Script generated by TTT

Title: Nipkow: Theo (24.06.2019)

Date: Mon Jun 24 14:18:55 CEST 2019

Duration: 90:46 min

Pages: 82

5.6 Semi-Entscheidbarkeit

Definition 5.40

Eine Menge $A \subseteq \mathbb{N}$ oder Σ^*) heißt semi-entscheidbar (s-e) gdw

$$(\subseteq \mathbb{N} \text{ oder } \Sigma^*) \text{ heißt semi-entscheidbar (s-e) gd}$$

$$(\chi_A'(x)) := \{ 1 \} \text{ falls } \underline{x} \in A \text{ falls } x \notin A \}$$

$$(\mathcal{M} \mathcal{M}) := \{ 1 \} \text{ falls } x \notin A \}$$

berechenbar ist.

5.6 Semi-Entscheidbarkeit

28

Satz 5.41

Eine Menge A ist entscheidbar gdw sowohl A als auch \overline{A} s-e sind.

Satz 5.41

Eine Menge A ist entscheidbar gdw sowohl A als auch \overline{A} s-e sind.

Beweis:

" \Rightarrow ": Wandle TM für χ_A in TM für χ_A' und $\chi_{\overline{A}}'$ um:

Beweis (Forts.):

"⇐":

Wandle TM M_1 für χ_A' und TM M_2 für $\chi_{\overline{A}}'$ in TM für χ_A um:

input(x);

for s := 0, 1, 2, ... do

if $M_1[x]$ hält in s Schritten then $\operatorname{output}(1)$; halt fi ;

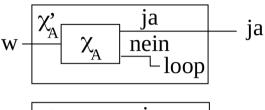
if $M_2[x]$ hält in s Schritten then $\operatorname{output}(0)$; halt fi

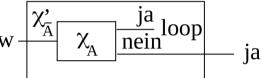
Satz 5.41

Eine Menge A ist entscheidbar gdw sowohl A als auch \overline{A} s-e sind.

Beweis:

" \Rightarrow ": Wandle TM für χ_A in TM für χ_A' und $\chi_{\overline{A}}'$ um:





Beweis (Forts.):

.,∉":

Wandle TM M_1 für χ_A' und TM M_2 für $\chi_{\overline{A}}'$ in TM für χ_A um:

input(x);

for s := 0, 1, 2, ... do

if $M_1[x]$ hält in s Schritten then output(1); halt fi;

if $M_2[x]$ hält in s Schritten then output(0); halt fi

Formulierung mit Parallelismus:

input(x);

führe $M_1[x]$ und $M_2[x]$ parallel aus;

hält M_1 , gib 1 aus, hält M_2 , gib 0 aus.

28

282

281

"⇐":

Wandle TM M_1 für χ_A' und TM M_2 für $\chi_{\overline{A}}'$ in TM für χ_A um:

input(x);

for s := 0, 1, 2, ... do

if $M_1[x]$ hält in s Schritten then output(1); halt fi;

if $M_2[x]$ hält in s Schritten then output(0); halt fi

Formulierung mit Parallelismus:

input(x);

führe $M_1[x]$ und $M_2[x]$ parallel aus;

hält M_1 , gib 1 aus, hält M_2 , gib 0 aus.

Lemma 5.42

Ist $A \leq B$ und ist B s-e, so ist auch A s-e.

Beweis: Übung

Definition 5.43

Eine Menge A heißt rekursiv aufzählbar (recursively enumerable) gdw $A=\emptyset$ oder es eine berechenbare totale Funktion $f:\mathbb{N}\to A$ gibt, so dass

$$A = \{f(0), f(1), f(2), \ldots\}$$

Bemerkung:

- Es dürfen Elemente doppelt auftreten (f(i) = f(j) für $i \neq j)$
- Die Reihenfolge ist beliebig.

Definition 5.43

Eine Menge A heißt rekursiv aufzählbar (recursively enumerable) gdw $A=\emptyset$ oder es eine berechenbare totale Funktion $f:\mathbb{N}\to A$ gibt, so dass

$$A = \{f(0), f(1), f(2), \ldots\}$$

Bemerkung:

- Es dürfen Elemente doppelt auftreten (f(i) = f(j) für $i \neq j)$
- Die Reihenfolge ist beliebig.

282

Lemma 5.44

Eine Menge A ist rekursiv aufzählbar gdw sie semi-entscheidbar ist.

Beweis:

Der Fall $A = \emptyset$ ist trivial. Sei $A \neq \emptyset$.

Lemma 5.44

Eine Menge A ist rekursiv aufzählbar gdw sie semi-entscheidbar ist.

