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ﬁ| ransitivity / Clustering Coefficient

¢ Clustering coefficient (whole graph):

C=(Cl— 3x number of triangles in théfnetwork
number of connected triples of vertices
_ 6x number of triangles in the network k&
- number of paths of length two

p(FOAF)

¢ Clustering coefficient (Watts-Strogatz-version, for node i):

c number of triangles connected to vertex i
s =

number of triples centered on vertex i

_ [ e [ Vieo v € Ni| (see Introduction , k; = degree of node i)
ki (ki -1)
2

Clustering coefficient (Watts-Strogatz-version, for whole graph):

1
—co- =N
C=C2 ‘"E,-:(

mean of ratio instead of ratio of means

me : -
Iransitivity / Clustering Coefficient

® Clustering coefficient (whole graph):

C == 3x number of triangles in the network

, - P(FOAF)
number of connected triples of vertices

6x number of triangles in the network
- number of paths of length two

° Clustering coefficient (Watts-Strogatz-version, for node i):

v

number of triangles connected to vertex i

number of triples centered on vertex i

_ | egg [ ViV € Nij (see Introduction , k; = degree of node i)
ki(k; -1)
2

Clustering coefficient (Watts-Strogatz-version, for whole graph):

¥ ]‘ Y
C=(C2= ;Z(

mean of ratio instead of ratio of means

¢ Clustering coefficient (whole graph):

C=(Cl= 3x number of triangles in the network
o number of connected triples of vertices

P(FOAF)
ks

6% number of triangles in the network
- number of paths of length two

¢ Clustering coefficient (Watts-Strogatz-version, for node i):

number of triangles connected to vertex i
~ number of triples centered on vertex i

i

_ [ e [ Vieo v € Ni| (see Introduction , k; = degree of node i)
ki (ki -1)
2

Clustering coefficient (Watts-Strogatz-version, for whole graph):

] 1 v
C=(C2= ;zi:c,

mean of ratio instead of ratio of means
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® Clustering coefficient (whole graph):

C=(Cl— 3x number of triangles in the network

T T P(FOAF)
number of connected triples of vertices

6 x number of triangles in the network
- number of paths of length two

° Clustering coefficient (Watts-Strogatz-version, for node i):

. number of triangles connected to vertex i

i

l " number of triples centered on vertex i
_ [{egqy | Vie, v € Ny}
ki(k; -1)
2
Clustering coefficient (Watts-Strogatz-version, for whole graph):

1
-' — (2): - 4-'1'
c=co- Ly

(see Introduction , k; = degree of node i)

mean of ratio instead of ratio of means

@
E| ransitivity / Clustering Coefficient

¢ Clustering coefficient (whole graph):

C=Cl— 3x number of triangles in the network

- - PFOAF)
number of connected triples of vertices

6 x number of triangles in the network
- number of paths of length two

¢ Clustering coefficient (Watts-Strogatz-version, for node i):

. number of triangles connected to vertex i

% " number of triples centered on vertex i
_ | {e gy | Vie, Vj € Ny}
k;(k; -1)
5 Iy
Clustering coefficient (Watts-Strogatz-version, for whole graph):

1
" — (2) = - ,-'.1‘
C=(C0= -~ §i C

(see Introduction , k; = degree of node i)

mean of ratio instead of ratio of means

@
E| ransitivity / Clustering Coefficient

Example:

(1) — 3x number of triangles in the network
number of connected triples of vertices

1 number of triangles connected to vertex i
CP==3.Ci with Ci= = _
n S number of triples centered on vertex i

CO=1/5(1+1+1/6+0 +0) = 13/30'= 0.433333

Example:

3x number of triangles in the network
(1) = i

L number of connected triples of vertices

number of triangles connected to vertex i

with ¢ =

1
CO= - Z Ci

number of triples centered on vertex i

CP=1/51+1+1/6+0+0)=13/30 =0.433333
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Example:
i i - 3x1
(1) — 3x number of triangles in the network — _ —0.375
number of connected triples of vertices 8 s

1 number of triangles connected to vertex i
C2==>Ci with = ng :
n S number of triples centered on vertex i

C=1/5 (1 + 1+ 1/6+0 + 0) = 13/30 = 0.433333

@
E| ransitivity / Clustering Coefficient

Example:

: i . 3x1
(1) — 3x number of trlangles.m the netvulork —0.375
number of connected triples of vertices

1 number of triangles connected to vertex i
C2==>Ci with = ng :
n S number of triples centered on vertex i

CP=1/5(1+1+1/6+0+0)=13/30=0.433333
I

Example:

; - : 3x1
(1)— 3x number of trl&ngles.m the nem-ork _ —0.375
number of connected triples of vertices

1 number of triangles connected to vertex i
CO= =3 Ci vith C;= = .
n < number of triples centered on vertex i

CP=1/5(1+1+1/6+0+0)=13/30=0.433333

O &

network type n m z £ o | c [ r | Ref{s).
film actors undirected 449013 25516482 [ 113.43 348 23 | 0.20 0.78 0.208 | 20, 416
company directors undirected T6T3 551392 14.44 4.60 - 059 088 0.276 105, 323
math coauthorship undirected 251330 496480 392 757 - | 015 0.34 0.120 | 107, 182
physics coauthorship | undirected 52000 245 300 9.27 6.19 - | 045 0.56 0.363 | 311, 313

% | biology coauthorship | undirected 1520251 11803064 1553 492 - | 0.088 | 0.60 0.127 | 311, 313

§ telephone call graph undirected 47000 80000000 3.16 21 89
email messages directed 59012 86 300 1.44 495 | 15/20 0.16 136
email address books directed 16881 57029 3.38 522 - | 0ar 0.13 0.002 | 321
student relationships | undirected 573 477 166 | 16.01 - | 0.005 | 0.001 | —0.020 | 45
sexual contacts undirected 2810 32 265, 266

= | WWW nd._edu directed 269504 1497135 555 | 1127 | 21724 | 011 0.29 —0.067 | 14,34

2 | WWW Altavists directed 203549046 | 2130000000 1046 | 1618 | 2.1/27 4

5 citation network directed 783330 6716198 857 3.0/- 51

'-3 Roget’s Thessurus directed 1022 5103 4.99 487 - | 013 015 01537 | 244

™| word coccurrence undirected 460902 17000000 70.13 27 0.44 119, 157
Internet undirected 10697 319002 508 33 25 | 0.035 | 0.30 —0.180 | 26, 148

