenten Zustände.

Zustände p und q sind unterscheidbar wenn es $w \in \Sigma^*$ gibt mit $\hat{\delta}(p,w) \in F$ und $\hat{\delta}(q,w) \notin F$ oder umgekehrt.

Zustände sind äquivalent wenn sie nicht unterscheidbar sind, d.h. wenn für alle $w \in \Sigma^*$ gilt:

$$\hat{\delta}(p, w) \in F \quad \Leftrightarrow \quad \hat{\delta}(q, w) \in F$$

Sind $\delta(p,a)$ und $\delta(q,a)$ unterscheidbar, dann auch p und q.

Der Algorithmus zur Minimierung eines DFA:

- Entferne alle von q_0 aus nicht erreichbaren Zustände.
- 2 Berechne die *äquivalenten* Zustände des Automaten.
- **3** Kollabiere den Automaten durch Zusammenfassung aller äquivalenten Zustände.

Zustände p und q sind unterscheidbar wenn es $w \in \Sigma^*$ gibt mit $\hat{\delta}(p,w) \in F$ und $\hat{\delta}(q,w) \notin F$ oder umgekehrt.

Zustände sind äquivalent wenn sie nicht unterscheidbar sind, d.h. wenn für alle $w \in \Sigma^*$ gilt:

$$\hat{\delta}(p, w) \in F \quad \Leftrightarrow \quad \hat{\delta}(q, w) \in F$$

Sind $\delta(p,a)$ und $\delta(q,a)$ unterscheidbar, dann auch p und q.

⇒ Unterscheidbarkeit pflanzt sich rückwärts fort.

Berechnung äquivalenter Zustände eines DFA

Berechnung äquivalenter Zustände eines DFA

durch Berechnung der unterscheidbaren Zustände

Eingabe: DFA $A=(Q,\Sigma,\delta,q_0,F)$ Ausgabe: Äquivalenzrelation auf Q.

Datenstruktur: Eine Menge U ungeordneter Paare $\{p,q\}\subseteq Q$.

Berechnung äquivalenter Zustände eines DFA

durch Berechnung der unterscheidbaren Zustände

Eingabe: DFA $A=(Q,\Sigma,\delta,q_0,F)$ Ausgabe: Äquivalenzrelation auf Q.

Datenstruktur: Eine Menge U ungeordneter Paare $\{p,q\}\subseteq Q$.

Algorithmus U:

Berechnung äquivalenter Zustände eines DFA

durch Berechnung der unterscheidbaren Zustände

Eingabe: DFA $A = (Q, \Sigma, \delta, q_0, F)$

Ausgabe: Äquivalenzrelation auf Q.

Datenstruktur: Eine Menge U ungeordneter Paare $\{p,q\}\subseteq Q$.

Algorithmus U:

 $U := \{ \{p, q\} \mid p \in F \land q \notin F \}$

 $\textbf{2} \ \ \textbf{while} \ \ \exists \{p,q\} \notin U. \ \exists a \in \Sigma. \ \{\delta(p,a),\delta(q,a)\} \in U \\ \ \ \ \textbf{do} \ \ U := U \cup \{\{p,q\}\}$

Berechnung äquivalenter Zustände eines DFA

durch Berechnung der unterscheidbaren Zustände

Eingabe: DFA $A = (Q, \Sigma, \delta, q_0, F)$

Ausgabe: Äquivalenzrelation auf Q.

Datenstruktur: Eine Menge U ungeordneter Paare $\{p,q\}\subseteq Q$.

Algorithmus U:

- $U := \{ \{p,q\} \mid p \in F \land q \notin F \}$
- while $\exists \{p,q\} \notin U$. $\exists a \in \Sigma$. $\{\delta(p,a),\delta(q,a)\} \in U$ do $U := U \cup \{\{p,q\}\}$

Invariante: $\{p,q\} \in U \implies p \text{ und } q \text{ unterscheidbar}$

Berechnung äquivalenter Zustände eines DFA

durch Berechnung der unterscheidbaren Zustände

Eingabe: DFA $A = (Q, \Sigma, \delta, q_0, F)$

Ausgabe: Äquivalenzrelation auf Q.

Datenstruktur: Eine Menge U ungeordneter Paare $\{p,q\}\subseteq Q$.

Algorithmus U:

- while $\exists \{p,q\} \notin U$. $\exists a \in \Sigma$. $\{\delta(p,a),\delta(q,a)\} \in U$ do $U := U \cup \{\{p,q\}\}$

Invariante: $\{p,q\} \in U \implies p \text{ und } q \text{ unterscheidbar}$

Lemma 2.50

Am Ende gilt: U ist Menge aller unterscheidbaren Zustände. spaare

Berechnung äquivalenter Zustände eines DFA

durch Berechnung der unterscheidbaren Zustände

Eingabe: DFA $A = (Q, \Sigma, \delta, q_0, F)$

Ausgabe: Äquivalenzrelation auf Q.