Beweis:

Der Fall $A = \emptyset$ ist trivial. Sei $A \neq \emptyset$.

" \Rightarrow ": Sei A rekursiv aufzählbar mit f. Dann ist A semi-entscheidbar:

input(x);

for i := 0, 1, 2, ... do

if f(i) = x then output(1); halt fi

" \Leftarrow ": O.B.d.A. nehmen wir $A \subseteq \mathbb{N}$ an.

Lemma 5.44

Eine Menge A ist rekursiv aufzählbar gdw sie semi-entscheidbar ist.

Beweis:

Der Fall $A = \emptyset$ ist trivial. Sei $A \neq \emptyset$.

" ": Sei A rekursiv aufzählbar mit f. Dann ist A semi-entscheidbar:

input(x);

for i := 0, 1, 2, ... do

if f(i) = x then output(1); halt fi

 $,, \Leftarrow$ ": O.B.d.A. nehmen wir $A \subseteq \mathbb{N}$ an.

Sei A semi-entscheidbar durch (zB) GOTO-Programm P.

284

Lemma 5.44

Eine Menge A ist rekursiv aufzählbar gdw sie semi-entscheidbar ist.

Beweis:

Der Fall $A = \emptyset$ ist trivial. Sei $A \neq \emptyset$.

" \Rightarrow ": Sei A rekursiv aufzählbar mit f. Dann ist A semi-entscheidbar:

input(x);

for i := 0, 1, 2, ... do

if f(i) = x then output(1); halt fi

 $, \Leftarrow$ ": O.B.d.A. nehmen wir $A \subseteq \mathbb{N}$ an.

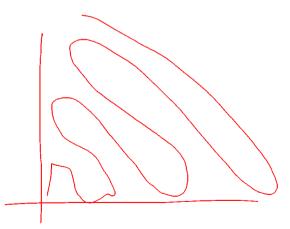
Sei A semi-entscheidbar durch (zB) GOTO-Programm P.

Problem: P[i] muss nicht halten und darf daher nur "zeitbeschränkt" ausgeführt werden.

284

Beweis (Forts.):

Idee: Wir benutzen eine geeignete Bijektion $c: \mathbb{N} \times \mathbb{N} \leftrightarrow \mathbb{N}$



20

Idee: Wir benutzen eine geeignete Bijektion $c\colon \mathbb{N}\times\mathbb{N}\leftrightarrow\mathbb{N}$. Seien $p_1\colon\mathbb{N}\to\mathbb{N}$ und $p_2\colon\mathbb{N}\to\mathbb{N}$ mit

$$p_1(c(n_1, n_2)) = n_1$$
 und $p_2(c(n_1, n_2)) = n_2$

(Umkehrung von c).

Beweis (Forts.):

Idee: Wir benutzen eine geeignete Bijektion $c \colon \mathbb{N} \times \mathbb{N} \leftrightarrow \mathbb{N}$. Seien $p_1 \colon \mathbb{N} \to \mathbb{N}$ und $p_2 \colon \mathbb{N} \to \mathbb{N}$ mit

$$p_1(c(n_1, n_2)) = n_1$$
 und $p_2(c(n_1, n_2)) = n_2$

(Umkehrung von c).

Sei $d \in A$ beliebig.

Folgender Algorithmus berechnet eine Aufzählung von A:

input(n);

if $P[p_1(n)]$ hält nach $p_2(n)$ Schritten then output $(p_1(n))$ else output(d) fi

Korrektheit: Der Algorithmus hält immer und liefert immer ein Element aus ${\cal A}.$

Beweis (Forts.):

Idee: Wir benutzen eine geeignete Bijektion $c : \mathbb{N} \times \mathbb{N} \leftarrow \mathbb{N}$. Seien $p_1 : \mathbb{N} \to \mathbb{N}$ und $p_2 : \mathbb{N} \to \mathbb{N}$ mit

$$p_1(c(n_1, n_2)) = n_1$$
 und $p_2(c(n_1, n_2)) = n_2$

(Umkehrung von c).

Sei $d \in A$ beliebig.

 \bigcirc

285

Satz 5.45

Die Menge $K = \{w \mid M_w[w]\downarrow\}$ ist semi-entscheidbar.

28.

Satz 5.45

Die Menge $K = \{w \mid M_w[w]\downarrow\}$ ist semi-entscheidbar.

Beweis:

Die Funktion χ_K' ist wie folgt Turing-berechenbar:

Bei Eingabe w simuliere die Ausführung von $M_w[w]$; gib $1~{\rm aus.}$

5.7 Die Sätze von Rice und Shapiro

Die von der TM M_w berechnete Funktion bezeichnen wir mit φ_w . Wir betrachten implizit nur einstellige Funktionen.