F | power grid undirected 4941 6504 267 | 1899 - | 0.10 0080 | —0.003 | 416

W | train routes undirected 58T 19603 66.79 216 - 0.69 —0.033 | 366

_g' software packages directed 1430 1723 1.20 242 | 16714 | 0070 | 0082 | —0.016 | 318

§ software classes directed 1377 2213 1.61 151 - | 0033 | 0.012 | —-0.119 | 395

= | electronic circuits undirected 24007 53248 434 | 11.05 30 | 0.010 | 0030 | —0.154 [ 155
peer-to-pesr network | undirected 830 1206 147 4.28 21 | 0012 | 0011 | —0.366 | 6, 354
metabolic network undirected 765 3686 9.64 2.56 2.2 | 0.090 | 0.67 —0.240 | 214

E protein interactions undirected 2115 2240 212 680 24 | 0072 | 0.071 —0.136 | 212

E marine food web directed 135 508 443 205 - 0.16 0.23 —0.263 204

-_E- freshwater food web directed 92 997 10.84 1.90 - | 0.20 0.087 | —0.326 | 272
neural network directed 307 21359 7.68 397 - | 0.8 0.28 —0.226 | 416, 421

3LE IT Basic statistics for & number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices 1
iber of edges m; mean degree z; mean vertex—vertex distance £; exponent o of degree distribution if the distribution follows a power law (or “~" if not; injfout
snents are given for directed graphs); clustering coeffident ) from Eq. (3); clustering coefficient C*) from Eq. (6); and degree correlation coefficient r, Sec
last column gives the citation(s) for the network in the bibliography. Blank entries indicate unavailable data.

[1]



ILE II Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices 1
iber of edges m; mean degree z; mean vertex—vertex distance £; exponent o of degree distribution if the distribution follows a power law (or
onents sre given for directed graphs); clustering coefficent C'}) from Eq. (3); clustering coefficient C'%) from Eq. (6); and degree correlation coefficient r, Seq
last column gives the citation{s) for the network in the bibliography. Blank entries indicate unavailable data.

&,
network type n m EN [ o | o™ c@ r | Ref{s).
film actors undirected 449013 25516482 | 11343 348 23 | 0.20 0.78 0.208 | 20, 416
company directors undirected TET3 55302 14.44 4.60 - | 059 0.88 0.276 | 105, 322
math coauthorship undirected 252339 496489 3.02 757 - | 015 0.34 0.120 | 107, 182
physics coauthorship | undirected 52000 245 300 9.27 6.19 - | 045 0.56 0.363 | 311, 313

4 | biology cosuthorship | undirected 1520251 11803064 1553 402 — | 0.088 | 0.60 0127 | 311, 313

§ telephone call graph undirected A7 000 000 20000000 3.16 21 8,9
email messages directed 50012 86 300 144 4.95 15720 0.16 136
email address books directed 16881 57029 3318 5.22 - | 07 0.13 0.092 | 321
student relationships | undirected 573 477 1.66 | 16.01 - | 0,005 | 0.001 —0.020 | 45
sexual contacts undirected 2810 32 265, 266

= | WWW nd.edu directed 260504 1497135 555 1127 | 21724 | 0.11 0.29 —0.067 14, 34

% WWW Altavista directed 203540046 | 2130000000 1046 | 1618 | 21/27 74

g | citation network directed 783339 6716198 857 3.0/- 51

< | Roget's Thesaurus directed 1022 5103 499 487 0.13 0.15 0157 | 244

| word cooceurrence undirected 460902 7000000 70.13 27 0.44 119, 157
Internet undirected 10 607 11902 598 .31 25 | 0035 [ 029 -0.130 | 86, 148

E power grid undirected 4041 6504 267 18.99 0.10 0.080 | —0.003 | 416

"gb train routes undirected 5ET 19603 66.70 216 - 0.69 —0.033 166

S | software packages directed 1439 1721 1.20 242 | 1.6/14 | 0070 [ 0082 | —D016 | 318

‘g software classes directed 1377 2213 1.61 1.51 - | 0.033 | 0.012 —0.110 | 305

= | electronic circuits undirected 24007 53248 434 | 1108 30 [ 0.010 [ 0.030 | —0.154 | 155
peer-to-peer network | undirected 880 1206 147 4.28 2.1 0.012 | 0.011 —0.366 | 6, 354
metabolic network undirected 765 3686 9.64 2.56 22 | 0.000 [ 0.67 -0240 | 214

E protein interactions undirected 2115 2240 212 650 24 | 0072 [ 0071 | —0.136 | 212

Z | marine food web directed 135 502 443 2.05 - | 018 0.23 —0.263 | 204

-_§ freshwater food web directed 92 907 10.84 1.90 - | 0.20 0.087 | -0.326 272
neural network directed 307 21359 .68 397 - | 0.18 0.28 —0.226 | 416, 421

if not; injfout

(1]

&, I

network type n m z [ o | o™ c@ r | Ref{s).
film actors undirected 449013 25516482 | 11343 348 23 | 0.20 0.78 0.208 | 20, 416
company directors undirected TET3 55302 14.44 4.60 - | 059 0.88 0.276 | 105, 322
math coauthorship undirected 252339 496489 3.02 757 - | 015 0.34 0.120 | 107, 182
physics coauthorship | undirected 52000 245 300 9.27 6.19 - | 045 0.56 0.363 | 311, 313

4 | biology cosuthorship | undirected 1520251 11803064 1553 402 — | 0.088 | 0.60 0127 | 311, 313

§ telephone call graph undirected A7 000 000 20000000 3.16 21 8,9
email messages directed 50012 86 300 144 4.95 15720 0.16 136
email address books directed 16881 57029 3318 5.22 - | 07 0.13 0.092 | 321
student relationships | undirected 573 477 1.66 | 16.01 - | 0005 | 0001 | —DO20 | 45
sexual contacts undirected 2810 32 265, 266

= | WWW nd.edu directed 260504 1497135 555 1127 | 21724 | 0.11 0.29 —0.067 14, 34