Datenstruktur: Eine Menge U ungeordneter Paare $\{p,q\}\subseteq Q$.

Algorithmus U:

- $U := \{ \{p, q\} \mid p \in F \land q \notin F \}$
- $\textbf{ while } \exists \{p,q\} \notin U. \ \exists a \in \Sigma. \ \{\delta(p,a),\delta(q,a)\} \in U \\ \textbf{ do } U := U \cup \{\{p,q\}\}$

Invariante: $\{p,q\} \in U \implies p \text{ und } q \text{ unterscheidbar}$

Lemma 2.50

Am Ende gilt: U ist Menge aller unterscheidbaren Zustände.

Beweis:

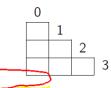
 $\{p,q\} \in U \implies p \text{ und } q \text{ unterscheidbar: Invariante } p \text{ und } q \text{ unterscheidbar } \implies \{p,q\} \in U \text{:}$

Implementierung von U:

Tabelle von anfangs unmarkierten Paaren $\{p,q\}$, $p \neq q$.

Implementierung von U:

Tabelle von anfangs unmarkierten Paaren $\{p,q\}$, $p \neq q$.



Spaare

Implementierung von U:

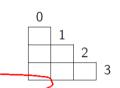
Tabelle von anfangs unmarkierten Paaren $\{p,q\}, p \neq q$.

for all $p \in F$, $q \in Q \setminus F$ do markiere $\{p,q\}$

Spaare

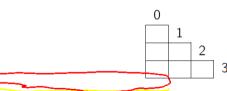
Implementierung von U:

Tabelle von anfangs unmarkierten Paaren $\{p,q\}, p \neq q$.



Implementierung von U:

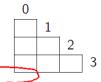
Tabelle von anfangs unmarkierten Paaren $\{p,q\}$, $p \neq q$.



 $\begin{array}{ll} \mbox{for all} \ \ p \in F, \ q \in Q \setminus F \ \mbox{do markiere} \ \{p,q\} \\ \mbox{while} \ \ \exists \ \mbox{unmarkiertes} \ \{p,q\} \ \exists a \in \Sigma. \ \{\delta(p,a),\delta(q,a)\} \ \mbox{ist markiert} \end{array}$

Implementierung von U:

Tabelle von anfangs unmarkierten Paaren $\{p,q\}$, $p \neq q$.



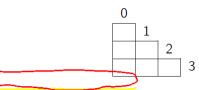
for all $p \in F$, $q \in Q \setminus F$ do markiere $\{p,q\}$ while \exists unmarkiertes $\{p,q\}$ $\exists a \in \Sigma.$ $\{\delta(p,a),\delta(q,a)\}$ ist markiert do markiere $\{p,q\}$

Komplexität:

[spaare

Implementierung von U:

Tabelle von anfangs unmarkierten Paaren $\{p, q\}, p \neq q$.



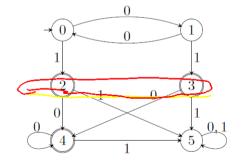
 $\begin{array}{ll} \mbox{for all} \;\; p \in F, \; q \in Q \setminus F \;\; \mbox{do markiere} \;\; \{p,q\} \\ \mbox{while} \;\; \exists \; \mbox{unmarkiertes} \;\; \{p,q\} \;\; \exists a \in \Sigma. \;\; \{\delta(p,a),\delta(q,a)\} \;\; \mbox{ist markiert} \\ \mbox{do markiere} \;\; \{p,q\} \end{array}$

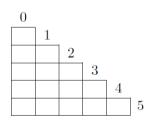
Komplexität:

$$O\left(\binom{n}{2} + \binom{n}{2}\binom{n}{2}|\Sigma|\right)$$

spaare

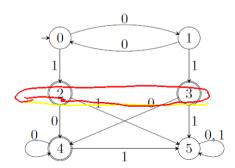
Beispiel 2.51

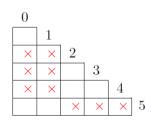




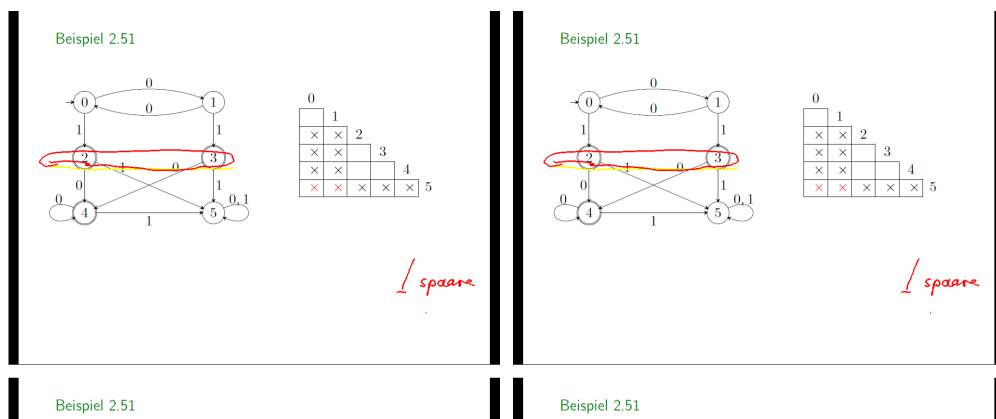
1 spaare

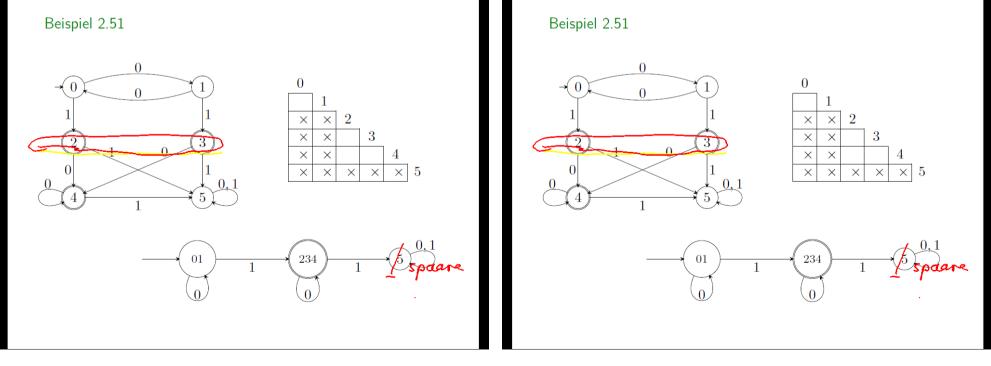
Beispiel 2.51





/ spaare





Von $O(n^4)$ zu $O(n^2)$ mit Abhängigkeitsanalyse: $\{p',q'\} \text{ unterscheidbar }\Longrightarrow \{p,q\} \text{ unterscheidbar falls } \{p,q\} \stackrel{a}{\to} \{p',q'\}$

 $D[\{p',q'\}]$: Menge der Paare $\{p,q\}$ wie oben, anfangs leer

1 spaare

Von $O(n^4)$ zu $O(n^2)$ mit Abhängigkeitsanalyse:

 $D[\{p',q'\}]$: Menge der Paare $\{p,q\}$ wie oben, anfangs leer

for all $\{p,q\} \subseteq Q$ mit $p \neq q$,

spaare

Von $O(n^4)$ zu $O(n^2)$ mit Abhängigkeitsanalyse:

 $\{p', q'\}$ unterscheidbar \Longrightarrow $\{p, q\}$ unterscheidbar falls $\{p, q\} \stackrel{a}{\to} \{p', q'\}$

 $D[\{p',q'\}]$: Menge der Paare $\{p,q\}$ wie oben, anfangs leer

 $\begin{array}{l} \text{for all } \{p,q\}\subseteq Q \text{ mit } p\neq q,\ a\in \Sigma \text{ do} \\ \underline{p'}:=\delta(p,a);\ q':=\delta(q,a) \\ \text{if } p\neq q' \text{ then } D[\{p',q'\}]:=D[\{p',q'\}]\cup \{\{p,q\}\} \end{array}$

Von $O(n^4)$ zu $O(n^2)$ mit Abhängigkeitsanalyse:

 $\begin{cases} p',q' \} \text{ unterscheidbar } \Longrightarrow \\ \{p,q\} \text{ unterscheidbar falls } \{p,q\} \overset{a}{\to} \{p',q'\}$

 $D[\{p',q'\}]$: Menge der Paare $\{p,q\}$ wie oben, anfangs leer

 $\begin{array}{c} \text{for all } \{p,q\}\subseteq Q \text{ mit } p\neq q,\ a\in \Sigma \text{ do} \\ \hline p':=\delta(p,a);\ q':=\delta(q,a) \\ \hline \text{if } p'\neq q' \text{ then } D[\{p',q'\}]:=D[\{p',q'\}]\cup \{\{p,q\}\} \\ \text{for all } p'\in F,\ q'\in Q\setminus F \text{ do } mark(\{p',q'\}) \end{array}$

spaare

```
Von O(n^4) zu O(n^2) mit Abhängigkeitsanalyse:  \{p',q'\} \text{ unterscheidbar } \Longrightarrow \{p,q\} \text{ unterscheidbar falls } \{p,q\} \stackrel{a}{\to} \{p',q'\}  D[\{p',q'\}]: Menge der Paare \{p,q\} wie oben, anfangs leer for all \{p,q\}\subseteq Q mit p\neq q, a\in \Sigma do  p':=\delta(p,a); \ q':=\delta(q,a)  if p'\neq q' then D[\{p',q'\}]:=D[\{p',q'\}]\cup \{\{p,q\}\}  for all p'\in F, \ q'\in Q\setminus F do mark(\{p',q'\})  mark(\{p',q'\})=  if \{p',q'\} unmarkiert then markiere \{p',q'\} for all pq\in D[\{p',q'\}] do mark(pq)
```