Satz 5.45

Die Menge $K = \{w \mid M_w[w]\downarrow\}$ ist semi-entscheidbar.

Beweis:

287

288

Die Funktion χ_K' ist wie folgt Turing-berechenbar:

Bei Eingabe w simuliere die Ausführung von ${\cal M}_w[w]$; gib 1 aus.

- Hier haben wir benutzt, dass man einen Interpreter/Simulator für Turingmaschinen als Turingmaschine programmieren kann.
- Ein solcher Interpreter wird oft eine Universelle Turingmaschine (*U*) genannt.

Korollar 5.46

 \overline{K} ist nicht semi-entscheidbar.

Semi-Entscheidbarkeit ist nicht abgeschlossen unter Komplement.

5.7 Die Sätze von Rice und Shapiro

Die von der TM M_w berechnete Funktion bezeichnen wir mit φ_w . Wir betrachten implizit nur einstellige Funktionen.

Satz 5.47 (Rice)

Sei F eine Menge berechenbarer Funktionen.

287

5.7 Die Sätze von Rice und Shapiro

Die von der TM M_w berechnete Funktion bezeichnen wir mit φ_w . Wir betrachten implizit nur einstellige Funktionen.

Sei F eine Menge berechenbarer Funktionen.

Es gelte weder $F = \emptyset$ noch F = alle ber. Funkt. ("F nicht trivial") Dann ist unentscheidbar, ob die von einer gegebenen TM M_w berechnete Funktion Element F ist, dh ob $\varphi_w \in F$.

288

5.7 Die Sätze von Rice und Shapiro

Die von der TM M_w berechnete Funktion bezeichnen wir mit φ_w . Wir betrachten implizit nur einstellige Funktionen.

Sei F eine Menge berechenbarer Funktionen.

Es gelte weder $F = \emptyset$ noch F = alle ber. Funkt. ("F nicht trivial") Dann ist unentscheidbar, ob die von einer gegebenen TM M_w berechnete Funktion Element F ist, dh ob $\varphi_w \in F$.

Alle nicht-triviale semantische Eigenschaften von Programmen sind unentscheidbar.

Beispiel 5.48

Es ist unentscheidbar, ob ein Programm

• für mindestens eine Eingabe hält. $(F = \{\varphi_w \mid \exists x. \ M_w[x]\downarrow\})$

5.7 Die Sätze von Rice und Shapiro

Die von der TM M_w berechnete Funktion bezeichnen wir mit φ_w . Wir betrachten implizit nur einstellige Funktionen.

Sei F eine Menge berechenbarer Funktionen.

Es gelte weder $F = \emptyset$ noch F = alle ber. Funkt. ("F nicht trivial") Dann ist unentscheidbar, ob die von einer gegebenen TM M_w berechnete Funktion Element F ist, dh ob $\varphi_w \in F$.

Alle nicht-triviale semantische Eigenschaften von Programmen sind unentscheidbar.

5.7 Die Sätze von Rice und Shapiro

Die von der TM M_w berechnete Funktion bezeichnen wir mit φ_w . Wir betrachten implizit nur einstellige Funktionen.

Sei F eine Menge berechenbarer Funktionen.

Es gelte weder $F=\emptyset$ noch F= alle ber. Funkt. ("F nicht trivial") Dann ist unentscheidbar, ob die von einer gegebenen TM M_w berechnete Funktion Element F ist, dh ob $\varphi_w \in F$.

Alle nicht-triviale semantische Eigenschaften von Programmen sind unentscheidbar.

Beispiel 5.48

288

Es ist unentscheidbar, ob ein Programm

- für mindestens eine Eingabe hält. $(F = \{\varphi_w \mid \exists x. \ M_w[x]\downarrow\})$
- für alle Eingaben hält. $(F = \{\varphi_w \mid \forall x. \ M_w[x]\downarrow\})$

Satz 5.49 (Rice-Shapiro)

Sei F eine Menge berechenbarer Funktionen. Ist $C_F:=\{w\mid \varphi_w\in F\}$ semi-entscheidbar, so gilt für alle berechenbaren f: $f\in F\Leftrightarrow$ es gibt eine endliche Teilfunktion $g\subseteq f$ mit $g\in F$.

Satz 5.49 (Rice-Shapiro)

Sei F eine Menge berechenbarer Funktionen. Ist $C_F:=\{w\mid \varphi_w\in F\}$ semi-entscheidbar, so gilt für alle berechenbaren f: $f\in F$ es gibt eine endliche Teilfunktion $g\subseteq f$ mit $g\in F$.

Beweis:

(,,⇒)" mit Widerspruch.

