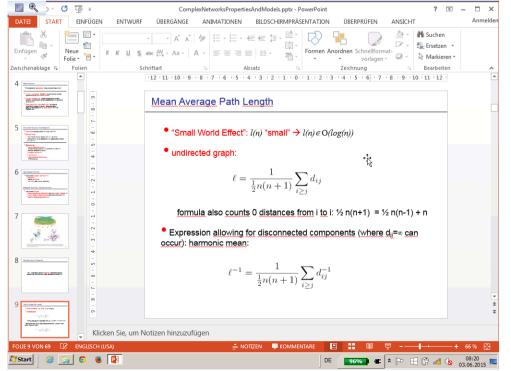
Script generated by TTT

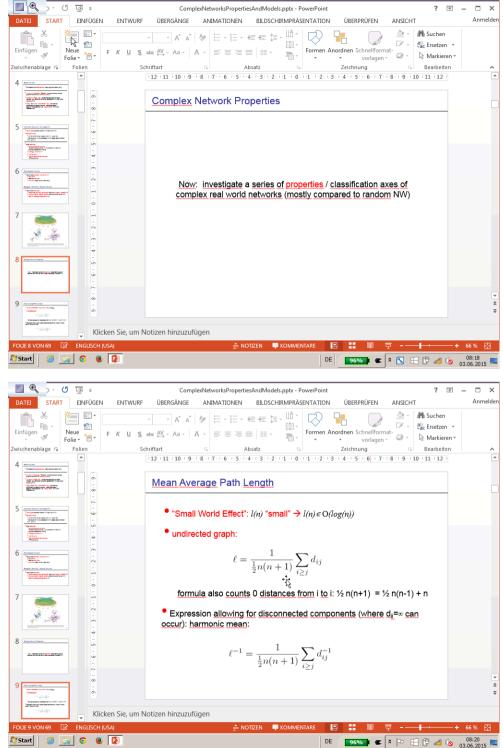
Title: groh: profile1 (03.06.2015)

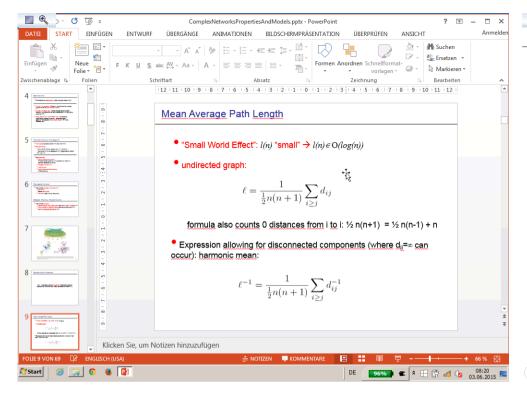
Date: Wed Jun 03 08:18:45 CEST 2015

Duration: 85:53 min

Pages: 101







ransitivity / Clustering Coefficient

Clustering coefficient (whole graph):

$$C = C^{(1)} = \frac{3 \times \text{ number of triangles in the network}}{\text{number of connected triples of vertices}}$$
$$= \frac{6 \times \text{ number of triangles in the network}}{\text{number of paths of length two}}$$

Clustering coefficient (Watts-Strogatz-version, for node i):

$$\begin{split} C_i &= \frac{\text{number of triangles connected to vertex } \mathit{i}}{\text{number of triples centered on vertex } \mathit{i}} \\ &= \frac{|\left\{e_{\{kj\}} \mid v_k, v_j \in N_i\right\}|}{\underbrace{\frac{k_i(k_i - 1)}{2}}} \end{split} \tag{see Introduction }, k_i = \text{degree of node i}) \end{split}$$

Clustering coefficient (Watts-Strogatz-version, for whole graph):

$$C = C^{(2)} = \frac{1}{n} \sum_{i} C_{i}$$

ransitivity / Clustering Coefficient

Clustering coefficient (whole graph):

$$C = C^{(1)} = \frac{3 \times \text{ number of triangles in the network}}{\text{number of connected triples of vertices}}$$

$$= \frac{6 \times \text{ number of triangles in the network}}{\text{number of paths of length two}}$$

Clustering coefficient (Watts-Strogatz-version, for node i):

$$\begin{split} C_i &= \frac{\text{number of triangles connected to vertex } \mathit{i}}{\text{number of triples centered on vertex } \mathit{i}} \\ &= \frac{|\left\{e_{\{kj\}} \mid v_k, v_j \in N_i\right\}|}{\underbrace{\frac{k_i(k_i - 1)}{2}}} \end{split} \tag{see Introduction , k_i = degree of node i)} \end{split}$$

Clustering coefficient (Watts-Strogatz-version, for whole graph):

$$C = C^{(2)} = \frac{1}{n} \sum_{i} C_{i}$$

mean of ratio instead of ratio of means

ransitivity / Clustering Coefficient

• Clustering coefficient (whole graph):

p(FOAF)

mean of ratio instead of ratio of means

$$C = C^{(1)} = \frac{3 \times \text{ number of triangles in the network}}{\text{number of connected triples of vertices}}$$

$$= \frac{6 \times \text{ number of triangles in the network}}{\text{number of paths of length two}}$$

Clustering coefficient (Watts-Strogatz-version, for node i):

$$\begin{split} C_i &= \frac{\text{number of triangles connected to vertex } i}{\text{number of triples centered on vertex } i} \\ &= \frac{|\left\{e_{\{kj\}} \mid v_k, v_j \in N_i\right\}|}{\frac{k_i(k_i - 1)}{2}} \end{split} \tag{see Introduction , k_i = degree of node i)} \end{split}$$

Clustering coefficient (Watts-Strogatz-version, for whole graph):

$$C = C^{(2)} = \frac{1}{n} \sum_{i} C_{i}$$

ransitivity / Clustering Coefficient

Clustering coefficient (whole graph):

$$C = C^{(1)} = \frac{3 \times \text{ number of triangles in the network}}{\text{number of connected triples of vertices}}$$

$$= \frac{6 \times \text{ number of triangles in the network}}{\text{number of paths of length two}}$$

Clustering coefficient (Watts-Strogatz-version, for node i):

$$\begin{split} &C_i = \frac{\text{number of triangles connected to vertex } i}{\text{number of triples centered on vertex } i} \\ &= \frac{|\left\{e_{\{kj\}} \mid v_k, v_j \in N_i\right\}|}{\underbrace{\frac{k_i(k_i-1)}{2}}} \end{split} \tag{see Introduction , k_i = degree of node i)} \end{split}$$

Clustering coefficient (Watts-Strogatz-version, for whole graph):

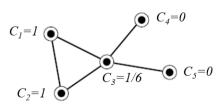
$$C = C^{(2)} = \frac{1}{n} \sum_{i} C_{i}$$

mean of ratio instead of ratio of means

ransitivity / Clustering Coefficient

Example:

$$C^{(1)} = \frac{3 \times \text{ number of triangles in the network}}{\text{number of connected triples of vertices}} = \frac{3 \times 1}{8} = \frac{0.375}{8}$$



$$C^{(2)} = \frac{1}{n} \sum_{i} C_{i}$$
 with $C_{i} = \frac{\text{number of triangles connected to vertex } i}{\text{number of triples centered on vertex } i}$

$$C^{(2)} = 1/5 (1 + 1 + 1/6 + 0 + 0) = 13/30^{10} = 0.433333$$

ransitivity / Clustering Coefficient

Clustering coefficient (whole graph):

$$C = C^{(I)} = \frac{3 \times \text{ number of triangles in the network}}{\text{number of connected triples of vertices}}$$

$$= \frac{6 \times \text{ number of triangles in the network}}{\text{number of paths of length two}}$$

Clustering coefficient (Watts-Strogatz-version, for node i):

$$\begin{split} &C_i = \frac{\text{number of triangles connected to vertex } i}{\text{number of triples centered on vertex } i} \\ &= \frac{|\left\{e_{\{kj\}} \mid v_k, v_j \in N_i\right\}|}{\frac{k_i(k_i - 1)}{2}} \end{split} \qquad \text{(see Introduction , k}_i = \text{degree of node i)} \end{split}$$

Clustering coefficient (Watts-Strogatz-version, for whole graph):

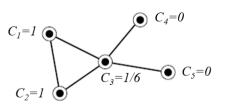
$$C = C^{(2)} = \frac{1}{n} \sum_{i} C_{i}$$

mean of ratio instead of ratio of means

ransitivity / Clustering Coefficient

Example:

$$C^{(1)} = \frac{3 \times \text{ number of triangles in the network}}{\text{number of connected triples of vertices}} = \frac{3 \times 1}{8} = 0.375$$



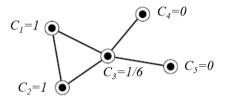
$$C^{(2)} = \frac{1}{n} \sum_{i} C_{i}$$
 with $C_{i} = \frac{\text{number of triangles connected to vertex } i}{\text{number of triples centered on vertex } i}$

$$C^{(2)}=1/5 (1+1+1/6+0+0)=13/30=0.433333$$

ransitivity / Clustering Coefficient

Example:

$$C^{(1)} = \frac{3 \times \text{ number of triangles in the network}}{\text{number of connected triples of vertices}} = \frac{3 \times 1}{8} = \frac{0.375}{8}$$