% WWW Altavista directed 203540046 | 2130000000 1046 | 1618 | 21/27 74

g | citation network directed 783339 6716198 857 3.0/- 51

< | Roget's Thesaurus directed 1022 5103 499 487 0.13 0.15 0157 | 244

| word cooceurrence undirected 460902 7000000 70.13 27 0.44 119, 157
Internet undirected 10 607 11902 598 .31 25 | 0035 [ 029 -0.130 | 86, 148

3 power grid undirected 4041 6504 267 18.99 - | 0.10 0.080 | —0.003 | 416

"gb train routes undirected 5ET 19603 66.70 216 - 0.69 —0.033 166

S | software packages directed 1439 1721 1.20 242 | 1.6/14 | 0070 [ 0082 | —D016 | 318

'§ software classes directed 1377 2213 1.61 1.51 — | 0033 | 0.012 | -0.110 | 395

< | electronic circuits undirected 24007 53248 4.4 11.05 30 | 0.010 | 0.030 —0.154 155
peer-to-peer network | undirected 880 1206 147 4.28 2.1 0.012 | 0.011 —0.366 | 6, 354
metabolic network undirected 765 3686 9.64 2.56 22 | 0.000 | 0.67 -0240 | 214

E protein interactions undirected 2115 2240 212 650 24 | 0072 [ 0071 | —0.136 | 212

Z | marine food web directed 1335 508 443 2.05 - | 018 0.23 —0.263 | 204

-_§ freshwater food web directed 92 907 10.84 1.90 - | 0.20 0.087 | -0.326 272
neural network directed 307 21359 .68 397 - | 0.18 0.28 —0.226 | 416, 421

ILE II Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices 1
iber of edges m; mean degree z; mean vertex—vertex distance £; exponent o of degree distribution if the distribution follows a power law (or
onents sre given for directed graphs): clustering coefficent C'*) from Eq. (3); clustering coefficient C'*) from Eq. (6): and degree correlation coefficient r, Sed
last column gives the citation(s) for the network in the bibliography. Blank entries indicate unavailable data.

if not; injfout

(1]

RN

network type n m I[N £ o | [ r | Ref{s).
film actors undirected 449013 25516482 | 11843 | 348 2.3 | 0.20 0.78 0.208 | 20, 416
company directors undirected 7673 551302 14.44 dhﬂ - | 059 088 0.276 | 105, 323
math coauthorship undirected 253339 496489 3.92 7T -1 015 0.34 0.120 | 107, 182
physics coauthorship | undirected 52000 245 300 9.27 619 - | 045 056 0.363 | 311, 213

% | biology coauthorship | undirected 1520251 11803064 1553 492 - | 0.028 | 0.60 0.127 | 311, 213

§ telephone call graph undirected 47 000 000 80000000 3.16 21 89
email messages directed 59012 86 300 144 495 1.5/2.0 0.16 136
email address books directed 168381 7029 318 522 - | 07 0.1% 0.002 | 321
student relationships | undirected 573 477 1.66 | 16.01 - | 0.005 | 0.001 —0.020 | 45
sexual contacts undirected 2810 12 265, 266

= | WWW nd.edu directed 269504 1497135 5.55 1127 | 21724 | 011 0.29 —0.067 14, 34

-% WWW Altavists directed 203549046 | 2130000000 1046 | 1618 | 21727 4

g | citation network directed 781339 6716198 857 3.0/- 51

2 | Roget's Thessurus directed 1022 5103 4.99 487 0.13 0.15 0157 | 244

| word co-oceurrence undirected 460902 17000000 70.13 27 0.44 119, 157
Internet undirected 10 697 11002 5.98 .31 25 | 0.035 | 0.39 —-0.180 | 86, 148

3 power grid undirected 4941 6504 267 18.99 0.10 0.050 | —0.003 | 416

'é’o train routes undirected 587 19 603 66.79 216 - 0.69 —0.033 166

S | software packages directed 1439 1723 1.20 242 | 1.6/14 | 0070 | 0082 | D016 [ 318

-g software classes directed 1377 2213 1.61 151 - | 0.033 | 0.012 —0.110 | 303

= | electronic circuits undirected 24007 53248 434 | 1108 30 | 0010 | 0030 | —0.154 [ 155
peer-to-peer network | undirected 830 1206 147 428 21 | 0012 | 0011 | —0.366 | 6, 354
metabolic network undirected 765 3686 9.64 256 22 | 0.0%0 | 0.67 —0.240 214

ﬂ protein interactions undirected 2115 2240 212 680 24 | 0072 | 0071 | 0136 [ 212

Z | marine food web directed 135 508 4.43 2.05 - | 016 0.23 —0.263 | 204

-_§ freshwater food web directed 92 997 10.84 1.90 - | 0.20 0.087 | -0.326 272
neural network directed 307 2159 7.68 397 - | 018 0.28 —0.226 | 416, 421

3LE IT Basic statistics for & number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices 1

iber of edges m; mean degree z; mean vertex—vertex distance £; exponent o of degree distribution if the distribution follows a power law (or

if not; infout

snents are given for directed graphs); clustering coefficient ¢'') from Eq. (3); clustering coefficient €' from Eq. (6); and degree correlation coefficient r, Sec

last column gives the citation(s) for the network in the bibliography. Blank entries indicate unavailable data.

[1]

&,
network type n m z £ o | [ | Refis).
film actors undirected 449013 255164582 | 113.43 348 2.3 | 0.20 0.78 0.208™ 20, 416
company directors undirected 7673 551302 14.44 4.60 - | 059 088 0.276 | 105, 323
math coauthorship undirected 253339 496489 3.92 7T -1 015 0.34 0.120 | 107, 182
physics coauthorship | undirected 52000 245 300 9.27 619 - | 045 056 0.363 | 311, 213

% | biology coauthorship | undirected 1520251 11803064 1553 492 - | 0.028 | 0.60 0.127 | 311, 213

§ telephone call graph undirected 47 000 000 80000000 3.16 21 89
email messages directed 59012 86 300 144 495 1.5/2.0 0.16 136
email address books directed 168381 7029 318 522 - | 07 0.1% 0.002 | 321
student relationships | undirected 573 477 166 | 16.01 - | 0.005 | 0.001 | —0.020 | 45
sexual contacts undirected 2810 32 265, 266

= | WWW nd.edu directed 269504 1497135 5.55 1127 | 21724 | 011 0.29 —0.067 14, 34