Sei $f \in F$, so dass für alle endlichen $g \subseteq f$ gilt $g \notin F$.

Satz 5.49 (Rice-Shapiro)

Sei F eine Menge berechenbarer Funktionen. Ist $C_F:=\{w\mid \varphi_w\in F\}$ semi-entscheidbar, so gilt für alle berechenbaren f: $f\in F\Leftrightarrow$ es gibt eine endliche Teilfunktion $g\subseteq f$ mit $g\in F$.

Beweis:

"⇒" mit Widerspruch.

Satz 5.49 (Rice-Shapiro)

Sei F eine Menge berechenbarer Funktionen. Ist $C_F:=\{w\mid \varphi_w\in F\}$ semi-entscheidbar, so gilt für alle berechenbaren f: $f\in F\Leftrightarrow$ es gibt eine endliche Teilfunktion $g\subseteq f$ mit $g\in F$.

Beweis:

292

" \Rightarrow " mit Widerspruch. Sei $f \in F$, so dass für alle endlichen $g \subseteq f$ gilt $g \notin F$. Wir zeigen $\overline{K} \leq C_F$ womit C_F nicht semi-entscheidbar ist.

Satz 5.49 (Rice-Shapiro)

Sei F eine Menge berechenbarer Funktionen. Ist $C_F := \{w \mid \varphi_w \in F\}$ semi-entscheidbar, so gilt für alle berechenbaren f: $f \in F \Leftrightarrow$ es gibt eine endliche Teilfunktion $g \subseteq f$ mit $g \in F$.

Beweis:

"⇒" mit Widerspruch.

Sei $f \in F$, so dass für alle endlichen $g \subseteq f$ gilt $g \notin F$. Wir zeigen $\overline{K} \leq C_F$ womit C_F nicht semi-entscheidbar ist.

Widerspruch

292

Beweis (Forts.):

Reduktion $\overline{K} \leq C_F$ mit $h: \{0,1\}^* \to \{0,1\}^*$: h(w) ist die Kodierung folgender TM:

Bei Eingabe \underline{t} simuliere t Schritte von $M_w[w]$.

Hält diese Berechnung in $\leq t$ Schritten, gehe in eine endlos Schleife, sonst berechne f(t).

Beweis (Forts.):

Beweis (Forts.):

Reduktion $\overline{K} \leq C_F$ mit $h: \{0,1\}^* \to \{0,1\}^*$: h(w) ist die Kodierung folgender TM:

Reduktion $\overline{K} \leq C_F$ mit $h: \{0,1\}^* \rightarrow \{0,1\}^*$:

h(w) ist die Kodierung folgender TM:

Bei Eingabe t simuliere t Schritte von $M_w[w]$. Hält diese Berechnung in $\leq t$ Schritten, gehe in eine endlos Schleife, sonst berechne f(t).

Wir zeigen

$$w \in \overline{K} \Leftrightarrow \underline{h(w)} \in C_F$$

Reduktion $\overline{K} \leq C_F$ mit $h: \{0,1\}^* \to \{0,1\}^*$: h(w) ist die Kodierung folgender TM:

Bei Eingabe t simuliere t Schritte von $M_w[w]$. Hält diese Berechnung in $\leq t$ Schritten, gehe in eine endlos Schleife, sonst berechne f(t).

Wir zeigen

$$w \in \overline{K} \iff h(w) \in C_F$$

•
$$w \in \overline{K}$$

Beweis (Forts.):

Reduktion $\overline{K} \leq C_F$ mit $h: \{0,1\}^* \to \{0,1\}^*$: h(w) ist die Kodierung folgender TM:

Bei Eingabe t simuliere t Schritte von $M_w[w]$.

Hält diese Berechnung in $\leq t$ Schritten, gehe in eine endlos Schleife, sonst berechne f(t).

Wir zeigen

$$w \in \overline{K} \iff h(w) \in C_F$$

$$\bullet \ w \in \overline{K} \implies \neg M_w[w] \downarrow \implies \varphi_{h(w)} = f \in F \implies h(w) \in C_F$$

293

Beweis (Forts.):

Reduktion $\overline{K} \leq C_F$ mit $h: \{0,1\}^* \to \{0,1\}^*$: h(w) ist die Kodierung folgender TM:

Bei Eingabe t simuliere t Schritte von $M_w[w]$.

Hält diese Berechnung in $\leq t$ Schritten, gehe in eine endlos Schleife, sonst berechne f(t).

Wir zeigen

$$w \in \overline{K} \iff h(w) \in C_F$$

- $w \in \overline{K} \implies \neg M_w[w] \downarrow \implies \varphi_{h(w)} = f \in F \implies h(w) \in C_F$
- Falls $w \notin \overline{K}$ dann hält $M_w[w]$ nach eine Zahl t von Schritten.