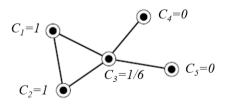
$$C^{(2)} = \frac{1}{n} \sum_{i} C_{i}$$
 with $C_{i} = \frac{\text{number of triangles connected to vertex } i}{\text{number of triples centered on vertex } i}$

$$C^{(2)}=1/5 (1+1+1/6+0+0) = 13/30 = 0.433333$$

ransitivity / Clustering Coefficient

Example:

$$C^{(1)} = \frac{3 \times \text{ number of triangles in the network}}{\text{number of connected triples of vertices}} = \frac{3 \times 1}{8} = 0.375$$

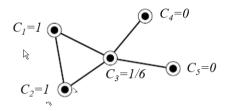


$$C^{(2)} = \frac{1}{n} \sum_{i} C_{i}$$
 with $C_{i} = \frac{\text{number of triangles connected to vertex } i}{\text{number of triples centered on vertex } i}$

$$C^{(2)} = 1/5 (1 + 1 + 1/6 + 0 + 0) = 13/30 = 0.433333$$

Example:

$$C^{(1)} = \frac{3 \times \text{ number of triangles in the network}}{\text{number of connected triples of vertices}} = \frac{3 \times 1}{8} = 0.375$$



$$C^{(2)} = \frac{1}{n} \sum_{i} C_i$$
 with $C_i = \frac{\text{number of triangles connected to vertex } i}{\text{number of triples centered on vertex } i}$

$$C^{(2)} = 1/5 (1 + 1 + 1/6 + 0 + 0) = 13/30 = 0.433333$$

	network	type	n	m	z	l	α	$C^{(1)}$	$C^{(2)}$	r	Ref(s).
	film actors	undirected	449913	25 516 482	113.43	3.48	2.3	0.20	0.78	0.208	20, 416
	company directors	undirected	7673	55 392	14.44	4.60	-	0.59	0.88	0.276	105, 323
	math coauthorship	undirected	253 339	496489	3.92	7.57	-	0.15	0.34	0.120	107, 182
	physics coauthorship	undirected	52909	245 300	9.27	6.19	-	0.45	0.56	0.363	311, 313
socia]	biology coauthorship	undirected	1 520 251	11803064	15.53	4.92	-	0.088	0.60	0.127	311, 313
90	telephone call graph	undirected	47 000 000	80 000 000	3.16		2.1				8, 9
	email messages	directed	599128	86 300	1.44	4.95	1.5/2.0		0.16		136
	email address books	directed	16881	57 029	3.38	5.22	-	0.17	0.13	0.092	321
	student relationships	undirected	573	477	1.66	16.01	-	0.005	0.001	-0.029	45
	sexual contacts	undirected	2810				3.2				265, 266
п	WWW nd.edu	directed	269 504	1 497 135	5.55	11.27	2.1/2.4	0.11	0.29	-0.067	14, 34
iti.	WWW Altavista	directed	203 549 046	2 130 000 000	10.46	16.18	2.1/2.7				74
information	citation network	directed	783 339	6716198	8.57		3.0/-				351
- Si	Roget's Thesaurus	directed	1 022	5 103	4.99	4.87	-	0.13	0.15	0.157	244
	word co-occurrence	undirected	460 902	17 000 000	70.13		2.7		0.44		119, 157
	Internet	undirected	10 697	31 992	5.98	3.31	2.5	0.035	0.39	-0.189	86, 148
刁	power grid	undirected	4941	6594	2.67	18.99	-	0.10	0.080	-0.003	416
.02	train routes	undirected	587	19 603	66.79	2.16	-		0.69	-0.033	366
technological	software packages	directed	1 439	1723	1.20	2.42	1.6/1.4	0.070	0.082	-0.016	318
- g	software classes	directed	1 377	2 213	1.61	1.51	-	0.033	0.012	-0.119	395
ž	electronic circuits	undirected	24 097	53 248	4.34	11.05	3.0	0.010	0.030	-0.154	155
	peer-to-peer network	undirected	880	1 296	1.47	4.28	2.1	0.012	0.011	-0.366	6, 354
	metabolic network	undirected	765	3 686	9.64	2.56	2.2	0.090	0.67	-0.240	214
biological	protein interactions	undirected	2115	2 240	2.12	6.80	2.4	0.072	0.071	-0.156	212
ol l	marine food web	directed	135	598	4.43	2.05	-	0.16	0.23	-0.263	204
[oid	freshwater food web	directed	92	997	10.84	1.90	-	0.20	0.087	-0.326	272
	neural network	directed	307	2 359	7.68	3.97	-	0.18	0.28	-0.226	416, 421

3LE II Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices i ber of edges m; mean degree z; mean vertex—vertex distance ℓ ; exponent α of degree distribution if the distribution follows a power law (or "..." if not; in/out ments are given for directed graphs); clustering coefficient $C^{(1)}$ from Eq. (3); clustering coefficient $C^{(2)}$ from Eq. (6); and degree correlation coefficient c last column gives the citation(s) for the network in the bibliography. Blank entries indicate unavailable data.

	(A)

	network	type	n	m	z	Ł	α	$C^{(1)}$	$C^{(2)}$	r	Ref(s).
	film actors	undirected	449913	25 516 482	113.43	3.48	2.3	0.20	0.78	0.208	20, 416
	company directors	undirected	7673	55 392	14.44	4.60	_	0.59	0.88	0.276	105, 323
	math coauthorship	undirected	253 339	496489	3.92	7.57	-	0.15	0.34	0.120	107, 182
	physics coauthorship	undirected	52909	245 300	9.27	6.19	-	0.45	0.56	0.363	311, 313
social	biology coauthorship	undirected	1 520 251	11803064	15.53	4.92	-	0.088	0.60	0.127	311, 313
800	telephone call graph	undirected	47 000 000	80 000 000	3.16		2.1				8, 9
	email messages	directed	59912	86 300	1.44	4.95	1.5/2.0		0.16		136
	email address books	directed	16881	57 029	3.38	5.22	_	0.17	0.13	0.092	321
	student relationships	undirected	573	477	1.66	16.01	-	0.005	0.001	-0.029	45
	sexual contacts	undirected	2810				3.2				265, 266
	WWW nd.edu	directed	269 504	1 497 135	5.55	11.27	2.1/2.4	0.11	0.29	-0.067	14, 34
tio.	WWW Altavista	directed	203 549 046	2130000000	10.46	16.18	2.1/2.7				74
Ë	citation network	directed	783 339	6716198	8.57		3.0/-				351
information	Roget's Thesaurus	directed	1 022	5 103	4.99	4.87	_	0.13	0.15	0.157	244
.=	word co-occurrence	undirected	460 902	17 000 000	70.13		2.7		0.44		119, 157
	Internet	undirected	10 697	31 992	5.98	3.31	2.5	0.035	0.39	-0.189	86, 148
18	power grid	undirected	4941	6594	2.67	18.99	-	0.10	0.080	-0.003	416
gi.	train routes	undirected	587	19 603	66.79	2.16	-		0.69	-0.033	366
technological	software packages	directed	1 439	1723	1.20	2.42	1.6/1.4	0.070	0.082	-0.016	318
큥	software classes	directed	1 377	2 213	1.61	1.51	_	0.033	0.012	-0.119	395
*	electronic circuits	undirected	24 097	53 248	4.34	11.05	3.0	0.010	0.030	-0.154	155
	peer-to-peer network	undirected	880	1 296	1.47	4.28	2.1	0.012	0.011	-0.366	6, 354
	metabolic network	undirected	765	3 686	9.64	2.56	2.2	0.090	0.67	-0.240	214
oiological	protein interactions	undirected	2115	2 240	2.12	6.80	2.4	0.072	0.071	-0.156	212
log	marine food web	directed	135	598	4.43	2.05	-	0.16	0.23	-0.263	204
biol	freshwater food web	directed	92	997	10.84	1.90	-	0.20	0.087	-0.326	272
	neural network	directed	307	2 359	7.68	3.97	_	0.18	0.28	-0.226	416, 421

3LE II Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices i ber of edges m; mean degree z; mean vertex-vertex distance ℓ ; exponent α of degree distribution if the distribution follows a power law (or "-" if not; in/out ments are given for directed graphs); clustering coefficient $C^{(1)}$ from Eq. (3); clustering coefficient $C^{(2)}$ from Eq. (6); and degree correlation coefficient r, Set last column gives the citation(s) for the network in the bibliography. Blank entries indicate unavailable data.