John Hopcroft

An $n \log n$ Algorithm for Minimizing the States in a Finite Automaton. 1971.

Noch eine Anwendung: Äquivalenztest von DFAs.

spaare

Noch eine Anwendung: Äquivalenztest von DFAs.

• Gegeben DFAs A und B, bilde disjunkte Vereiningung. • (Male A und B nebenemander.")

1

Noch eine Anwendung: Äquivalenztest von DFAs.

- Gegeben DFAs A und B, bilde disjunkte Vereiningung. • (.Male A und B nebenemander.")
 - 2 Berechne Menge der äquivalenten Zustände.
 - **3** L(A) = L(B) gdw die beiden Startzustände äquivalent sind.

[spaare

Bisher: Der Minimierungsalgorithmus (zur Erinnerung).

- Entferne alle von q_0 aus nicht erreichbaren Zustände.
- 2 Berechne die *äquivalenten* Zustände des Automaten.
- Sollabiere den Automaten durch Zusammenfassung aller äquivalenten Zustände.

Bisher: Der Minimierungsalgorithmus (zur Erinnerung).

- Entferne alle von q_0 aus nicht erreichbaren Zustände.
- 2 Berechne die *äquivalenten* Zustände des Automaten.
- Sollabiere den Automaten durch Zusammenfassung aller äquivalenten Zustände.

Jetzt: Die Präzisierung.

- Was ist der "kollabierte Automat"?
- 2 Ist das wirklich der minimale Automat?

[spaare

- Reflexivität: $\forall a \in A. \ a \approx a$
- Symmetrie: $\forall a, b \in A. \ a \approx b \implies b \approx a$
- Transitivität: $\forall a,b,c \in A.\ a \approx b \land b \approx c \implies a \approx c$

Eine Relation $\approx \subseteq A \times A$ ist eine Äquivalenzrelation falls

- Reflexivität: $\forall a \in A. \ a \approx a$
- Symmetrie: $\forall a, b \in A. \ a \approx b \implies b \approx a$
- Transitivität: $\forall a, b, c \in A$. $a \approx b \land b \approx c \implies a \approx c$

Äquivalenzklasse:

$$[a]_{\approx} := \{b \mid a \approx b\}$$

[spaare

Eine Relation $\approx \subseteq A \times A$ ist eine Äquivalenzrelation falls

- Reflexivität: $\forall a \in A. \ a \approx a$
- Symmetrie: $\forall a, b \in A. \ a \approx b \implies b \approx a$
- Transitivität: $\forall a, b, c \in A$. $a \approx b \land b \approx c \implies a \approx c$

Äquivalenzklasse:

$$[a]_{\approx} := \{b \mid a \approx b\}$$

Es gilt:

$$[a]_{\approx} = [b]_{\approx} \quad \Leftrightarrow \quad a \approx b$$

spaare

Eine Relation $\approx \subseteq A \times A$ ist eine Äquivalenzrelation falls

- Reflexivität: $\forall a \in A. \ a \approx a$
- Symmetrie: $\forall a, b \in A. \ a \approx b \implies b \approx a$
- Transitivität: $\forall a,b,c \in A.\ a \approx b \land b \approx c \implies a \approx c$

Äquivalenzklasse:

$$\underline{[a]_{\approx}} := \{b \mid a \approx b\}$$

Es gilt:

$$[a]_{\approx} = [b]_{\approx} \quad \Leftrightarrow \quad a \approx b$$

Quotientenmenge:

$$A/\approx := \{[a]_{\approx} \mid a \in A\}$$

Im Folgenden sei $A=(Q,\Sigma,\delta,q_0,F)$ ein DFA ohne unerreichbare Zustände.

Im Folgenden sei $A=(Q,\Sigma,\delta,q_0,F)$ ein DFA ohne unerreichbare Zustände.

Definition 2.52 (Äquivalenz von Zuständen)

$$p \equiv_A q \iff (\forall w \in \Sigma^*. \ \hat{\delta}(p, w) \in F \Leftrightarrow \hat{\delta}(q, w) \in F)$$

Spaare

Im Folgenden sei $A=(Q,\Sigma,\delta,q_0,F)$ ein DFA ohne unerreichbare Zustände.