Beweis (Forts.):

Reduktion $\overline{K} \leq C_F$ mit $h: \{0,1\}^* \to \{0,1\}^*$: h(w) ist die Kodierung folgender TM:

Bei Eingabe t simuliere t Schritte von $M_w[w]$.

Hält diese Berechnung in $\leq t$ Schritten, gehe in eine endlos Schleife, sonst berechne f(t).

Wir zeigen

$$w \in \overline{K} \iff h(w) \in C_F$$

- $w \in \overline{K} \implies \neg M_w[w] \downarrow \implies \varphi_{h(w)} = f \in F \implies h(w) \in C_F$
- Falls $w \notin \overline{K}$ dann hält $M_w[w]$ nach eine Zahl t von Schritten. Damit gilt: $\varphi_{h(w)}$ ist f eingeschränkt auf $\{0,\ldots,t-1\}$.

Reduktion $\overline{K} \leq C_F$ mit $h: \{0,1\}^* \to \{0,1\}^*$: h(w) ist die Kodierung folgender TM:

Bei Eingabe t simuliere t Schritte von $M_w[w]$.

Hält diese Berechnung in $\leq t$ Schritten, gehe in eine endlos Schleife, sonst berechne f(t).

Wir zeigen

$$w \in \overline{K} \iff h(w) \in C_F$$

- $w \in \overline{K} \implies \neg M_w[w] \downarrow \implies \varphi_{h(w)} = f \in F \implies h(w) \in C_F$
- Falls $w \notin \overline{K}$ dann hält $M_w[w]$ nach eine Zahl t von Schritten. Damit gilt: $\varphi_{h(w)}$ ist f eingeschränkt auf $\{0,\ldots,t-1\}$. Nach Annahme folgt $\varphi_{h(w)} \notin F$, dh $h(w) \notin C_F$.

Beweis (Forts.):

Reduktion $\overline{K} \leq C_F$ mit $h: \{0,1\}^* \to \{0,1\}^*$: h(w) ist die Kodierung folgender TM:

Bei Eingabe t simuliere t Schritte von $M_w[w]$.

Hält diese Berechnung in $\leq t$ Schritten, gehe in eine endlos Schleife, sonst berechne f(t).

Beweis (Forts.):

Reduktion $\overline{K} \leq C_F$ mit $h: \{0,1\}^* \to \{0,1\}^*$: h(w) ist die Kodierung folgender TM:

Bei Eingabe t simuliere t Schritte von $M_w[w]$.

Hält diese Berechnung in $\leq t$ Schritten, gehe in eine endlos Schleife, sonst berechne f(t).

Wir zeigen

$$w \in \overline{K} \iff h(w) \in C_F$$

- $w \in \overline{K} \implies \neg M_w[w] \downarrow \implies \varphi_{h(w)} = f \in F \implies h(w) \in C_F$
- Falls $w \notin \overline{K}$ dann hält $M_w[w]$ nach eine Zahl t von Schritten.

Beweis (Forts.):

"←" mit Widerspruch.

Reduktion $\overline{K} \leq C_F$ mit $h: \{0,1\}^* \rightarrow \{0,1\}^*$: h(w) ist die Kodierung folgender TM:

Bei Eingabe t simuliere t Schritte von $M_w[w]$.

Hält diese Berechnung in $\leq t$ Schritten, gehe in eine endlos Schleife, sonst berechne f(t).

Wir zeigen

$$w \in \overline{K} \iff h(w) \in C_F$$

Gegeben beliebig viele Kopien der 3 "Spielkarten"

5.8 Das Postsche Korrespondenzproblem

$$\begin{array}{c|c}
001 & 10 & 0 \\
00 & 11 & 010
\end{array}$$

gibt es dann eine Folge dieser Karten

so dass oben und unten das gleiche Wort steht?

Rice-Shapiro (in Kurzform): $C_F := \{ w \mid \varphi_w \in F \}$ s-e \Longrightarrow

$$f \in F \Leftrightarrow \text{es gibt endliche Funkt. } g \subseteq f \text{ mit } g \in F.$$

Ein Programm heißt terminierend gdw es für alle Eingaben hält.

Korollar 5.50

- Die Menge der terminierenden Programme ist nicht semi-entscheidbar.
- Die Menge der nicht-terminierenden Programme ist nicht semi-entscheidbar.

Beweis:

ullet F:= Menge aller berechenbaren totalen Funktionen.