	network	type	n	m	z	ℓ	α	$C^{(1)}$	$C^{(2)}$	r	Ref(s).
	film actors	undirected	449913	25 516 482	113.43	3.48	2.3	0.20	0.78	0.208	20, 416
	company directors	undirected	7673	55 392	14.44	41.0	-	0.59	0.88	0.276	105, 323
	math coauthorship	undirected	253 339	496489	3.92	7.57	-	0.15	0.34	0.120	107, 182
	physics coauthorship	undirected	52909	245 300	9.27	6.19	-	0.45	0.56	0.363	311, 313
social	biology coauthorship	undirected	1 520 251	11803064	15.53	4.92	-	0.088	0.60	0.127	311, 313
80	telephone call graph	undirected	47 000 000	80 000 000	3.16		2.1				8, 9
	email messages	directed	59912	86 300	1.44	4.95	1.5/2.0		0.16		136
	email address books	directed	16881	57 029	3.38	5.22	-	0.17	0.13	0.092	321
	student relationships	undirected	573	477	1.66	16.01	-	0.005	0.001	-0.029	45
	sexual contacts	undirected	2810				3.2				265, 266
=	WWW nd.edu	directed	269 504	1 497 135	5.55	11.27	2.1/2.4	0.11	0.29	-0.067	14, 34
iti.	WWW Altavista	directed	203 549 046	2130000000	10.46	16.18	2.1/2.7				74
information	citation network	directed	783 339	6716198	8.57		3.0/-				351
g.	Roget's Thesaurus	directed	1 022	5 103	4.99	4.87	-	0.13	0.15	0.157	244
.=	word co-occurrence	undirected	460 902	17 000 000	70.13		2.7		0.44		119, 157
	Internet	undirected	10 697	31 992	5.98	3.31	2.5	0.035	0.39	-0.189	86, 148
7	power grid	undirected	4941	6594	2.67	18.99	-	0.10	0.080	-0.003	416
.56	train routes	undirected	587	19 603	66.79	2.16	-		0.69	-0.033	366
ď	software packages	directed	1 439	1723	1.20	2.42	1.6/1.4	0.070	0.082	-0.016	318
technological	software classes	directed	1 377	2 213	1.61	1.51	-	0.033	0.012	-0.119	395
7	electronic circuits	undirected	24097	53 248	4.34	11.05	3.0	0.010	0.030	-0.154	155
	peer-to-peer network	undirected	880	1 296	1.47	4.28	2.1	0.012	0.011	-0.366	6, 354
	metabolic network	undirected	765	3 686	9.64	2.56	2.2	0.090	0.67	-0.240	214
biological	protein interactions	undirected	2115	2 240	2.12	6.80	2.4	0.072	0.071	-0.156	212
200	marine food web	directed	135	598	4.43	2.05	-	0.16	0.23	-0.263	204
-64	freshwater food web	directed	92	997	10.84	1.90	-	0.20	0.087	-0.326	272
	neural network	directed	307	2 359	7.68	3.97	-	0.18	0.28	-0.226	416, 421

3LE II Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices ι ber of edges m; mean degree z; mean vertex-vertex distance ℓ ; exponent α of degree distribution if the distribution follows a power law (or "-" if not; in/out ments are given for directed graphs); clustering coefficient $C^{(1)}$ from Eq. (3); clustering coefficient $C^{(2)}$ from Eq. (6); and degree correlation coefficient r, Set last column gives the citation(s) for the network in the bibliography. Blank entries indicate unavailable data.

E	₩.										
	network	type	n	m	z	Ł	α	$C^{(1)}$	$C^{(2)}$	r	Ref(s).
	film actors	undirected	449 913	25 516 482	113.43	3.48	2.3	0.20	0.78	0.208	20, 416
	company directors	undirected	7673	55 392	14.44	4.60	_	0.59	0.88	0.276	105, 323
	math coauthorship	undirected	253 339	496489	3.92	7.57	-	0.15	0.34	0.120	107, 182
	physics coauthorship	undirected	52909	245 300	9.27	6.19	-	0.45	0.56	0.363	311, 313
socia.	biology coauthorship	undirected	1 520 251	11803064	15.53	4.92	-	0.088	0.60	0.127	311, 313
800	telephone call graph	undirected	47 000 000	80 000 000	3.16		2.1				8, 9
	email messages	directed	59912	86 300	1.44	4.95	1.5/2.0		0.16		136
	email address books	directed	16881	57 029	3.38	5.22	_	0.17	0.13	0.092	321
	student relationships	undirected	573	477	1.66	16.01	-	0.005	0.001	-0.029	45
	sexual contacts	undirected	2810				3.2				265, 266
	WWW nd.edu	directed	269 504	1 497 135	5.55	11.27	2.1/2.4	0.11	0.29	-0.067	14, 34
information	WWW Altavista	directed	203 549 046	2130000000	10.46	16.18	2.1/2.7				74
	citation network	directed	783 339	6716198	8.57		3.0/-				351
Ju Ju	Roget's Thesaurus	directed	1 022	5 103	4.99	4.87	_	0.13	0.15	0.157	244
.=	word co-occurrence	undirected	460 902	17 000 000	70.13		2.7		0.44		119, 157
	Internet	undirected	10 697	31 992	5.98	3.31	2.5	0.035	0.39	-0.189	86, 148
78	power grid	undirected	4941	6594	2.67	18.99	-	0.10	0.080	-0.003	416
technological	train routes	undirected	587	19 603	66.79	2.16	-		0.69	-0.033	366
ď	software packages	directed	1 439	1723	1.20	2.42	1.6/1.4	0.070	0.082	-0.016	318
큥	software classes	directed	1 377	2 213	1.61	1.51	_	0.033	0.012	-0.119	395
ž.	electronic circuits	undirected	24 097	53 248	4.34	11.05	3.0	0.010	0.030	-0.154	155
	peer-to-peer network	undirected	880	1 296	1.47	4.28	2.1	0.012	0.011	-0.366	6, 354
	metabolic network	undirected	765	3 686	9.64	2.56	2.2	0.090	0.67	-0.240	214
8	protein interactions	undirected	2115	2 240	2.12	6.80	2.4	0.072	0.071	-0.156	212
So	marine food web	directed	135	598	4.43	2.05	-	0.16	0.23	-0.263	204
biological	freshwater food web	directed	92	997	10.84	1.90	-	0.20	0.087	-0.326	272
	neural network	directed	307	2 359	7.68	3.97	_	0.18	0.28	-0.226	416, 421

3LE II Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices ι ber of edges m; mean degree z; mean vertex-vertex distance ℓ ; exponent α of degree distribution if the distribution follows a power law (or "-" if not; in/out ments are given for directed graphs); clustering coefficient $C^{(1)}$ from Eq. (3); clustering coefficient $C^{(2)}$ from Eq. (6); and degree correlation coefficient r, Second law to directed graphs); clustering coefficient r, second law to directed graphs are directed graphs.

	network	type	n	m	z	l	α	$C^{(1)}$	$C^{(2)}$	r _N	Ref(s).
	film actors	undirected	449913	25 516 482	113.43	3.48	2.3	0.20	0.78	0.208	20, 416
	company directors	undirected	7673	55 392	14.44	4.60	-	0.59	0.88	0.276	105, 323
	math coauthorship	undirected	253 339	496489	3.92	7.57	-	0.15	0.34	0.120	107, 182
	physics coauthorship	undirected	52909	245 300	9.27	6.19	-	0.45	0.56	0.363	311, 313
social	biology coauthorship	undirected	1 520 251	11 803 064	15.53	4.92	-	0.088	0.60	0.127	311, 313
	telephone call graph	undirected	47 000 000	80 000 000	3.16		2.1				8, 9
	email messages	directed	59912	86 300	1.44	4.95	1.5/2.0		0.16		136
	email address books	directed	16881	57 029	3.38	5.22	-	0.17	0.13	0.092	321
	student relationships	undirected	573	477	1.66	16.01	-	0.005	0.001	-0.029	45
	sexual contacts	undirected	2810				3.2				265, 266
п	WWW nd.edu	directed	269 504	1 497 135	5.55	11.27	2.1/2.4	0.11	0.29	-0.067	14, 34
-igi	WWW Altavista	directed	203 549 046	2130000000	10.46	16.18	2.1/2.7				74
information	citation network	directed	783 339	6716198	8.57		3.0/-				351
uţo	Roget's Thesaurus	directed	1 022	5 103	4.99	4.87	-	0.13	0.15	0.157	244
	word co-occurrence	undirected	460 902	17 000 000	70.13		2.7		0.44		119, 157
	Internet	undirected	10 697	31 992	5.98	3.31	2.5	0.035	0.39	-0.189	86, 148
-	power grid	undirected	4941	6594	2.67	18.99	-	0.10	0.080	-0.003	416
-56	train routes	undirected	587	19 603	66.79	2.16	-		0.69	-0.033	366
or You	software packages	directed	1 439	1723	1.20	2.42	1.6/1.4	0.070	0.082	-0.016	318
technological	software classes	directed	1 377	2 213	1.61	1.51	-	0.033	0.012	-0.119	395
ŭ	electronic circuits	undirected	24097	53 248	4.34	11.05	3.0	0.010	0.030	-0.154	155
	peer-to-peer network	undirected	880	1 296	1.47	4.28	2.1	0.012	0.011	-0.366	6, 354
	metabolic network	undirected	765	3 686	9.64	2.56	2.2	0.090	0.67	-0.240	214
biological	protein interactions	undirected	2115	2 240	2.12	6.80	2.4	0.072	0.071	-0.156	212
go	marine food web	directed	135	598	4.43	2.05	-	0.16	0.23	-0.263	204
bio	freshwater food web	directed	92	997	10.84	1.90	-	0.20	0.087	-0.326	272
	neural network	directed	307	2 359	7.68	3.97	-	0.18	0.28	-0.226	416, 421

3LE II Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices ι ber of edges m; mean degree z; mean vertex-vertex distance ℓ ; exponent α of degree distribution if the distribution follows a power law (or "-" if not; in/out ments are given for directed graphs); clustering coefficient $C^{(1)}$ from Eq. (3); clustering coefficient $C^{(2)}$ from Eq. (6); and degree correlation coefficient r, Second last column gives the citation(s) for the network in the bibliography. Blank entries indicate unavailable data.