Definition 2.52 (Äquivalenz von Zuständen)

$$p \equiv_A q \quad \Leftrightarrow \quad (\forall w \in \Sigma^*. \ \hat{\delta}(p, w) \in F \Leftrightarrow \hat{\delta}(q, w) \in F)$$

Fakt 2.53

$$=_A$$
 ist eine Äquivalenzrelation.

Im Folgenden sei $A=(Q,\Sigma,\delta,q_0,F)$ ein DFA ohne unerreichbare Zustände.

Definition 2.52 (Äquivalenz von Zuständen)

$$p \equiv_A q \quad \Leftrightarrow \quad (\forall w \in \Sigma^*. \ \hat{\delta}(p, w) \in F \Leftrightarrow \hat{\delta}(q, w) \in F)$$

Fakt 2.53

 $=_A$ ist eine Äquivalenzrelation.

Wir schreiben \equiv statt \equiv_A wenn A klar ist.

[spaare

Im Folgenden sei $A=(Q,\Sigma,\delta,q_0,F)$ ein DFA ohne unerreichbare Zustände.

Definition 2.52 (Äquivalenz von Zuständen)

$$p \equiv_A q \iff (\forall w \in \Sigma^*. \ \hat{\delta}(p, w) \in F \Leftrightarrow \hat{\delta}(q, w) \in F)$$

Fakt 2.53

 $=_A$ ist eine Äquivalenzrelation.

Wir schreiben \equiv statt \equiv_A wenn A klar ist.

Erinnerung:

Lemma 2.54

$$p \equiv_A q \implies \delta(p, a) \equiv_A \delta(q, a)$$

Kongru / spaare

Im Folgenden sei $A=(Q,\Sigma,\delta,q_0,F)$ ein DFA ohne unerreichbare Zustände.

Definition 2.52 (Äquivalenz von Zuständen)

$$p \equiv_A q \quad \Leftrightarrow \quad (\forall w \in \Sigma^*. \ \hat{\delta}(p, w) \in F \Leftrightarrow \hat{\delta}(q, w) \in F)$$

Fakt 2.53

 \equiv_A ist eine Äquivalenzrelation.

Im Folgenden sei $A=(Q,\Sigma,\delta,q_0,F)$ ein DFA ohne unerreichbare Zustände.

Definition 2.52 (Äquivalenz von Zuständen)

$$p \equiv_A q \quad \Leftrightarrow \quad (\forall w \in \Sigma^*. \ \hat{\delta}(p, w) \in F \Leftrightarrow \hat{\delta}(q, w) \in F)$$

Fakt 2.53

 \equiv_A ist eine Äquivalenzrelation.

Wir schreiben \equiv statt \equiv_A wenn A klar ist.

Erinnerung:

Lemma 2.54

$$p \equiv_A q \implies \delta(p, a) \equiv_A \delta(q, a)$$

Kongruenz

Im Folgenden sei $A=(Q,\Sigma,\delta,q_0,F)$ ein DFA ohne unerreichbare Zustände.

Definition 2.52 (Äquivalenz von Zuständen)

$$p \equiv_A q \iff (\forall w \in \Sigma^*. \ \hat{\delta}(p, w) \in F \Leftrightarrow \hat{\delta}(q, w) \in F)$$

Fakt 2.53

 \equiv_A ist eine Äquivalenzrelation.

Wir schreiben \equiv statt \equiv_A wenn A klar ist.

Erinnerung:

Lemma 2.54

$$p \equiv_A q \implies \delta(p, a) \equiv_A \delta(q, a)$$

Lemma 2.55

Kongruenz

Algorithmus U liefert die unterscheidbaren Zustände, also ≢.

Im Folgenden sei $A=(Q,\Sigma,\delta,q_0,F)$ ein DFA ohne unerreichbare Zustände.

Definition 2.52 (Äquivalenz von Zuständen)

$$p \equiv_A q \iff (\forall w \in \Sigma^*. \ \hat{\delta}(p, w) \in F \Leftrightarrow \hat{\delta}(q, w) \in F)$$

Fakt 2.53

 \equiv_A ist eine Äquivalenzrelation.

Wir schreiben \equiv statt \equiv_A wenn A klar ist.

Erinnerung:

Lemma 2.54

$$p \equiv_A q \implies \delta(p, a) \equiv_A \delta(q, a)$$

Lemma 2.55

Kongruenz

Algorithmus U liefert die unterscheidbaren Zustände, also $\not\equiv$. In der weiteren Analyse beziehen wir uns direkt auf \equiv , nicht mehr auf den Algorithmus.