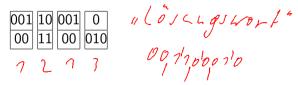
5.8 Das Postsche Korrespondenzproblem

Gegeben beliebig viele Kopien der 3 "Spielkarten"

gibt es dann eine Folge dieser Karten

Kurz: 1,2,1,3.

so dass oben und unten das gleiche Wort steht?



297

Definition 5.51 (Postsche Korrespondenzproblem, *Post's Correspondence Problem*, PCP)

Definition 5.51 (Postsche Korrespondenzproblem, *Post's Correspondence Problem*, PCP)

Gegeben: Eine endliche Folge $(x_1,y_1),\ldots,(x_k,y_k)$, wobei $x_i,y_i\in\Sigma^+.$

298

Definition 5.51 (Postsche Korrespondenzproblem, *Post's Correspondence Problem*, PCP)

Gegeben: Eine endliche Folge $(x_1, y_1), \ldots, (x_k, y_k)$, wobei

 $x_i, y_i \in \Sigma^+$.

Problem: Gibt es eine Folge von Indizes $i_1, \ldots, i_n \in \{1, \ldots, k\}$,

n > 0, mit $x_{i_1} \dots x_{i_n} = y_{i_1} \dots y_{i_n}$?

Definition 5.51 (Postsche Korrespondenzproblem, *Post's Correspondence Problem*, PCP)

Gegeben: Eine endliche Folge $(x_1, y_1), \ldots, (x_k, y_k)$, wobei $x_i, y_i \in \Sigma^+$.

Foly von Is loces

E {1,1,7}

298

298

Definition 5.51 (Postsche Korrespondenzproblem, *Post's Correspondence Problem*, PCP)

Definition 5.51 (Postsche Korrespondenzproblem, *Post's*

Correspondence Problem, PCP)

Gegeben: Eine endliche Folge $(x_1, y_1), \ldots, (x_k, y_k)$, wobei

 $x_i, y_i \in \Sigma^+$.

Problem: Gibt es eine Folge von Indizes $i_1, \ldots, i_n \in \{1, \ldots, k\}$, n > 0, mit $x_{i_1} \ldots x_{i_n} = y_{i_1} \ldots y_{i_n}$?

Dann nennen wir i_1, \ldots, i_n eine Lösung der Instanz $(x_1, y_1), \ldots, (x_k, y_k)$ des PCP Problems.

Beispiel 5.52

• Hat (1,111), (10111,10), (10,0) eine Lösung? 2,1,1,3

10 711 1 1 12 0

Definition 5.51 (Postsche Korrespondenzproblem, *Post's Correspondence Problem*, PCP)

Gegeben: Eine endliche Folge $(x_1, y_1), \ldots, (x_k, y_k)$, wobei $x_i, y_i \in \Sigma^+$.

Problem: Gibt es eine Folge von Indizes $i_1,\ldots,i_n\in\{1,\ldots,k\}$, n>0, mit $x_{i_1}\ldots x_{i_n}=y_{i_1}\ldots y_{i_n}$?

Dann nennen wir i_1, \ldots, i_n eine Lösung der Instanz $(x_1, y_1), \ldots, (x_k, y_k)$ des PCP Problems.

Beispiel 5.52

298

Definition 5.51 (Postsche Korrespondenzproblem, *Post's Correspondence Problem*, PCP)

Gegeben: Eine endliche Folge $(x_1, y_1), \ldots, (x_k, y_k)$, wobei $x_i, y_i \in \Sigma^+$.

Problem: Gibt es eine Folge von Indizes $i_1, \ldots, i_n \in \{1, \ldots, k\}$, n > 0, mit $x_{i_1} \ldots x_{i_n} = y_{i_1} \ldots y_{i_n}$?

Dann nennen wir i_1,\ldots,i_n eine Lösung der Instanz $(x_1,y_1),\ldots,(x_k,y_k)$ des PCP Problems.

Beispiel 5.52

298

- Hat (1,111), (10111,10), (10,0) eine Lösung? 2,1,1,3
- Hat (b, ca), (a, ab), (ca, a), (abc, c) eine Lösung?

Definition 5.51 (Postsche Korrespondenzproblem, *Post's Correspondence Problem*, PCP)

Gegeben: Eine endliche Folge $(x_1, y_1), \ldots, (x_k, y_k)$, wobei $x_i, y_i \in \Sigma^+$.

Problem: Gibt es eine Folge von Indizes $i_1, \ldots, i_n \in \{1, \ldots, k\}$, n > 0, mit $x_{i_1} \ldots x_{i_n} = y_{i_1} \ldots y_{i_n}$?

Dann nennen wir i_1, \ldots, i_n eine Lösung der Instanz $(x_1, y_1), \ldots, (x_k, y_k)$ des PCP Problems.