⊕

	network	type	n	m	z	ℓ	α	$C^{(1)}$	$C^{(2)}$	r	Ref(s).
	film actors	undirected	449913	25 516 482	113.43	3.48	2.3	0.20	0.78	0.208	20, 416
	company directors	undirected	7673	55 392	14.44	4.60	-	0.59	0.88	0.276	105, 323
	math coauthorship	undirected	253 339	496489	3.92	7.57	-	0.15	0.34	0.120	107, 182
	physics coauthorship	undirected	52909	245 300	9.27	6.19	-	0.45	0.56	0.363	311, 313
social	biology coauthorship	undirected	1 520 251	11 803 064	15.53	4.92	-	0.088	0.60	0.127	311, 313
	telephone call graph	undirected	47 000 000	80 000 000	3.16		2.1				8, 9
	email messages	directed	59912	86 300	1.44	4.95	1.5/2.0		0.16		136
	email address books	directed	16881	57 029	3.38	5.22	-	0.17	0.13	0.092	321
	student relationships	undirected	573	477	1.66	16.01	-	0.005	0.001	-0.029	45
	sexual contacts	undirected	2810				3.2				265, 266
п	WWW nd.edu	directed	269 504	1 497 135	5.55	11.27	2.1/2.4	0.11	0.29	-0.067	14, 34
tio	WWW Altavista	directed	203 549 046	2130000000	10.46	16.18	2.1/2.7				74
information	citation network	directed	783 339	6716198	8.57		3.0/-				351
g.	Roget's Thesaurus	directed	1 022	5 103	4.99	4.87	-	0.13	0.15	0.157	244
	word co-occurrence	undirected	460 902	17 000 000	70.13		2.7		0.44		119, 157
	Internet	undirected	10 697	31 992	5.98	3.31	2.5	0.035	0.39	-0.189	86, 148
8	power grid	undirected	4941	6 5 9 4	2.67	18.99	-	0.10	0.080	-0.003	416
.525	train routes	undirected	587	19 603	66.79	2.16	-		0.69	-0.033	366
technological	software packages	directed	1 439	1723	1.20	2.42	1.6/1.4	0.070	0.082	-0.016	318
- I	software classes	directed	1 377	2 213	1.61	1.51	-	0.033	0.012	-0.119	395
2	electronic circuits	undirected	24097	53 248	4.34	11.05	3.0	0.010	0.030	-0.154	155
	peer-to-peer network	undirected	880	1 296	1.47	4.28	2.1	0.0123	0.011	-0.366	6, 354
	metabolic network	undirected	765	3 686	9.64	2.56	2.2	0.090	0.67	-0.240	214
biological	protein interactions	undirected	2115	2 240	2.12	6.80	2.4	0.072	0.071	-0.156	212
log	marine food web	directed	135	598	4.43	2.05	-	0.16	0.23	-0.263	204
bio	freshwater food web	directed	92	997	10.84	1.90	-	0.20	0.087	-0.326	272
	neural network	directed	307	2 359	7.68	3.97	_	0.18	0.28	-0.226	416, 421

3LE II Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices ber of edges m; mean degree z; mean vertex-vertex distance ℓ ; exponent α of degree distribution if the distribution follows a power law (or "-" if not; in/out ments are given for directed graphs); clustering coefficient $C^{(1)}$ from Eq. (3); clustering coefficient $C^{(2)}$ from Eq. (6); and degree correlation coefficient r, Se last column gives the citation(s) for the network in the bibliography. Blank entries indicate unavailable data.

Degree Distribution

• Notation:

 $p(k) = p_k = fraction of nodes having degree k$

Cumulative distribution:

$$P_k = \sum_{k'=k}^{\infty} p_{k'}$$

• power law:

$$p_k \sim k^{-\alpha}$$
 $\Rightarrow P_k \sim \sum_{k'=k}^{\infty} k'^{-\alpha} \sim k^{-(\alpha-1)}$

exponential:

$$p_k \sim e^{-k/\kappa}$$

$$P_k = \sum_{k'=k}^{\infty} p_k \sim \sum_{k'=k}^{\infty} e^{-k'/\kappa} \sim e^{-k/\kappa}$$

• Notation:

 $p(k) = p_k = fraction of nodes having degree k$

Cumulative distribution:

$$P_k = \sum_{k'=k}^{\infty} p_{k'}$$

• power law:

$$p_k \sim k^{-\alpha}$$

 $\Rightarrow P_k \sim \sum_{k'=k}^{\infty} k'^{-\alpha} \sim k^{-(\alpha-1)}$

exponential:

$$p_k \sim e^{-k/\kappa}$$

$$P_k = \sum_{k'=k}^{\infty} p_k \sim \sum_{k'=k}^{\infty} e^{-k'/\kappa} \sim e^{-k/\kappa}$$

Degree Distribution

Notation:

 $p(k) = p_k = fraction of nodes having degree k$

Cumulative distribution:

$$P_k = \sum_{k'=k}^{\infty} p_{k'}$$

• power law:

$$p_k \sim k^{-\alpha}$$
 $\Rightarrow P_k \sim \sum_{k'=k}^{\infty} k'^{-\alpha} \sim k^{-(\alpha-1)}$

exponential:

$$p_k \sim e^{-k/\kappa}$$

$$\Rightarrow P_k = \sum_{k'=k}^{\infty} p_k \sim \sum_{k'=k}^{\infty} e^{-k'/\kappa} \sim e^{-k/\kappa}$$

Degree Distribution

• Notation:

 $p(k) = p_k = fraction of nodes having degree k$

Cumulative distribution:

$$P_k = \sum_{k'=k}^{\infty} p_{k'}$$

• power law:

$$p_k \sim k^{-\alpha}$$

$$\Rightarrow P_k \sim \sum_{k'=k}^{\infty} k'^{-\alpha} \sim k^{-(\alpha-1)}$$

exponential:

$$p_k \sim e^{-k/\kappa}$$

$$P_k = \sum_{k'=k}^{\infty} p_k \sim \sum_{k'=k}^{\infty} e^{-k'/\kappa} \sim e^{-k/\kappa}$$

Degree Distribution

$$p_k \sim k^{-\alpha}$$

Degree Distribution

Notation:

 $p(k) = p_k = fraction of nodes having degree k$

Cumulative distribution:

$$P_k = \sum_{k'=k}^{\infty} p_{k'}$$

• power law:

$$p_k \sim k^{-\alpha}$$

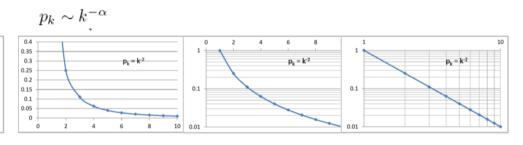
$$P_k \sim \sum_{k'=k}^{\infty} k'^{-\alpha} \sim k^{-(\alpha-1)}$$

exponential:

$$p_k \sim e^{-k/\kappa}$$

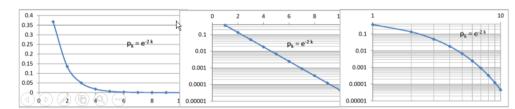
$$P_k = \sum_{k'=k}^{\infty} p_k \sim \sum_{k'=k}^{\infty} e^{-k'/\kappa} \sim e^{-k/\kappa}$$

Degree Distribution

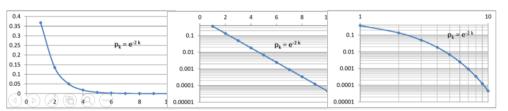


R

$$p_k \sim \mathrm{e}^{-k/\kappa}$$

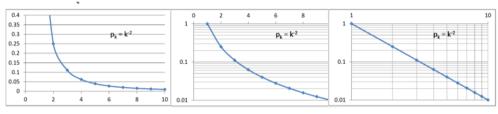


$$p_k \sim \mathrm{e}^{-k/\kappa}$$

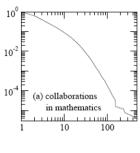


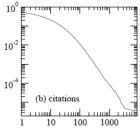
Degree Distribution

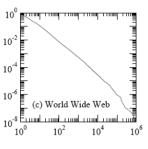
Degree Distribution

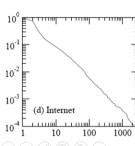


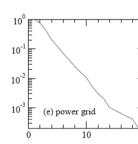
Cumulative distributions Pk of example real world NW

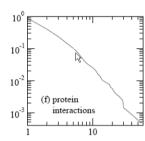








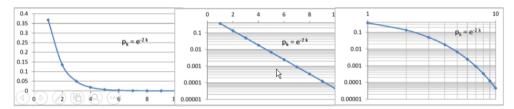




[1]

[1]

$p_k \sim \mathrm{e}^{-k/\kappa}$

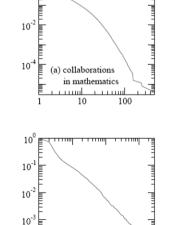


Degree Distribution

Degree Distribution

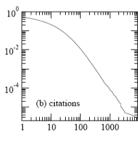
10° ≡

Cumulative distributions P_k of example real world NW



(d) Internet

10-4 1 10 100 1000



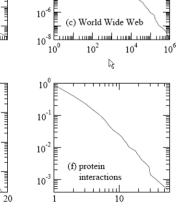
(e) power grid

10

10

10⁻¹ |

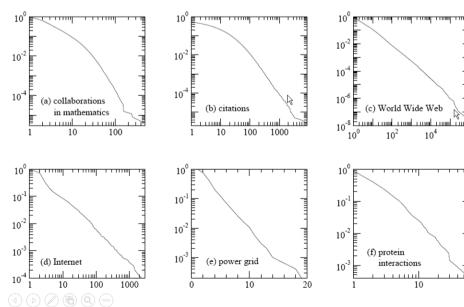
10⁻²



10⁻²

10-4

Cumulative distributions \boldsymbol{P}_k of example real world NW



Degree Distribution

Degree Distribution

"Power law" == "Scale free":

• $f(x) = x^{\alpha}$ is only solution to functional equation formalizing scale freedom f(ax) = b f(x)

• in other words: change of scale → f still "looks the same"

• other point of view.