Die "Kollabierung" von A bzgl. \equiv ist der Quotientenautomat: Definition 2.56 (Quotientenautomat)

$$A/\equiv :=$$

Kongruenz

Die "Kollabierung" von A bzgl. \equiv ist der $\mathit{Quotientenautomat}$:

Definition 2.56 (Quotientenautomat)

$$A/\equiv := (Q/\equiv, \Sigma, \delta', [q_0]_\equiv,$$

Die "Kollabierung" von A bzgl. \equiv ist der Quotientenautomat: Definition 2.56 (Quotientenautomat)

$$A/\equiv := (Q/\equiv, \Sigma, \delta', [q_0]_\equiv, F/\equiv)$$

Kongruenz

Kongruenz

Die "Kollabierung" von A bzgl. \equiv ist der *Quotientenautomat*:

Definition 2.56 (Quotientenautomat)

$$A/\equiv := (Q/\equiv, \Sigma, \delta', [q_0]_\equiv, F/\equiv)$$

 $\delta'([p]_\equiv, a) := [\delta(p, a)]_\equiv$

Kongruenz

Die "Kollabierung" von A bzgl. \equiv ist der Quotientenautomat:

Definition 2.56 (Quotientenautomat)

$$A/\equiv := (Q/\equiv, \Sigma, \delta', [q_0]_\equiv, F/\equiv)$$

$$\delta'([p]_\equiv, a) := [\delta(p, a)]_\equiv$$

Die Definition von δ' ist wohlgeformt da unabhängig von der Wahl des Repräsentanten p:

$$[p]_{\equiv}$$

Kongruenz

Die "Kollabierung" von A bzgl. \equiv ist der Quotientenautomat:

Definition 2.56 (Quotientenautomat)

$$A/\equiv := (Q/\equiv, \Sigma, \delta', [q_0]_\equiv, F/\equiv)$$

 $\delta'([p]_\equiv, a) := [\delta(p, a)]_\equiv$

Die Definition von δ' ist wohlgeformt da unabhängig von der Wahl des Repräsentanten p:

$$[p]_{\equiv} = [p']_{\equiv} \implies p \equiv p' \implies \delta(p, a) \equiv \delta(p', a)$$

Kongruenz

Die "Kollabierung" von A bzgl. \equiv ist der *Quotientenautomat*:

Definition 2.56 (Quotientenautomat)

$$A/\equiv := (Q/\equiv, \Sigma, \delta', [q_0]_\equiv, F/\equiv)$$

 $\delta'([p]_\equiv, a) := [\delta(p, a)]_\equiv$

Die Definition von δ' ist wohlgeformt da unabhängig von der Wahl des Repräsentanten p:

$$[p]_{\equiv} = [p']_{\equiv} \implies p \equiv p' \implies \delta(p, a) \equiv \delta(p', a)$$

 $\implies [\delta(p, a)]_{\equiv} = [\delta(p', a)]_{\equiv}$

Lemma 2.57

$$L(A/\equiv) = L(A)$$
 Kongruenz

Die "Kollabierung" von A bzgl. \equiv ist der Quotientenautomat:

Definition 2.56 (Quotientenautomat)

$$A/\equiv := (Q/\equiv, \Sigma, \delta', [q_0]_\equiv, F/\equiv)$$

$$\delta'([p]_\equiv, a) := [\delta(p, a)]_\equiv$$

Die Definition von δ' ist wohlgeformt da unabhängig von der Wahl des Repräsentanten p:

$$[p]_{\equiv} = [p']_{\equiv} \implies p \equiv p' \implies \delta(p, a) \equiv \delta(p', a)$$
$$\implies [\delta(p, a)]_{\equiv} = [\delta(p', a)]_{\equiv}$$

Lemma 2.57

$$L(A/\equiv)=L(A)$$
 Kongruenz

Beweis zur Übung.

Beobachtung

Für $p := \hat{\delta}(q_0, u)$ und $q := \hat{\delta}(q_0, v)$ gilt:

Kongruenz

Beobachtung

Für $p := \hat{\delta}(q_0, u)$ und $q := \hat{\delta}(q_0, v)$ gilt:

$$p \equiv_A q \iff \forall w \in \Sigma^*. \ \hat{\delta}(p, w) \in F \Leftrightarrow \hat{\delta}(q, w) \in F$$

Beobachtung

Für $p := \hat{\delta}(q_0, u)$ und $q := \hat{\delta}(q_0, v)$ gilt:

$$p \equiv_A q \quad \Leftrightarrow \quad \forall w \in \Sigma^*. \ \hat{\delta}(p, w) \in F \Leftrightarrow \hat{\delta}(q, w) \in F$$
$$\Leftrightarrow \quad \forall w \in \Sigma^*. \ \hat{\delta}(q_0, uw) \in F \Leftrightarrow \hat{\delta}(q_0, vw) \in F$$