-% WWW Altavists directed 203549046 | 2130000000 1046 | 1618 | 21727 4

g | citation network directed 781339 6716198 857 3.0/- 51

2 | Roget's Thessurus directed 1022 5103 4.99 487 0.13 0.15 0157 | 244

| word co-oceurrence undirected 460902 17000000 70.13 27 0.44 119, 157
Internet undirected 10 697 11002 5.98 .31 25 | 0.035 | 0.39 —-0.180 | 86, 148

3 power grid undirected 4941 6504 267 18.99 - | 0.10 0.050 | —0.003 | 416

'é’o train routes undirected 587 19 603 66.79 216 - 0.69 —0.033 166

S | software packages directed 1439 1723 1.20 242 | 1.6/14 | 0070 | 0082 | D016 [ 318

-§ software classes directed 1377 2213 1.61 151 ~ | 0033 | 0.012 | —0.119 [ 393

= | electronic circuits undirected 24007 53248 434 11.05 30 | 0.010 | 0.030 —0.154 155
peer-to-peer network | undirected 830 1206 147 428 21 | 0012 | 0011 | —0.366 | 6, 354
metabolic network undirected 765 3686 9.64 256 22 | 0.0%0 | 0.67 —0.240 214

g protein interactions undirected 2115 2240 212 680 24 | 0072 | 0071 | 0136 [ 212

Z | marine food web directed 135 508 4.43 2.05 - | 016 0.23 —0.263 | 204

-_§- freshwater food web directed 92 997 10.84 1.90 - | 0.20 0.087 | -0.326 272
neural network directed 307 2159 7.68 397 - | 018 0.28 —0.226 | 416, 421

3LE IT Basic statistics for & number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices 1

iber of edges m; mean degree z; mean vertex—vertex distance £; exponent o of degree distribution if the distribution follows a power law (or

if not; infout

snents are given for directed graphs); clustering coeffident ) from Eq. (3); clustering coefficient C*) from Eq. (6); and degree correlation coefficient r, Sec

last column gives the citation(s) for the network in the bibliography. Blank entries indicate unavailable data.

[1]



&,

network type n m z [ o | o c@ r | Ref{s).
film actors undirected 440013 25516482 | 11343 348 23 | 0.20 0.78 0.208 | 20, 416
company directors undirected T673 55302 14.44 4.60 - 0.59 0.88 0.276 105, 323
math coauthorship undirected 251330 496489 392 TET - | 015 0.34 0120 | 107,182
physics coauthorship | undirected 52000 245 300 0.27 6.10 - | 045 0.56 0.363 | 311, 313

4 | biology cosuthorship | undirected 1520251 11203064 1558 4.02 - | 0.088 [ 0.60 0127 | 311, 313

§, telephone call graph undirected A7 000 000 20000000 3.16 21 8,9
email messages directed 50012 86 300 144 : 15720 0.16 136
email address books directed 16881 57020 3.8 5.22 - | 07 0.13 0.092 | 321
student relationships | undirected 573 477 1.66 16.0 - 0.005 | 0.0m —0.020 45
sexual contacts undirected 2810 32 205, 266

= | WWW nd.edu directed 269504 1497135 555 | 11.27 | 21/24 | 0.11 0.29 —0.067 | 14,34

2 | WWW Altavista directed 203540046 | 2130000000 1046 | 1618 | 2.1/27 74

E citation network directed 783330 6716198 857 3.0/- 51

‘-3 Roget’s Thesaurus directed 1022 5103 4.9 4.87 0.13 0.15 01537 | 244

| word cooccurrence undirected 460902 17 000000 70.13 27 0.44 119, 157
Internet undirected 10697 31002 508 a3 25 | 0.035 | 0.30 —0.130 | 26, 148

g | power grid undirected 4041 6594 2,67 [ 1809 0.10 0.080 | —0.003 | 416

| train routes undirected 58T 19603 66.79 216 - 0.69 —0.033 | 366

_g' software packages directed 1439 1721 1.20 242 | 1.6/14 | 0070 | 0082 | 0016 | 318

§ | software classes directed 1377 2211 1.61 1.51 - | 0033 [ 0012 | —0.110 | 305

= | electronic circuits undirected 24007 53248 434 [ 1105 30 | 0.010 | 0.030 | D154 | 155
peer-to-peer network | undirected 880 1296 147 4.28 21 | 0.0 0011 | —D366 | 6, 354
metabolic network undirected 765 3686 9.64 256 22 | 0.080 | 0.67 —0.240 | 214

3 protein interactions undirected 2115 2240 212 6.80 24 | 0072 | 0.071 ~0.156 | 212

E marine food weh directed 125 508 443 2,05 - 0.16 0.23 -0.263 204

2 | freshwater food web directed 92 997 10.84 1.90 - | 0.20 0.087 | —0.326 | 272
neural network directed 307 2359 T.68 3.07 - | 018 0.28 —0.226 | 416,421

@
ELJegree Distribution

ILE II Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices 1
iber of edges m; mean degree z; mean vertex—vertex distance £; exponent o of degree distribution if the distribution follows a power law {(or “- if not; infout
onents sre given for directed graphs); clustering coefficent C'}) from Eq. (3); clustering coefficient C'%) from Eq. (6); and degree correlation coefficient r, Seq
last column gives the citation(s) for the network in the bibliography. Blank entries indicate unavailable data.
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® Notation:
p(k) =

® Cumulative distribution:

00
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px = fraction of nodes having degree k

¢ power law:
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® exponential:
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> P, = Z Pi ~
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® Notation: ® Notation:
p(k) = px = fraction of nodes having degree k p(k) = px = fraction of nodes having degree Kk
® Cumulative distribution: ® Cumulative distribution:
o0 o0
- P= 3w
k’:’& ki=k
° power law: ¢ power law:
Pk ~ ’" “ PL ~ ’-, “
N Pk — Z A’_O - _“_ ‘_%1) N PL N Z A’_O k—(a-—l)
L [% ki=k
® exponential: ® exponential:
Pk ~ e~ k/K Pk~ e—k/ﬂ:l%.x. N
N P = Zpk Z e N P, = ZpkNZe—k/nNe—k/K
k'=k kf=k k' =k
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vegree Distribution vegree Distribution
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Cumulative distributions P, of example real world NW

pr ~ k7
- 0 0
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“Power law” == “Scale free”:

¢ f(x) = x® is only solution &0 functional equation formalizing scale
freedom f(ax) = b f(x)

® in other words: change of scale = f still ,looks the same®

® other point of view:
Although we can compute the expectation E(k)=2k k ke ifa=1,
the variance (error bars) Var(k)= Ek (k-E(k))? k@

diverges = we ,cannot be shure about k*
- no characteristic scale“ - ,scale free“

“Power law” == “Scale free”:

® f(x) = x® is only solution to functional equation formalizing scale
freedom f(ax) = b f(x)

® in other words: change of scale = f still looks the same*

® other point of view:
Although we can compute the expectation E(k)=2k kka ifa=1,
the variance (error bars)% Var(k)= Ek (k-E(K))? k=

diverges = we ,cannot be shure about k*
- ,no characteristic scale* = ,scale free“

@ | @
DL)egree Distribution egree Distribution

Examples: Examples:

s
® power law: citation NW, WWW, Internet, metabolic NW,
telephone call NW, human sexual contact NW etc.
¢ Exponential: power grid, railway NW

® Power law with exp. cut-offs: Movie co-actor NW

® power law: citation NW, WWW, Internet, metabolic NW,
telephone call NW, human sexual contact NW etc.

° Exponential: power grid, railway NW
ks
® Power law with exp. cut-offs: Movie co-actor NW
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Examples:

® power law: citation NW, WWW, Internet, metabolic NW,
telephone call NW, human sexual contact NW etc.

¢ Exponential: power grid, railway NW
K
® Power law with exp. cut-offs: Movie co-actor NW

o0&
viaxXimum Degree

¢ sess or equal than one vertex with K., &
= NPy _max = 1 = for power law py = k< kmax%~ ni/a
but: not very accurate estimation

® Other estimation:
'prob p of .exactly m nodes with k and rest of nodes smaller than k*:

(")p(1 = Pe)m™

*> prob of k being the highest degree in graph:

n

mn
}.‘ — T _ 3 n—rimn
i 5—1 (m)Pk (1-F)

= (p+1=F)" — (1= F)"
® > expected highest degree:

J"max = ZL- khy
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2 NPy max = 1 = for power law p, = k% Ko — NV
but: ndit very accurate estimation

® Other estimation:

'prob p of ,exactly m nodes with k and rest of nodes smaller than k*:
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> expected highest degree:
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® lessor equal than one vertex with K.,
= NPy max = 1 = for power law py = k™ Kpz ~ 0V @
but: not very accurate estimation

® Other estimation:
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= NPy max = 1 = for power law py = k™% Kp,a — 1@
but: not very accurate estimation

® Other estimation:
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® lessor equal than one vertex with K.,
= NPy max = 1 = for power law py = k™ Kpz ~ 0V @
but: not very accurate estimation

® Other estimation:
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® since h, is small for small k and also for large k =
take as k.., the modal value of h, >

modal value : i B =0
dk

Using dP;/dk = pi we get

dk

Or kpax 1S a solution of

d 1ps. _ , n—
—hy=n [(ﬁ—]Jk)(Pk‘*‘l—Pk]" Y 4on(1-P) l]=0

Llp L

~ 2
Tl

(assuming: py is small for k > k., and that npr << 1 andthat P < 1)

—we get for power law pj ~ k=% that L.~ pt/la=1)
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® lessor equal than one vertex with K.,
= NPy max = 1 = for power law py = k™ Kpz ~ 0V @
but: not very accurate estimation
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(assuming: py is small for k > k., and thatpr < 1 andthat Pp < 1)

—we get for power law pj ~ k= that f .~ pt/la=1)
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® What happens if nodes are removed? (interesting e.g. for vaccination
effects in disease spreading in human contact networks)

&

® For power law networks: T

remove random nodes :
no effect on mean distances

remove high degree nodes:
drastic effect

° Interpretations:

mean vertex—vertex distance
-
o
T
1

Internet is easy to attack 0.00 0.01 0.02

. fraction of vertices removed  [1]
Internet is not easy to attack
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Network Resilience

® What happens if nodes are removed? (interesting e.g. for vaccination
effects in disease spreading in human contact networks)

® For power law networks: [ ‘ o
remove random nodes : 8 45 | o
no effect on mean distances 2 O
h] r 1
remove high degree nodes: g L |
: 5 10 e
drastic effect T ese
3 I P 1
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® Interpretations: g A ]
. O ' 1 L 1
Internet is easy to attack 0.00 0.01

0.02
ks

. fraction of vertices removed
Internet is not easy to attack
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® What happens if nodes are removed? (interesting e.g. for vaccination
effects in disease spreading in human contact networks)

® For power law networks: -

remove random nodes : § 15 o |
no effect on mean distances 4 D
- r (o] 4
remove high degree nodes: %5 10 L ﬁ‘p-s-f"k} ]
drastic effect H o
3 el 1
b= F
2 5 4
[ . S [ i=a e =wEuuun smananEns ananeuan
Interpretations: o I |

Internet is easy to attack D0.00

0.01 0.02

. fraction of vertices removed  [1]
Internet is not easy to attack

e Ecological NW, Internet, some social NW:
Assortative Mixing (Homophily): Nodes attach to similar nodes / nodes
of same class OR S i
Disassortative Mixing (Heterophily): Nodes attach to nodes of different
classes (almost n-partite behavior)

® Diassortativity:
Food Web: Plants €<—= Herbivores €<- Carnivores
but few Plants €- Plants etc.
Internet: Backbones provider <— ISP €< end user
but few ISP €= ISP etc.

® Assortativity:
Social NW
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e Ecological NW, Internet, some social NW:

Assortative Mixing (Homophily): Nodes attach to similar nodes / nodes

of same class OR
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classes (almost n-partite behavior)

® Diassortativity:
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but few ISP <- ISP etc.

® Assortativity:
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e Ecological NW, Internet, some social NW:
Assortative Mixing (Homophily): Nodes attach to similar nodes / nodes
of same class OR
Disassortative Mixing (Heterophily): Nodes attach to nodes of different
classes (almost n-partite behavior)

® Diassortativity:
Food Web: Plants €<—= Herbivores €<- Carnivores
but few Plants €- Plants etc.
Internet: Backbones provider <— ISP €< end user
but few ISP €~ ISP etc. k

® Assortativity:
Social NW

viixing Patterns

women
black hispanic white other
E — black 506 . 32 69 26
g hispanic 23 308 114 38
= white 26 46 599 68
other 10 14 47 32

TABLE III Couples in the study of Catania et al. [85] tabu- [1]
lated by race of either partner. After Morris [302].