Although we can compute the expectation $E(k)=\sum_k k \ k^{-\alpha}$ if $\alpha>1$, the variance (error bars) $Var(k)=\sum_k (k-E(k))^2 \ k^{-\alpha}$ diverges \rightarrow we "cannot be shure about k" \rightarrow "no characteristic scale" \rightarrow "scale free"

"Power law" == "Scale free":

• $f(x) = x^{\alpha}$ is only solution to functional equation formalizing scale freedom f(ax) = b f(x)

• in other words: change of scale → f still "looks the same"

• other point of view.

Although we can compute the expectation $E(k)=\sum_k k\ k^{-\alpha}$ if $\alpha>1$, the variance (error bars) $\bigvee_k Var(k)=\sum_k (k-E(k))^2\ k^{-\alpha}$ diverges \rightarrow we "cannot be shure about k" \rightarrow "no characteristic scale" \rightarrow "scale free"

Degree Distribution

Examples:

Power law: citation NW, WWW, Internet, metabolic NW, telephone call NW, human sexual contact NW etc.

Exponential: power grid, railway NW

Power law with exp. cut-offs: Movie co-actor NW

Examples:

Power law: citation NW, WWW, Internet, metabolic NW, telephone call NW, human sexual contact NW etc.

Exponential: power grid, railway NW

Power law with exp. cut-offs: Movie co-actor NW

Examples:

- Power law: citation NW, WWW, Internet, metabolic NW, telephone call NW, human sexual contact NW etc.
- Exponential: power grid, railway NW
- Power law with exp. cut-offs: Movie co-actor NW

ıvıaximum Degree

- "less or equal than one vertex with k_{max} "

 → $np_{k_{max}} = 1$ → for power law $p_k = k^{-\alpha}$: $k_{max} \sim n^{1/\alpha}$ but: $n = k^{-\alpha}$ very accurate estimation
- Other estimation:
 - prob p of "exactly m nodes with k and rest of nodes smaller than k":

$$\binom{n}{m}p_k^m(1-P_k)^{n-m}$$

◆ prob of k being the highest degree in graph:

$$h_k = \sum_{m=1}^n \binom{n}{m} p_k^m (1 - P_k)^{n-m}$$

= $(p_k + 1 - P_k)^n - (1 - P_k)^n$

expected highest degree:

$$k_{\text{max}} = \sum_{k} k h_k$$

- "less or equal than one vertex with k_{max}"
 → np_{k_max} = 1 → for power law p_k = k^{-α}: k_{max} ~ n^{1/ α}
 but: not very accurate estimation
- Other estimation:
 - prob p of "exactly m nodes with k and rest of nodes smaller than k":

$$\binom{n}{m}p_k^m(1-P_k)^{n-m}$$

• > prob of k being the highest degree in graph:

$$h_k = \sum_{m=1}^n \binom{n}{m} p_k^m (1 - P_k)^{n-m}$$

= $(p_k + 1 - P_k)^n - (1 - P_k)^n$

• → expected highest degree:

$$k_{\text{max}} = \sum_{k} k h_k$$

- "less or equal than one vertex with k_{max} "

 → $np_{k_{max}} = 1$ → for power law $p_k = k^{-\alpha}$: $k_{max} \sim n^{1/\alpha}$ but: not very accurate estimation
- Other estimation:
 - prob p of "exactly m nodes with k and rest of nodes smaller than k":

$$\binom{n}{m}p_k^m(1-P_k)^{n-m}$$

• → prob of k being the highest degree in graph:

$$h_k = \sum_{m=1}^n \binom{n}{m} p_k^m (1 - P_k)^{n-m}$$

= $(p_k + 1 - P_k)^n - (1 - P_k)^n$

expected highest degree:

$$k_{\text{max}} = \sum_{k} k h_k$$

"less or equal than one vertex with k_{max}"

→ $np_{k_{max}} = 1$ → for power law $p_k = k^{-\alpha}$: $k_{max} \sim n^{1/\alpha}$ but: not very accurate estimation

Other estimation:

prob p of "exactly m nodes with k and rest of nodes smaller than k":

$$\binom{n}{m}p_k^m(1-P_k)^{n-m}$$

◆ prob of k being the highest degree in graph:

$$h_k = \sum_{m=1}^n \binom{n}{m} p_k^m (1 - P_k)^{n-m}$$

= $(p_k + 1 - P_k)^n - (1 - P_k)^n$

• > expected highest degree:

$$k_{\text{max}} = \sum_{k} k h_k$$

ıvıaximum Degree

- "less or equal than one vertex with k_{max}"
- → $np_{k_{max}} = 1$ → for power law $p_k = k^{-\alpha}$: $k_{max} \sim n^{1/\alpha}$ but: not very accurate estimation

Other estimation:

prob p of "exactly m nodes with k and rest of nodes smaller than k":

$$\binom{n}{m}p_k^m(1-P_k)^{n-m}$$

◆ prob of k being the highest degree in graph:

$$h_k = \sum_{m=1}^n \binom{n}{m} p_k^m (1 - P_k)^{n-m}$$

= $(p_k + 1 - P_k)^n - (1 - P_k)^n$

expected highest degree:

$$k_{\text{max}} = \sum_{k} k h_k$$

,less or equal than one vertex with k_{max}

→ $np_{k_{max}} = 1$ → for power law $p_k = k^{-\alpha}$: $k_{max} \sim n^{1/\alpha}$ but: not very accurate estimation

Other estimation:

prob p of "exactly m nodes with k and rest of nodes smaller than k":

$$\binom{n}{m}p_k^m(1-P_k)^{n-m}$$

• > prob of k being the highest degree in graph:

$$h_k = \sum_{m=1}^n \binom{n}{m} p_k^m (1 - P_k)^{n-m}$$

= $(p_k + 1 - P_k)^n - (1 - P_k)^n$

• → expected highest degree:

$$k_{\text{max}} = \sum_{k} k h_{k}$$

ıvıaximum Degree

,less or equal than one vertex with k_{max}

→ $np_{k_{max}} = 1$ → for power law $p_k = k^{-\alpha}$: $k_{max} \sim n^{1/\alpha}$ but: not very accurate estimation

Other estimation:

prob p of "exactly m nodes with k and rest of nodes smaller than k":

$$\binom{n}{m}p_k^m(1-P_k)^{n-m}$$

• > prob of k being the highest degree in graph:

$$h_k = \sum_{m=1}^n \binom{n}{m} p_k^m (1 - P_k)^{n-m}$$

= $(p_k + 1 - P_k)^n - (1 - P_k)^n$

expected highest degree:

$$k_{\text{max}} = \sum_{k} k h_k$$

"less or equal than one vertex with k_{max}"

→ $np_{k_{max}} = 1$ → for power law $p_k = k^{-\alpha}$: $k_{max} \sim n^{1/\alpha}$ but: not very accurate estimation

Other estimation:

•prob p of "exactly m nodes with k and rest of nodes smaller than k":

$$\binom{n}{m}p_k^m(1-P_k)^{n-m}$$

◆ prob of k being the highest degree in graph:

$$h_k = \sum_{m=1}^n \binom{n}{m} p_k^m (1 - P_k)^{n-m}$$

$$= (p_k + 1 - P_k)^n - (1 - P_k)^n$$

expected highest degree:

$$k_{\text{max}} = \sum_{k} k h_k$$

ıvıaximum Degree

- "less or equal than one vertex with k_{max}"
- → $np_{k_{max}} = 1$ → for power law $p_k = k^{-\alpha}$: $k_{max} \sim n^{1/\alpha}$ but: not very accurate estimation

Other estimation:

prob p of "exactly m nodes with k and rest of nodes smaller than k":

$$\binom{n}{m}p_k^m(1-P_k)^{n-m}$$

◆ prob of k being the highest degree in graph:

$$h_k = \sum_{m=1}^n \binom{n}{m} p_k^m (1 - P_k)^{n-m}$$

= $(p_k + 1 - P_k)^n - (1 - P_k)^n$

expected highest degree:

$$k_{\text{max}} = \sum_{k} k h_{k}$$

• "less or equal than one vertex with k_{max}"