Kongruenz

Kongruenz

Beobachtung

Für $p := \hat{\delta}(q_0, u)$ und $q := \hat{\delta}(q_0, v)$ gilt:

$$p \equiv_A q \iff \forall w \in \Sigma^*. \ \hat{\delta}(p, w) \in F \Leftrightarrow \hat{\delta}(q, w) \in F$$
$$\Leftrightarrow \forall w \in \Sigma^*. \ \hat{\delta}(q_0, uw) \in F \Leftrightarrow \hat{\delta}(q_0, vw) \in F$$

$$\Leftrightarrow \forall w \in \Sigma^*. \ uw \in L(A) \Leftrightarrow vw \in L(A)$$

Kongruenz

Beobachtung

Für $p := \hat{\delta}(q_0, u)$ und $q := \hat{\delta}(q_0, v)$ gilt:

$$\begin{split} p \equiv_A q & \Leftrightarrow & \forall w \in \Sigma^*. \ \hat{\delta}(p,w) \in F \Leftrightarrow \hat{\delta}(q,w) \in F \\ & \Leftrightarrow & \forall w \in \Sigma^*. \ \hat{\delta}(q_0,uw) \in F \Leftrightarrow \hat{\delta}(q_0,vw) \in F \\ & \Leftrightarrow & \forall w \in \Sigma^*. \ uw \in L(A) \Leftrightarrow vw \in L(A) \end{split}$$

Definition 2.58

Jede Sprache $L\subseteq \Sigma^*$ induziert eine Äquivalenzrelation $\equiv_L\subset \Sigma^*\times \Sigma^*$:

Kongruenz

Beobachtung

Für $p := \hat{\delta}(q_0, u)$ und $q := \hat{\delta}(q_0, v)$ gilt:

$$\begin{split} p \equiv_A q & \Leftrightarrow & \forall w \in \Sigma^*. \ \hat{\delta}(p,w) \in F \Leftrightarrow \hat{\delta}(q,w) \in F \\ & \Leftrightarrow & \forall w \in \Sigma^*. \ \hat{\delta}(q_0,uw) \in F \Leftrightarrow \hat{\delta}(q_0,vw) \in F \\ & \Leftrightarrow & \forall w \in \Sigma^*. \ uw \in L(A) \Leftrightarrow vw \in L(A) \end{split}$$

Definition 2.58

Jede Sprache $L\subseteq \Sigma^*$ induziert eine Äquivalenzrelation $\equiv_L\subseteq \Sigma^*\times \Sigma^*$:

$$u \equiv_L v \Leftrightarrow \forall w \in \Sigma^*. \ uw \in L \Leftrightarrow vw \in L$$

Kongruenz

Beobachtung

Für $p:=\hat{\delta}(q_0,u)$ und $q:=\hat{\delta}(q_0,v)$ gilt:

$$p \equiv_{A} q \iff \forall w \in \Sigma^{*}. \ \hat{\delta}(p, w) \in F \Leftrightarrow \hat{\delta}(q, w) \in F$$
$$\Leftrightarrow \forall w \in \Sigma^{*}. \ \hat{\delta}(q_{0}, uw) \in F \Leftrightarrow \hat{\delta}(q_{0}, vw) \in F$$
$$\Leftrightarrow \forall w \in \Sigma^{*}. \ uw \in L(A) \Leftrightarrow vw \in L(A)$$

Definition 2.58

Jede Sprache $L\subseteq \Sigma^*$ induziert eine Äquivalenzrelation $\equiv_L\subseteq \Sigma^*\times \Sigma^*$:

$$u \equiv_{\mathbf{L}} v \quad \Leftrightarrow \quad \forall w \in \Sigma^*. \ uw \in L \Leftrightarrow vw \in L$$

D.h. u und v sind duch Anhängen von Wörtern bzgl $\in L$ nicht unterscheidbar.

Beobachtung

Für
$$p := \hat{\delta}(q_0, u)$$
 und $q := \hat{\delta}(q_0, v)$ gilt:

$$p \equiv_{A} q \iff \forall w \in \Sigma^{*}. \ \hat{\delta}(p, w) \in F \Leftrightarrow \hat{\delta}(q, w) \in F$$
$$\Leftrightarrow \forall w \in \Sigma^{*}. \ \hat{\delta}(q_{0}, uw) \in F \Leftrightarrow \hat{\delta}(q_{0}, vw) \in F$$
$$\Leftrightarrow \forall w \in \Sigma^{*}. \ uw \in L(A) \Leftrightarrow vw \in L(A)$$

Definition 2.58

Jede Sprache $L\subseteq \Sigma^*$ induziert eine Äquivalenzrelation $\equiv_L\subset \Sigma^*\times \Sigma^*$:

$$u \equiv_L v \quad \Leftrightarrow \quad \forall w \in \Sigma^*. \ uw \in L \Leftrightarrow vw \in L$$

D.h. u und v sind duch Anhängen von Wörtern bzgl $\in L$ nicht unterscheidbar.