E
® measure mixing: analogous to modularity: mixing matrix e = ——

| }
> l LJll) = l’,‘j; E j'(’fj' E ra’j = ]-! 5 1 (J|?J =1
’ J

1]

wormen
black hispanic white other
E — black 506 32 69 26
g hispanic 23 308 114 38
z white [¥ 26 46 500 68
other 10 14 47 32

TABLE III Couples in the study of Catania et al. [85] tabu- [1]
lated by race of either partner. After Morris [302].

E
® measure mixing: analogous to modularity: mixing matrix e = ——

IE]

7

> P(jli) = eiz/ X e > e =1, ZPUUJ =1
: i
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women wormen
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MiIXing Patterns

women
black  hispanic  white  other
E — black 506 32 60 26
- g | hispanie 23 308 114 38
8 white 26 46 500 68
other 10 14 47 32

TABLE IIT Couples in the study of Catania et al. [85] tabu-
lated by race of either partner. After Morris [302].

ks

® > first measure for Assortativity:

_ YL P(ifi) -1
O==F1

issues: Asymmetry of E = two values;
Not respecting size of classes

® > second measure for Assortativity: (cmp. Modularity)
. Tre — || e?|
1 e?]|
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MiIXing Patterns

women
black  hispanic  white  other
E — black 506 32 60 26
- g | hispanie 23 308 114 38
8 white 26 46 500 68
other 10 14 47 32

TABLE IIT Couples in the study of Catania et al. [85] tabu-
lated by race of either partner. After Morris [302].

® > first measure for Assortativity:

_ YL P(ifi) -1
O==F1

issues: Asymmetry of E = two values;
Not respecting size of classes

® > second measure for Assortativity: (cmp. Modularity%

r_Tre—\e2|
To1-—|e?|

B
MIXing Patterns

womern
black hispanic white other
E — black 506 32 69 26
- g hispanic 23 308 114 38
E white 26 16 500 68
other 10 14 47 32

TABLE III Couples in the study of Catania et al [85] tabu-

lated by race of either partner. After Morris [302].

® > first measure for Assortativity:

XL P -1
Q= N -1

issues: Asymmetry of E = two values;
Not respecting size of classes

k
® >  second measure for Assortativity: (cmp. Modularity)
Tre—| e?|
rp=——_1=1
1—|e?|
o,
IVIIXINg Patterns — “1” - -
hlae lspanic white other
— black 506 32 69 26
E - g hispanic 23 308 114 38
g8 white 26 16 500 68
other 10 14 47 32

TABLE III Couples in the study of Catania et al [85] tabu-

lated by race of either partner. After Morris [302].

® > first measure for Assortativity:

XL P -1
Q= N -1

issues: Asymmetry of E = two values;
Not respecting size of classes

® > second measure for Assortativity: (cmp. Modularity)

L _Tre—|e*| "
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vuxing Patterns IViiXing Patterns

® Special example: ,class” of nodes determined by degree ® Special example: ,class” of nodes determined by degree
- nodes attached to nodes with same or different degree? - nodes attached to nodes with same or different degree?
Both variants occur in real world NW Both variants occur in real world NW
® Degree correlation measures: ¢ Degree correlation measures:
1)  mean degree of neighbors of node with degree k: 1)  mean degree of neighﬁors of node with degree k:
- if assortative mixing: curve should be increasing -> if assortative mixing: curve should be increasing
- Internet: curve decreases - diassortativity - Internet: curve decreases - diassortativity
2) Pearson correlation for node degrees k_i and k_j of 2) Pearson correlation for node degrees k_i and k_j of
adjacent nodes i and j ’ adjacent nodes i and j
s
o & @,
viIXing Patterns IViiXing Patterns
® Special example: ,class” of nodes determined by degree ® Special example: ,class” of nodes determined by degree
- nodes attached to nodes with same or different degree? - nodes attached to nodes with same or different degree?
Both variants occur in real world NW Both variants occur in real world NW
® Degree correlation measures: ¢ Degree correlation measures:
1)  mean degree of neighbors of node with degree k: % 1)  mean degree of neighbors of node with degree k: "
- if assortative mixing: curve should be increasing - if assortative mixing: curve should be increasing &k
- Internet: curve decreases - diassortativity - Internet: curve decreases - diassortativity
i
2) Pearson correlation for node degrees k_i and k_j of 2) Pearson correlation for node degrees k_i and k_j of

adjacent nodes i and j adjacent nodes i and j
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network type n m z [ o | o c? v | Ref(s)
film actors undirected 440013 25516482 | 11343 348 23 | 0.20 0.78 0.208 [ 20, 416
company directors undirected TE73 55302 14.44 4.80 - | 050 0.88 D‘?Td% 105, 323
math coauthorship undirected 251330 496480 392 757 - 0.15 0.34 0.120 107, 182
physics coauthorship undirected 52000 245 300 0.27 6.19 - | 0.45 0.56 0.363 | 311, 313

4 | biology cosuthorship | undirected 1520251 11203064 1558 4.02 - | 0.088 [ 0.60 0127 | 311, 313

8 | telephone call graph | undirected | 47000000 £0000000 3.16 21 80
email messages directed 50012 86300 144 495 [ 15720 0.16 136
email address books directed 16881 57020 3.8 5.22 - | 07 0.13 0.092 | 321
student relstionships undirected 573 477 1.66 16.01 - 0.005 0.001 -0.020 45
sexual contacts undirected 2810 265, 266