Beispiel 5.52

- Hat (1,111), (10111,10), (10,0) eine Lösung? 2,1,1,3
- Hat (b, ca), (a, ab), (ca, a), (abc, c) eine Lösung? 2,1,3,2,4

Definition 5.51 (Postsche Korrespondenzproblem, *Post's Correspondence Problem*, PCP)

Gegeben: Eine endliche Folge $(x_1, y_1), \ldots, (x_k, y_k)$, wobei $x_i, y_i \in \Sigma^+$.

Problem: Gibt es eine Folge von Indizes $i_1, \ldots, i_n \in \{1, \ldots, k\}$, n > 0, mit $x_{i_1} \ldots x_{i_n} = y_{i_1} \ldots y_{i_n}$?

Dann nennen wir i_1, \ldots, i_n eine Lösung der Instanz $(x_1, y_1), \ldots, (x_k, y_k)$ des PCP Problems.

Beispiel 5.52

- Hat (1,111), (10111,10), (10,0) eine Lösung? 2,1,1,3
- Hat (b, ca), (a, ab), (ca, a), (abc, c) eine Lösung? 2,1,3,2,4
- Hat (101,01), (101,010), (010,10) eine Lösung? Nein!
- ullet Hat (10, 101), (011, 11), (101, 011) eine Lösung? [HMU]
- $\bullet \ \ \mathsf{Hat} \quad \ (1000,10) \text{, } (1,0011) \text{, } (0,111) \text{, } (11,0) \quad \mathsf{eine \ L\"{o}sung?}$

Definition 5.51 (Postsche Korrespondenzproblem, *Post's Correspondence Problem*, PCP)

Gegeben: Eine endliche Folge $(x_1, y_1), \ldots, (x_k, y_k)$, wobei

 $x_i, y_i \in \Sigma^+$.

Problem: Gibt es eine Folge von Indizes $i_1,\ldots,i_n\in\{1,\ldots,k\}$,

n > 0, mit $x_{i_1} \dots x_{i_n} = y_{i_1} \dots y_{i_n}$?

Dann nennen wir i_1, \ldots, i_n eine Lösung der Instanz $(x_1, y_1), \ldots, (x_k, y_k)$ des PCP Problems.

Beispiel 5.52

- Hat (1,111), (10111,10), (10,0) eine Lösung? 2,1,1,3
- Hat (b, ca), (a, ab), (ca, a), (abc, c) eine Lösung? 2,1,3,2,4
- Hat (101,01), (101,010), (010,10) eine Lösung? Nein!
- Hat (10, 101), (011, 11), (101, 011) eine Lösung?

298

Emil Post.

298

A Variant of a Recursively Unsolvable Problem. Bulletin American Mathematical Society, 1946.

Emil Leon Post, 1897 (Polen) – 1954 (NY).

298

Lemma 5.53

Das PCP ist semi-entscheidbar.

Lemma 5.53

Das PCP ist semi-entscheidbar.

Beweis:

Zähle die möglichen Lösungen der Länge nach auf, und probiere jeweils, ob es eine wirkliche Lösung ist. □

Wir zeigen nun:

$$H \leq MPCP \leq PCP$$

Lemma 5.53

Das PCP ist semi-entscheidbar.

Beweis:

Zähle die möglichen Lösungen der Länge nach auf, und probiere jeweils, ob es eine wirkliche Lösung ist.

30d

Lemma 5.53

Das PCP ist semi-entscheidbar.

Beweis:

Zähle die möglichen Lösungen der Länge nach auf, und probiere jeweils, ob es eine wirkliche Lösung ist. □

Wir zeigen nun:

wobei

Definition 5.54 (Modifiziertes PCP, MPCP)

Gegeben: wie beim PCP

Problem: Gibt es eine Lösung i_1, \ldots, i_n mit $i_1 = 1$?

Satz 5.55
$$MPCP \le PCP$$

Satz 5.55 $MPCP \le PCP$

Beweis:

Für $w = a_1 \dots a_n$:

$$\overline{w} := \#a_1 \# a_2 \# \dots \# a_n \#$$

Satz 5.55
$$MPCP \le PCP$$

Beweis:

Für $w = a_1 \dots a_n$:

301

Satz 5.55 $MPCP \le PCP$

Beweis:

Für $w = a_1 \dots a_n$:

$$\overline{w} := \#a_1 \# a_2 \# \dots \# a_n \#
\overline{w} := * a_1 \# a_2 \# \dots \# a_n \#$$

Satz 5.55MPCP < PCP

Beweis:

Für $w = a_1 \dots a_n$:

$$\overline{w} := \#a_1 \# a_2 \# \dots \# a_n \#
\overleftarrow{w} := a_1 \# a_2 \# \dots \# a_n \#
\overrightarrow{w} := \# a_1 \# a_2 \# \dots \# a_n$$

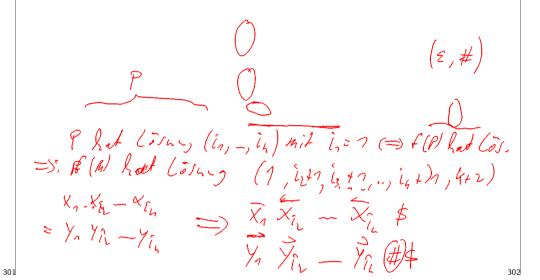
$$f((x_1, y_1), \dots, (x_k, y_k)) := ((\overline{x_1}, \overrightarrow{y_1}), (x_1, \overrightarrow{y_1}), \dots, (x_k, \overrightarrow{y_k}), (\$, \#\$))$$

Satz 5.56

$$H \leq MPCP$$

Satz 5.56

$$H \leq MPCP$$



Satz 5.56

 $H \leq MPCP$

Beweis:

 $H \leq MPCP$

Beweis:

Satz 5.56

 $H \leq MPCP$

Great 5.56 7 M $M_{L} = (Q, \zeta, \Gamma, \delta, g, \eta, J, F)$ Eight $H \leq MPCP$

Beweis:

G18225.56 7M M4 = (a, T, T, 6, 9, , T, F) Eilense HKMPCP Gesudit: Hotale, ber. f: (w, n) -> P mit My [w) & (=) P hat long mit is = 1 Er golf Kry. Ko, Kn, _ , kt (kx = 9. U) (K1 = ~ 90 ~ mit q &F) Barre PCP Mit

Losungsand # K. # K. # L # Kg GRANT HES PC/P Adolgt direkt 4 = (Q, T, T, &, J, J, T, F) Norollar 5.57 Das PCP ist unentscheidbar. Gesudit: Hotale, Ser. f: (w, u) -> P mit My [u] (=) P hat long mit in = 1 Er golf Koy. Ko, Kn, _, Kt (4 = 9.4) (K1 = ~ 90 ~ mit g & F) Bane PCP mit

Losungrand # k. # k. # L # L # Hy

Satz 5.56

$H \leq MPCP$

Beweis:

- $(\#, \#q_0u\#)$
- (a, a) für alle $a \in \Gamma \cup \{\#\}$
- \bullet (qa, q'a')falls $\delta(q, a) = (q', a', N)$ falls $\delta(q, a) = (q', a', R)$ (qa, a'q')(bqa, q'ba') falls $\delta(q, a) = (q', a', L)$, für alle $b \in \Gamma$
- (#, □#), (#, #□)
- (aq,q), (qa,q) für alle $q \in F, a \in \Gamma$
- (q##,#) für alle $q\in F$

Aus $H \leq PCP$ folgt direkt

Korollar 5.57

Das PCP ist unentscheidbar.

Korollar 5.58

Das PCP ist auch für $\Sigma = \{0, 1\}$ unentscheidbar

Aus $H \leq PCP$ folgt direkt

Korollar 5.57

Das PCP ist unentscheidbar.

Korollar 5.58

Das PCP ist auch für $\Sigma = \{0,1\}$ unentscheidbar

Beweis:

Wir nennen dies das 01-PCP und zeigen PCP \leq 01-PCP.

Aus $H \leq PCP$ folgt direkt

Korollar 5.57

Das PCP ist unentscheidbar.

Korollar 5.58

Das PCP ist auch für $\Sigma = \{0,1\}$ unentscheidbar

Beweis:

Wir nennen dies das 01-PCP und zeigen PCP \leq 01-PCP. Sei $\Sigma = \{a_1, \ldots, a_m\}$ das Alphabet des gegebenen PCPs.

Abbildung auf ein 01-PCP: $\widehat{a_{j_1} \dots a_{j_n}} := \underbrace{01^j}_{\widehat{a_{j_1}} \dots \widehat{a_{j_n}}}$

 $\mathsf{Aus}\; H \leq PCP \; \mathsf{folgt} \; \mathsf{direkt}$

Korollar 5.57

Das PCP ist unentscheidbar.

Korollar 5.58

Das PCP ist auch für $\Sigma = \{0, 1\}$ unentscheidbar

Beweis:

Wir nennen dies das 01-PCP und zeigen PCP \leq 01-PCP. Sei $\Sigma = \{a_1, \ldots, a_m\}$ das Alphabet des gegebenen PCPs.