→ $np_{k_{max}} = 1$ → for power law $p_k = k^{-\alpha}$: $k_{max} \sim n^{1/\alpha}$ but: not very accurate estimation

Other estimation:

•prob p of "exactly m nodes with k and rest of nodes smaller than k":

$$\binom{n}{m}p_k^m(1-P_k)^{n-m}$$

◆ prob of k being the highest degree in graph:

$$h_k = \sum_{m=1}^{n} \binom{n}{m} p_k^m (1 - P_k)^{n-m}$$

= $(p_k + 1 - P_k)^n - (1 - P_k)^n$

→ expected highest degree:

$$k_{\text{max}} = \sum_{k} k h_k$$

• "less or equal than one vertex with k_{max}"

→ $np_{k_{max}} = 1$ → for power law $p_k = k^{-\alpha}$: $k_{max} \sim n^{1/\alpha}$ but: not very accurate estimation

Other estimation:

prob p of "exactly m nodes with k and rest of nodes smaller than k":

$$\binom{n}{m}p_k^m(1-P_k)^{n-m}$$

• → prob of k being the highest degree in graph:

$$h_k = \sum_{m=1}^n \binom{n}{m} p_k^m (1 - P_k)^{n-m}$$

= $(p_k + 1 - P_k)^n - (1 - P_k)^n$

→ expected highest degree:

$$k_{\text{max}} = \sum_{k} k h_{k}$$

modal value :
$$\frac{d}{dk} h_k = 0$$

Using $dP_k/dk = p_k$ we get

$$\frac{d}{dk} h_k = n \left[\left(\frac{\mathrm{d}p_k}{\mathrm{d}k_k} - p_k \right) (p_k + 1 - P_k)^{n-1} + p_k (1 - P_k)^{n-1} \right] = 0$$

or k_{max} is a solution of

$$\frac{\mathrm{d}p_k}{\mathrm{d}k} \simeq -np_k^2$$

(assuming: $p_{\rm k}$ is small for k > k_{max} and that $np_k \ll 1$ and that $P_k \ll 1$)

 \rightarrow we get for power law $\,p_k \sim k^{-\alpha}\,\,$ that $\,\,k_{
m max} \sim n^{1/(\alpha-1)}$

• "less or equal than one vertex with k_{max} " $\rightarrow np_{k max} = 1 \rightarrow for power law p_k = k^{-\alpha}$: $k_{max} \sim n^{1/\alpha}$

but: not very accurate estimation

- Other estimation:
 - prob p of "exactly m nodes with k and rest of nodes smaller than k":

$$\binom{n}{m}p_k^m(1-P_k)^{n-m}$$

◆ prob of k being the highest degree in graph:

$$h_k = \sum_{m=1}^{n} \binom{n}{m} p_k^m (1 - P_k)^{n-m}$$
$$= (p_k + 1 - P_k)^n - (1 - P_k)^n$$

expected highest degree:

$$k_{\text{max}} = \sum_{k} k h_{k}$$

since h_k is small for small k and also for large k → take as k_{max} the modal value of h_k →

modal value :
$$\frac{d}{dk} h_k = 0$$

Using $dP_k/dk = p_k$ we get

$$\frac{d}{dk} h_k = n \left[\left(\frac{\mathrm{d}p_k}{\mathrm{d}k} - p_k \right) (p_k + 1 - P_k)^{n-1} + p_k (1 - P_k)^{n-1} \right] = 0$$

or k_{max} is a solution of

$$\frac{\mathrm{d}p_k}{\mathrm{d}k} \simeq -np_k^2$$

(assuming: $p_{\rm k}$ is small for k > k_{max} and that $np_k \ll 1$ and that $P_k \ll 1$)

—we get for power law $\,p_k \sim k^{-\alpha}\,\,$ that $\,\,k_{
m max} \sim n^{1/(\alpha-1)}$

ıvıaximum Degree

since h_k is small for small k and also for large k → take as k_{max} the modal value of h_k →

modal value : $\frac{d}{dk} h_k = 0$

Using $dP_k/dk = p_k$ we get

$$\frac{d}{dk} h_k = n \left[\left(\frac{\mathrm{d}p_k}{\mathrm{d}k} - p_k \right) (p_k + 1 - P_k)^{n-1} + p_k (1 - P_k)^{n-1} \right] = 0$$

or k_{max} is a solution of

$$\frac{\mathrm{d}p_k}{\mathrm{d}k} \simeq -np_k^2$$

(assuming: p_k is small for $k > k_{max}$ and that $np_k \ll 1$ and that $P_k \ll 1$)

ightarrowwe get for power law $\,p_k \sim k^{-\alpha} \,\,$ that $\,\,k_{
m max} \sim n^{1/(\alpha-1)}$

modal value :
$$\frac{d}{dk} h_k = 0$$

Using $dP_k/dk = p_k$ we get

$$\frac{d}{dk} h_k = n \left[\left(\frac{\mathrm{d}p_k}{\mathrm{d}k} - p_k \right) (p_k + 1 - P_k)^{n-1} + p_k (1 - P_k)^{n-1} \right] = 0$$

or k_{max} is a solution of

$$\frac{\mathrm{d}p_k}{\mathrm{d}k} \simeq -np_k^2$$

(assuming: $p_{\rm k}$ is small for k > k $_{\rm max}$ and that $np_k \ll 1$ and that $P_k \ll 1$)

 \rightarrow we get for power law $\,p_k \sim k^{-\alpha}\,\,$ that $\,\,k_{
m max} \sim n^{1/(\alpha-1)}$

ıvıaximum Degree

since h_k is small for small k and also for large k → take as k_{max} the modal value of h_k →

modal value :
$$\frac{d}{dk} h_k = 0$$

Using $dP_k/dk = p_k$ we get

$$\frac{d}{dk} h_k = n \left[\left(\frac{\mathrm{d} p_k}{\mathrm{d} k} - p_k \right) (p_k + 1 - P_k)^{n-1} + p_k (1 - P_k)^{n-1} \right] = 0$$

or k_{max} is a solution of

$$\frac{\mathrm{d}p_k}{\mathrm{d}k} \simeq -np_k^2$$

(assuming: p_k is small for $k > k_{max}$ and that $np_k \ll 1$ and that $P_k \ll 1$)

$$\rightarrow$$
we get for power law $\,p_k \sim k^{-\alpha}\,\,$ that $\,\,k_{
m max} \sim n^{1/(\alpha-1)}$

since h_k is small for small k and also for large k → take as k_{max} the modal value of h_k →

modal value :
$$\frac{d}{dk} h_k = 0$$

Using $dP_k/dk = p_k$ we get

$$\frac{d}{dk} h_k = n \left[\left(\frac{\mathrm{d}p_k}{\mathrm{d}k} - p_k \right) (p_k + 1 - P_k)^{n-1} + p_k (1 - P_k)^{n-1} \right] = 0$$

or k_{max} is a solution of

$$\frac{\mathrm{d}p_k}{\mathrm{d}k} \simeq -np_k^2$$

(assuming: p_k is small for $k > k_{max}$ and that $np_k \ll 1$ and that $P_k \ll 1$)

 \rightarrow we get for power law $\,p_k \sim k^{-\alpha} \,\,$ that $\,\, k_{\rm max} \sim n^{1/(\alpha-1)}$

ıvıaximum Degree

since h_k is small for small k and also for large k → take as k_{max} the modal value of h_k →

modal value : $\frac{d}{dk} h_k = 0$

Using $dP_k/dk = p_k$ we get

$$\frac{d}{dk} h_k = n \left[\left(\frac{\mathrm{d}p_k}{\mathrm{d}k} - p_k \right) (p_k + 1 - P_k)^{n-1} + p_k (1 - P_k)^{n-1} \right] = 0$$

or k_{max} is a solution of

$$\frac{\mathrm{d}p_k}{\mathrm{d}k} \simeq -np_k^2$$

(assuming: p_k is small for $k > k_{max}$ and that $np_k \ll 1$ and that $P_k \ll 1$)

$$\rightarrow$$
 we get for power law $\,p_k \sim k^{-\alpha} \,\,$ that $\,\, k_{\rm max} \sim n^{1/(\alpha-1)}$

• What happens if nodes are removed? (interesting e.g. for vaccination effects in disease spreading in human contact networks)

R

For power law networks:

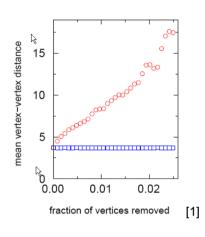
remove random nodes : no effect on mean distances

remove high degree nodes: drastic effect

Interpretations:

Internet is easy to attack

Internet is not easy to attack



Network Resilience

- What happens if nodes are removed? (interesting e.g. for vaccination effects in disease spreading in human contact networks)
- For power law networks:

remove random nodes : no effect on mean distances

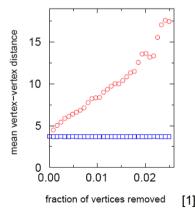
remove high degree nodes: drastic effect

19

Interpretations:

Internet is easy to attack

Internet is not easy to attack



- What happens if nodes are removed? (interesting e.g. for vaccination effects in disease spreading in human contact networks)
- For power law networks:

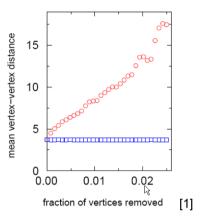
remove random nodes : no effect on mean distances

remove high degree nodes: drastic effect

Interpretations:

Internet is easy to attack

Internet is not easy to attack



iviixing Patterns

- Diassortativity:

Food Web: Plants ←→ Herbivores ←→ Carnivores but few Plants ←→ Plants etc.