= | WWW nd.edu directed 269504 1497135 555 | 11.27 0.11 0.29 —0.067 | 14,34

2 | WWW Altavista directed 203540046 | 2130000000 1046 | 1618 7

g | citation network directed 783330 6716198 | 827 a1

‘-E Roget’s Thesaurus directed 1022 5103 4.9 4.87 - | 013 01537 | 244

- word co-occurrence undirected 460002 17000000 70.13 27 119, 157
Internet undirected 10697 31902 508 .31 25 0.035 -0.130 86, 148

g | power grid undirected 4041 6504 2,67 | 1800 - | 0.10 —0.003 | 416

"gn train routes undirected 5ET 19603 66.70 216 - —0.033 | 366

_g' software packages directed 1439 1721 1.20 242 | 1.6/14 | 0.070 —0.016 | 218

§ | software classes directed 1377 2211 1.61 1.51 - | 0.033 —0.110 | 305

= | electronic circuits undirected 24007 53248 434 | 1108 30 | 0.010 -0154 | 155
peer-to-peer network | undirected 880 1206 147 4.28 21 | 0.012 —0.366 | 6, 354
metabolic network undirected 765 3686 0.64 256 22 | 0.090 —0.240 | 214

E protein interactions undirected 2115 2240 212 6.80 24 [ 0.072 —0.156 | 212

E marine food weh directed 135 508 443 2,05 - 0.16 -0.263 204

% freshwater food web directed 92 907 10.84 1.90 - | 0.20 0.087 | —0.326 | 272
neural network directed 307 23590 .68 397 -] 018 0.28 —0.226 | 416, 421

3LE II Basic statistics for a number of published networks. The properties messured are: type of graph, directed or undirected; total number of vertices 1
iber of edges m; mean degree z; mean vertex—vertex distance £; exponent o of degree distribution if the distribution follows a power law {(or “- if not; infout
onents sre given for directed graphs); clustering coefficent C'}) from Eq. (3); clustering coefficient C'%) from Eq. (6); and degree correlation coefficient r, Seq
last column gives the citation{s) for the network in the bibliography. Blank entries indicate unavailable data.

(1]

CN
EL.;ommuni’ty and Group Structure

LN
community and Group Structure

® Is NW well clustered? - see Parts on Clustering

O White
example: b { ® Black
friendship NW e R ) @ Other
in US school: . ;

(1]

‘Navigatability of NW

® Is NW well clustered? = see Parts on Clustering

9 C White
example: L ‘ ® Blac
friendship NW e e . / @ O
in US school: ' 8.

® Milgram showed: short paths exist
BUT: How do people find them?

- see Part ,Social Networks in Timiz and Space”

Component Structure

® Does a giant component exist?

- see section on random graphs



%ndom Graph Models: Poisson Graph

D|-<%ndom Graph Models: Poisson Graph

® G, : space of graphs with n nodes and
% each of the % n(n-1) edges appears with probability p

® pi: probability that a node has degree k:
. ko—z
( zhe

L k n—k .~
(})ra-prr ==

k

Pr =

for n & « and holding the mean degree of a node z=p(n-1) fixed
(Poisson approximation of Binomial distribution)
- ,Poisson random graphs*
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® G, : space of graphs with n nodes and
each of the %2 n(n-1) edges appears with probability p

® p,: probability that a node has degree k:

n n—k . %

_ Eep
pe={ )n o=

for n 2 =« and holding the mean degree of a node z=p(n-1) fixed
(Poisson approximation of Binomial distribution)
- ,Poisson random graphs®
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Random Graph Models: Poisson Graph

® G, : space of graphs with n nodes and
each of the %2 n(n-1) edges appears with probability p

® p,: probability that a node has degree k:

' k,—z

n\ ek Z'e

P = Pra—p)he

wo \F k!
k

for n & « and holding the mean degree of a node z=p(n-1) fixed
(Poisson approximation of Binomial distribution)
- ,Poisson random graphs”

® G, : space of graphs with n nodes and
each of the %2 n(n-1) edges appears with probability p

¢ py: probability that a node has degree k:

kn—z
n\ ek Ze
pr = PR —p)yF ~
k A‘!%

for n 2 =« and holding the mean degree of a node z=p(n-1) fixed
(Poisson approximation of Binomial distribution)
- ,Poisson random graphs”




%ndom Graph Models: Poisson Graph

Eﬁ%ndom Graph Models: Poisson Graph

® Given: property Q% (»is connected®, ,has diameter xyz" etc.) of G, ;:
-Gnp has property Q with high probability“: P(Q|n,p) 2 1 iff n =2 =

(adaptated from [2] (which, in turn, is adaptated from [3]))
® In such models G, phase transitions exist for properties Q:
~threshold function” q(n) (with q(n) = « if n = =) so that:
0 if lim,s,.p(n)/q(n)=0
lim,s,, P(Qn,p)= o
> (@In.p) 1 if limys. p(n)/g(n) =«

(adaptated from [3])

Dl-%ndom Graph Models: Poisson Graph

® Given: property Q[}g (-is connected®, ,has diameter xyz*“ etc.) of G, ;:
+Gnp has property Q with high probability*: P(Q|n,p) 2 1 iff n =

(adaptated from [2] (which, in turn, is adaptated from [3])) [}

® In such models G, p phase transitions exist for properties Q:
.threshold function” q(n) (with q(n) = « if n = «) so that:

0 if lim,s,p(n)/q(n)=0

lim,s., P(Q|n,p) = T
Mo> @in.p) 1 if limys. p(n)/q(n) =«

(adaptated from [3])
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Random Graph Models: Poisson Graph

® Given: property Q (,is connected®, ,has diameter xyz“ etc.) of G, ,:
,,Gn,%has property Q with high probability: P(Q|n,p) > 1 iff n=> =

(adaptated from [2] (which, in turn, is adaptated from [3]))

® In such models G, phase transitions exist for properties Q:
~threshold function” q(n) (with q(n) = « if n = =) so that:

0 if lim,s,.p(n)/q(n)=0

lim,s., P(Qn,p) = s
Mn> (@In.p) 1 if Ilmn%p(n)lq(n)=m%

(adaptated from [3])

® Given: property Q (,is connected®, ,has diameter xyz“ etc.) of G, :
,,Gn,%has property Q with high probability”: P(Q|n,p) 2 1 iff n=>

(adaptated from [2] (which, in turn, is adaptated from [3]))

® In such models G, p phase transitions exist for properties Q:
.threshold function” q(n) (with q(n) = « if n = «) so that:

0 if lim,s,p(n)/q(n)=0

lim,s., P(Q|n,p) = R
Mo> @in.p) 1 if limys. p(n)/q(n) =«

(adaptated from [3])
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Eﬁ%ndom Graph Models: Poisson Graph

Example: giant component / connectedness of G,

® Let u be the fraction of nodes that do not belong to giant component X
== probability for a given node i to be not in X Iy