Obige Beobachtung lässt sich nun schreiben als

$$u \equiv_{L(A)} v \iff \hat{\delta}(q_0, u) \equiv_A \hat{\delta}(q_0, v)$$

$u \equiv_{L(A)} v \iff \hat{\delta}(q_0, u) \equiv_A \hat{\delta}(q_0, v)$

Da alle Zustände von q_0 erreichbar sind, gilt sogar: Die Abbildung

$$[u]_{\equiv_{L(A)}} \mapsto [\hat{\delta}(q_0, u)]_{\equiv_A}$$

ist eine Bijektion zwischen den $\equiv_{L(A)}$ und \equiv_A Äquivalenzklassen.

Kongruenz

Achtung

 $p \equiv_A q$ ist eine Relation auf Zuständen von A $u \equiv_L v$ ist eine Relation auf Wörtern

Kongruenz

$$u \equiv_{L(A)} v \iff \hat{\delta}(q_0, u) \equiv_A \hat{\delta}(q_0, v)$$

Da alle Zustände von q_0 erreichbar sind, gilt sogar: Die Abbildung

$$[u]_{\equiv_{L(A)}} \mapsto [\hat{\delta}(q_0, u)]_{\equiv_A}$$

ist eine Bijektion zwischen den $\equiv_{L(A)}$ und \equiv_A Äquivalenzklassen.

Satz 2.59

Ist A ein DFA ohne unerreichbare Zustände, so ist der von Algorithmus U berechnete Quotientenautomat A/\equiv ein minimaler DFA für L(A).

Kongruenz

$$u \equiv_{L(A)} v \iff \hat{\delta}(q_0, u) \equiv_A \hat{\delta}(q_0, v)$$

Da alle Zustände von q_0 erreichbar sind, gilt sogar: Die Abbildung

$$[u]_{\equiv_{L(A)}} \mapsto [\hat{\delta}(q_0, u)]_{\equiv_A}$$

ist eine Bijektion zwischen den $\equiv_{L(A)}$ und \equiv_A Äquivalenzklassen.

Satz 2.59

Ist A ein DFA ohne unerreichbare Zustände, so ist der von Algorithmus U berechnete Quotientenautomat A/\equiv ein minimaler DFA für L(A).

Beweis:

Sei L:=L(A) und A' ein DFA mit L(A')=L. Dann gilt:

$$|Q'| \ge |Q'/\equiv_{A'}| = |\Sigma^*/\equiv_L|$$
 Kongruenz

Es gilt sogar (Übung!):

Fakt 2.60

Alle Quotientenautomaten A/\equiv_A für die gleiche Sprache L(A) haben die gleiche Struktur, d.h. sie unterscheiden sich nur durch eine Umbenennung der Zustände.

Kongruenz

Es gilt sogar (Übung!):

Fakt 2.60

Alle Quotientenautomaten A/\equiv_A für die gleiche Sprache L(A) haben die gleiche Struktur, d.h. sie unterscheiden sich nur durch eine Umbenennung der Zustände.

Daher beschriften wir die Zustände des kanonischen Minimalautomaten für eine Sprache L mit \equiv_L Äquivalenzklassen.

Beispiel 2.61

Sei $L:=\{w\in\{0,1\}^*\mid w \text{ endet mit }00\}.$ Die einzigen drei \equiv_L Äquivalenzklassen sind:

$$[\epsilon]_{\equiv_L} = \{ w \mid w \text{ endet nicht mit } 0 \}$$

 $[0]_{\equiv_L} \quad = \quad \{w \mid w \text{ endet mit 0, aber nicht mit } 00\}$

Kongruenz

Es gilt sogar (Übung!):

Fakt 2.60

Alle Quotientenautomaten A/\equiv_A für die gleiche Sprache L(A) haben die gleiche Struktur, d.h. sie unterscheiden sich nur durch eine Umbenennung der Zustände.

Daher beschriften wir die Zustände des kanonischen Minimalautomaten für eine Sprache L mit \equiv_L Äquivalenzklassen.

Beispiel 2.61

Sei $L:=\{w\in\{0,1\}^*\mid w \text{ endet mit }00\}.$ Die einzigen drei \equiv_L Äquivalenzklassen sind:

$$\begin{split} [\epsilon]_{\equiv_L} &= \{w \mid w \text{ endet nicht mit } 0\} \\ [0]_{\equiv_L} &= \{w \mid w \text{ endet mit } 0, \text{ aber nicht mit } 00\} \\ [00]_{\equiv_L} &= \{w \mid w \text{ endet mit } 00\} \end{split}$$