Internet: Backbones provider $\leftarrow \rightarrow$ ISP $\leftarrow \rightarrow$ end user but few ISP $\leftarrow \rightarrow$ ISP etc.

• Assortativity:

Social NW

IVIIXING Patterns

Ecological NW, Internet, some social NW:

Assortative Mixing (Homophily): Nodes attach to similar nodes / nodes of same class OR

Disassortative Mixing (Heterophily): Nodes attach to nodes of different classes (almost n-partite behavior)

Diassortativity:

Food Web: Plants ←→ Herbivores ←→ Carnivores but few Plants ←→ Plants etc.

Internet: Backbones provider $\leftarrow \rightarrow$ ISP $\leftarrow \rightarrow$ end user but few ISP $\leftarrow \rightarrow$ ISP etc.

Assortativity:

Social NW

iviixing Patterns

				wome	en	
			black	hispanic	white	other
$\mathbf{E} =$		black	506	32	69	26
	men	hispanic	23 18	308	114	38
	Ü	white	26	46	599	68
		other	10	14	47	32

TABLE III Couples in the study of Catania et al. [85] tabulated by race of either partner. After Morris [302].

ullet measure mixing: analogous to modularity: mixing matrix $ullet e = rac{\mathbf{E}}{\|\mathbf{E}\|}$

$$\rightarrow P(j|i) = e_{ij} / \sum_{j} e_{ij}$$
. $\sum_{ij} e_{ij} = 1$, $\sum_{j} P(j|i) = 1$

Ecological NW, Internet, some social NW:

Assortative Mixing (Homophily): Nodes attach to similar nodes / nodes of same class OR

Disassortative Mixing (Heterophily): Nodes attach to nodes of different classes (almost n-partite behavior)

Diassortativity:

Food Web: Plants ←→ Herbivores ←→ Carnivores
but few Plants ←→ Plants etc.

Internet: Backbones provider ←→ ISP ←→ end user but few ISP ←→ ISP etc.

Assortativity:

Social NW

				wome	en	
			black	hispanic	white	other
$\mathbf{E} =$		black	506	32	69	26
L	men	hispanic	23	308	114	38
	Ħ	white	³ 26	46	599	68
		other	10	14	47	32

TABLE III Couples in the study of Catania et al. [85] tabulated by race of either partner. After Morris [302].

lacktriangledown measure mixing: analogous to modularity: mixing matrix $\mathbf{e} = \frac{\mathbf{E}}{\parallel \mathbf{E} \parallel}$

$$\label{eq:posterior} \begin{array}{ll} \boldsymbol{\rightarrow} & P(j|i) = e_{ij} / \sum_{j} e_{ij}, & \sum_{ij} e_{ij} = 1, & \sum_{j} P(j|i) = 1 \end{array}$$

IVIIXING Patterns

		wome	en			
			black	hispanic	white	other
$\mathbf{E} =$		black	506	32	69	26
L	men	hispanic	23	308	114	38
	Ħ	white	26	46	¹³ 599	68
		other	10	14	47	32

TABLE III Couples in the study of Catania *et al.* [85] tabulated by race of either partner. After Morris [302].

 $\ ^{\bullet}$ measure mixing: analogous to modularity: mixing matrix $\ e=\dfrac{\mathbf{E}}{\parallel\mathbf{E}\parallel}$

$$ightarrow P(j|i) = e_{ij} / \sum_{j} e_{ij}$$
, $\sum_{ij} e_{ij} = 1$, $\sum_{j} P(j|i) = 1$

iviixing Patterns

			wome	en	
		black	hispanic	white	other
	black	506	32	69	26
en	hispanic	23	308	114	38
Ü	white	26	46	599	68
	other	10	14	47	32
	men	hispanic white	black 506 hispanic 23 white 26	black hispanic	black 506 32 69 hispanic 23 308 114 white 26 46 599

TABLE III Couples in the study of Catania et al. [85] tabulated by race of either partner. After Morris [302].

ullet measure mixing: analogous to modularity: mixing matrix $\mathbf{e}_{\mathbf{k}} = \frac{\mathbf{E}}{\parallel \mathbf{E} \parallel}$

$$\rightarrow P(j|i) = e_{ij} / \sum_{j} e_{ij}$$
, $\sum_{ij} e_{ij} = 1$, $\sum_{i} P(j|i) = 1$

			women								
			black	hispanic	white	other					
$\mathbf{E} =$		black	506	32	69	26					
L	men	hispanic	23	308	114	38					
	Ħ	white	26	46	599	68					
		other	10	14	47	32					

TABLE III Couples in the study of Catania *et al.* [85] tabulated by race of either partner. After Morris [302].

 $\ ^{\bullet}$ measure mixing: analogous to modularity: mixing matrix $\ e=\frac{E}{\parallel E\parallel_{_{\! +}}}$

$$\rightarrow P(j|i) = e_{ij} / \sum_{j} e_{ij}$$
. $\sum_{ij} e_{ij} = 1$, $\sum_{j} P(j|i) = 1$

IVIIXING Patterns

			women								
			black	hispanic	white	other					
$\mathbf{E} =$		black	506	32	69	26					
	men	hispanic	23	308	114	38					
	Ħ	white	26	46	599	68					
		other	10	14	47	32					

TABLE III Couples in the study of Catania et al. [85] tabulated by race of either partner. After Morris [302].

 $^{\bullet}$ measure mixing: analogous to modularity: mixing matrix $\mathbf{e} = \frac{\mathbf{E}}{\parallel \mathbf{E} \parallel}$

$$\rightarrow P(j|i) = e_{ij} / \sum_{j} e_{ij}$$
, $\sum_{ij} e_{ij} = 1$, $\sum_{j} P(j|i) = 1$

			women						
			black	hispanic	white	other			
F. =		black	506	32	69	26			
L –	men	hispanic	23	308	114	38			
	Ē	white	26	46	599	68			
		other	10	14	47	32			

TABLE III Couples in the study of Catania *et al.* [85] tabulated by race of either partner. After Morris [302].

first measure for Assortativity:

$$Q = \frac{\sum_{i} P(i|i) - 1}{N - 1}$$

issues: Asymmetry of E → two values; Not respecting size of classes

second measure for Assortativity: (cmp. Modularity)

$$r = \frac{\text{Tr } e - \|e^2\|}{1 - \|e^2\|}$$

IVIIXING Patterns

			women						
			black	hispanic	white	other			
F =		black	506	32	69	26			
L –	men	hispanic	23	308	114	38			
	Ĕ	white	26	46	599	68			
		other	10	14	47	32			

TABLE III Couples in the study of Catania et al. [85] tabulated by race of either partner. After Morris [302].

first measure for Assortativity:

$$Q = \frac{\sum_{i} P(i|i) - 1}{N - 1}$$

issues: Asymmetry of E → two values; Not respecting size of classes

• → second measure for Assortativity: (cmp. Modularity)

$$r = \frac{\operatorname{Tr} \mathbf{e} - \|\mathbf{e}^2\|}{1 - \|\mathbf{e}^2\|}$$

			women						
			black	hispanic	white	other			
E -	. —	black	506	32	69	26			
L –	men	hispanic	23	308	114	38			
	Ĕ	white	26	46	599	68			
		other	10	14	47	32			

TABLE III Couples in the study of Catania et al. [85] tabulated by race of either partner. After Morris [302].

• > first measure for Assortativity:

$$Q = \frac{\sum_{i} P(i|i) - 1}{N - 1}$$

issues: Asymmetry of E → two values; Not respecting size of classes

B

second measure for Assortativity: (cmp. Modularity)

$$r = \frac{\operatorname{Tr} \mathbf{e} - \|\mathbf{e}^2\|}{1 - \|\mathbf{e}^2\|}$$

			women						
			black	hispanic	white	other			
F =		black	506	32	69	26			
L –	men	hispanic	23	308	114	38			
	Ē	white	26	46	599	68			
		other	10	14	47	32			

TABLE III Couples in the study of Catania et al. [85] tabulated by race of either partner. After Morris [302].

• > first measure for Assortativity:

$$Q = \frac{\sum_{i} P(i|i) - 1}{N - 1}$$

issues: Asymmetry of E → two values; Not respecting size of classes

second measure for Assortativity: (cmp. Modularity)

$$r = \frac{\operatorname{Tr} \mathbf{e} - \|\mathbf{e}^2\|}{1 - \|\mathbf{e}^2\|}$$

- Special example: "class" of nodes determined by degree
- → nodes attached to nodes with same or different degree?