¢ probability for a given node i (with assumed degree k) to be not in X

== probability that none of its neighbors is in X
== uk

- = ("u)l"
®Sulkfixed)==uc > = put=e*y oo =efluTl
k=0 k=0

® > fraction S of graph occupiedby Xis S =1 —u >

S=1—e*°

Dl-%ndom Graph Models: Poisson Graph

Example: giant component / connectedness of G, ,

® Let u be the fraction of nodes that do not belong to giant component X
== probability for a given node i to be not in X

® probability for a given node i (with assumed degree k) to be notin X

== probability th&t none of its neighbors is in X

® > u(kfixed)==uk > 4= Zpkuk =e? Z
k=0 k=0

® > fraction S of graph occupiedby Xis S =1 —u >

S=1-e?°
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Random Graph Models: Poisson Graph

Example: giant component / connectedness of G,

® Let u be the fraction of nodes that do not belong to giant component X
== probability for a given node i to be not in X

¢ probability for a given node i (with assumed degree k) to be not in X
== probability that none of its neighbors is in X

== uk%
> s ("u)l"
*ulkfed) ==ut > u= pl=eT Yy i =t
k=0 k=0

® > fraction S of graph occupiedby Xis S =1 —u >

S=1-e"?°

Example: giant component / connectedness of G, ,

® Let u be the fraction of nodes that do not belong to giant component X
== probability for a given node i to be not in X

® probability for a given node i (with assumed degree k) to be notin X
== probability that none of its neighbors is in X

=

® > u (k fixed) == uk

o0

o ("u)’"
S = Z!)kuk — e * Z «A' _ e:(u.—l)

k=0 k=0

® > fraction S of graph occupiedby Xis S =1 —u >

S=1-e?°
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Eﬁ%ndom Graph Models: Poisson Graph

Example: giant component / connectedness of G,

® Let u be the fraction of nodes that do not belong to giant component X
== probability for a given node i to be not in X

¢ probability for a given node i (with assumed degree k) to be not in X

== probability that none of its neighbors is in X
== uk

>0 o0 (‘”u)‘l\.
® i == — E_ ,—=2 - _ z(u—1)
Su(kfixed)==uk > = pru” =e =e
2 >

® > fraction S of graph occupiedby Xis S =1 —u >

S=1—e*°
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Example: giant component / connectedness of G, ,

® Let u be the fraction of nodes that do not belong to giant component X
== probability for a given node i to be not in X

i
® probability for a given node i (with assumed degree k) to be notin X

== probability that none of its neighbors is in X
== uk

® > u(kfixed)==uk > 4= Zpkuk =e? Z
k=0 k=0

® > fraction S of graph occupiedby Xis S =1 —u >

S=1-e?°
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Random Graph Models: Poisson Graph

Example: giant component / connectedness of G,

® Let u be the fraction of nodes that do not belong to giant component X
== probability for a given node i to be not in X

¢ probability for a given node i (with assumed degree k) to be not in X

== probability that none of its neighbors is in X
== uk

oQ

N % . = (zu)”
u:Zpku =e Z 0=

k=0 k=0

® > u (k fixed) == uk

® > fraction S of graph occupiedby Xis S =1 —u >

S=1-e"?°

°*S=1—-e*° .
® mean size <s> of smaller rest components (no proof): (s) =

1—2z+428
10 1T
: { |‘ _ = 1
- [ .
v r I L “
| - e
o !
3l [l
Z 6 oy =
5 N oy g
2 L / \ - 05 E
£ 4r- [ g
> [ / / =
f__.: 5[ ! =0
0 ! P | 0
0 1 2 3 5
a .
mean degree =
(1]

-» ifthe av degree z is larger than 1 ( == if p ~ (1+g)/n): X exists
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D|-<%ndom Graph Models:

Poisson Graph

Example: giant component / connectedness of G,

S =1—e %

1
® mean size <s> of smaller rest components (no proof): (s) = —
® Let u be the fraction of nodes that do not belong to giant component X 1—2+2S
== probability for a given node i to be not in X
10— — —
C T
| =1
¢ probability for a given node i (with assumed degree k) to be not in X L { \l |
== probability that none of its neighbors is in X ’l ’ [ i “
CSukfxed) = U > w= S pdt e S ED e Y Jos &
i= Yt =3 e S s g
k=0 3 L / \ ] -
= F / R =
] r | )
] . . . oY k - 2 - 1 — i
> fraction S of graph occupied by Xis S = 1—u > . i —_— ]
. _.q [ A A -
S=1-—e 3 % N 2 3 50
mean degree = 1
-» ifthe av degree z is larger than 1 ( == if p ~ (1+g)/n): X exists ]
H & . &, .
random Graph Models: Poisson Graph Random Graph Models: Poisson Graph
*S=1—e*° , *S=1—e*" ,
® mean size <s> of smaller rest components (no proof): (s) = — ® mean size <s> of smaller rest components (no proof): (s) = -
1—2425 1—2425
10y T T T LI L I 10— T T T
L [ ) =1 [ [ ] =1
L 8F - 7 , A8 L 1 .
v F [ o | “ v o o | “
r | | [} | | v
20 R ] = 20 Ll ] =
¢ st [/ £ A E
I 12 S A 1 2
R [\ —o0s £ g I [\ —os £
E oA ] S SR Y B ] S
g i [ | Ei £ [ [ i Ei
Q r ! “En L r ! )
5] 2 — / \ I p = 2 — ! \ B
0:‘ - | - - 0 0:. I - 0
0 1 2 3 4 5 0 1 2 3

-> if the av degree z is larger than 1

== if p ~ (1+€)/n):

mean degree =

(1]

X exists

-» if the av degree z is larger than 1

mean degree =

==if p ~ (1+€)/n):

X exists

(1]
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D|-<%ndom Graph Models: Poisson Graph

A —z5 \ —_
.5:1—6 1 .Szl—e
® mean size <s> of smaller rest components (no proof): <s) = - ®
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10 "'H"' —— —_
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i || e
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5 ' 1 3
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mean degree =
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-» if the av degree z is larger than 1

==ifp ~ (1+€)/n): X exists

-» if the av degree z is larger than 1

> 9
23

mean component size <s>

o0

mean size <s> of smaller rest components (no proof): (s)
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