 Both variants occur in real world NW
- Degree correlation measures:
 - 1) mean degree of neighbors of node with degree k:
 - → if assortative mixing: curve should be increasing
 - → Internet: curve decreases → diassortativity
 - 2) Pearson correlation for node degrees k_i and k_j of adjacent nodes i and j

R

iviixing Patterns

- Special example: "class" of nodes determined by degree
- → nodes attached to nodes with same or different degree? Both variants occur in real world NW
- Degree correlation measures:
 - 1) mean degree of neighbors of node with degree k:
 - → if assortative mixing: curve should be increasing \alpha
 - → Internet: curve decreases → diassortativity
 - Pearson correlation for node degrees k_i and k_j of adjacent nodes i and j

- Special example: "class" of nodes determined by degree
- → nodes attached to nodes with same or different degree?

 Both variants occur in real world NW
- Degree correlation measures:
 - 1) mean degree of neighbors of node with degree k:
 - → if assortative mixing: curve should be increasing
 - → Internet: curve decreases → diassortativity
 - Pearson correlation for node degrees k_i and k_j of adjacent nodes i and j

iviixing Patterns

- Special example: "class" of nodes determined by degree
- → nodes attached to nodes with same or different degree?

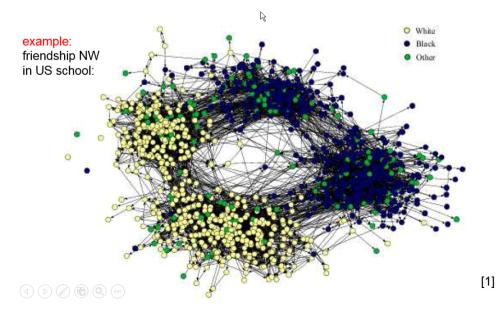
 Both variants occur in real world NW
- Degree correlation measures:
 - 1) mean degree of neighbors of node with degree k:
 - → if assortative mixing: curve should be increasing \alpha
 - → Internet: curve decreases → diassortativity
 - Pearson correlation for node degrees k_i and k_j of adjacent nodes i and j

	network	type	n	m	z	l	α	$C^{(1)}$	$C^{(2)}$	r	Ref(s).
	film actors	undirected	449913	25 516 482	113.43	3.48	2.3	0.20	0.78	0.208	20, 416
	company directors	undirected	7673	55 392	14.44	4.60	-	0.59	0.88	0.276	105, 323
	math coauthorship	undirected	253 339	496489	3.92	7.57	-	0.15	0.34	0.120	107, 182
	physics coauthorship	undirected	52909	245 300	9.27	6.19	-	0.45	0.56	0.363	311, 313
social	biology coauthorship	undirected	1 520 251	11 803 064	15.53	4.92	-	0.088	0.60	0.127	311, 313
800	telephone call graph	undirected	47 000 000	80 000 000	3.16		2.1				8, 9
	email messages	directed	59912	86 300	1.44	4.95	1.5/2.0		0.16		136
	email address books	directed	16881	57 029	3.38	5.22	-	0.17	0.13	0.092	321
	student relationships	undirected	573	477	1.66	16.01	-	0.005	0.001	-0.029	45
	sexual contacts	undirected	2810				3.2				265, 266
п	WWW nd.edu	directed	269 504	1 497 135	5.55	11.27	2.1/2.4	0.11	0.29	-0.067	14, 34
tio	WWW Altavista	directed	203 549 046	2130000000	10.46	16.18	2.1/2.7				74
information	citation network	directed	783 339	6716198	8.57		3.0/-				351
oju	Roget's Thesaurus	directed	1 022	5 103	4.99	4.87	-	0.13	0.15	0.157	244
.=	word co-occurrence	undirected	460 902	17 000 000	70.13		2.7		0.44		119, 157
	Internet	undirected	10 697	31 992	5.98	3.31	2.5	0.035	0.39	-0.189	86, 148
-6	power grid	undirected	4941	6 5 9 4	2.67	18.99	-	0.10	0.080	-0.003	416
ògi.	train routes	undirected	587	19 603	66.79	2.16	-		0.69	-0.033	366
technological	software packages	directed	1 439	1723	1.20	2.42	1.6/1.4	0.070	0.082	-0.016	318
- I	software classes	directed	1 377	2 213	1.61	1.51	-	0.033	0.012	-0.119	395
ž	electronic circuits	undirected	24 097	53 248	4.34	11.05	3.0	0.010	0.030	-0.154	155
	peer-to-peer network	undirected	880	1 296	1.47	4.28	2.1	0.012	0.011	-0.366	6, 354
	metabolic network	undirected	765	3 686	9.64	2.56	2.2	0.090	0.67	-0.240	214
biological	protein interactions	undirected	2115	2 240	2.12	6.80	2.4	0.072	0.071	-0.156	212
log	marine food web	directed	135	598	4.43	2.05	-	0.16	0.23	-0.263	204
bio	freshwater food web	directed	92	997	10.84	1.90	-	0.20	0.087	-0.326	272
	neural network	directed	307	2 359	7.68	3.97	-	0.18	0.28	-0.226	416, 421

3LE II Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices i ber of edges m; mean degree z; mean vertex-vertex distance ℓ ; exponent α of degree distribution if the distribution follows a power law (or "-" if not; in/out ments are given for directed graphs); clustering coefficient $C^{(1)}$ from Eq. (3); clustering coefficient power from Eq. (6); and degree correlation coefficient r, Set last column gives the citation(s) for the network in the bibliography. Blank entries indicate unavailable data.

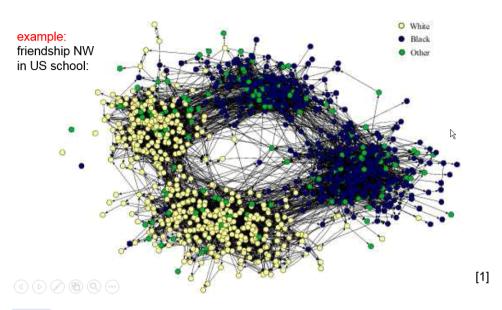
Community and Group Structure

Is NW well clustered? → see Parts on Clustering



Community and Group Structure

• Is NW well clustered? → see Parts on Clustering



Navigatability of NW

- Milgram showed: short paths exist BUT: How do people find them?
- → see Part "Social Networks in Time and Space"

Component Structure

- Does a giant component exist?
- → see section on random graphs

Random Graph Models: Poisson Graph

- G_{n,p}: space of graphs with n nodes and
 ach of the ½ n(n-1) edges appears with probability p
- p_k: probability that a node has degree k:

$$p_k = \binom{n}{k} p^k (1-p)^{n-k} \simeq \frac{z^k e^{-z}}{k!}$$

for n → ∞ and holding the mean degree of a node z=p(n-1) fixed (Poisson approximation of Binomial distribution)

→ "Poisson random graphs"

R

Random Graph Models: Poisson Graph

- G_{n,p}: space of graphs with n nodes and each of the ½ n(n-1) edges appears with probability p
- p_k: probability that a node has degree k:

$$p_k = \binom{n}{k} p^k (1-p)^{n-k} \simeq \frac{z^k e^{-z}}{k!}$$

for n → ∞ and holding the mean degree of a node z=p(n-1) fixed (Poisson approximation of Binomial distribution) → "Poisson random graphs"

- G_{n,p}: space of graphs with n nodes and each of the ½ n(n-1) edges appears with probability p
- p_k: probability that a node has degree k:

ty that a node has degree k:
$$p_k = \binom{n}{k} p_{\mathbb{k}}^k (1-p)_{\mathbb{k}}^{n-k} \simeq \frac{z^k \mathrm{e}^{-z}}{k!}$$

for $n \to \infty$ and holding the mean degree of a node z=p(n-1) fixed (Poisson approximation of Binomial distribution) \to "Poisson random graphs"

Random Graph Models: Poisson Graph

- G_{n,p}: space of graphs with n nodes and each of the ½ n(n-1) edges appears with probability p
- p_k: probability that a node has degree k:

$$p_k = \binom{n}{k} p^k (1-p)^{n-k} \simeq \frac{z^k e^{-z}}{k!_k}$$

for n → ∞ and holding the mean degree of a node z=p(n-1) fixed (Poisson approximation of Binomial distribution)

→ "Poisson random graphs"

Random Graph Models: Poisson Graph

- Given: property Q_{\downarrow} ("is connected", "has diameter xyz" etc.) of $G_{n,p}$: " $G_{n,p}$ has property Q with high probability": $P(Q|n,p) \rightarrow 1$ iff $n \rightarrow \infty$ (adaptated from [2] (which, in turn, is adaptated from [3]))
- In such models $G_{n,p}$ phase transitions exist for properties Q: "threshold function" q(n) (with $q(n) \rightarrow \infty$ if $n \rightarrow \infty$) so that:

$$\lim_{n\to\infty} P(Q|n,p) = \begin{cases} 0 & \text{if } \lim_{n\to\infty} p(n) / q(n) = 0 \\ 1 & \text{if } \lim_{n\to\infty} p(n) / q(n) = \infty \end{cases}$$

(adaptated from [3])

Random Graph Models: Poisson Graph

- Given: property Q ("is connected", "has diameter xyz" etc.) of $G_{n,p}$: " $G_{n,p}$ has property Q with high probability": $P(Q|n,p) \rightarrow 1$ iff $n \rightarrow \infty$ (adaptated from [2] (which, in turn, is adaptated from [3]))
- In such models $G_{n,p}$ phase transitions exist for properties Q: "threshold function" q(n) (with $q(n) \rightarrow \infty$ if $n \rightarrow \infty$) so that:

$$\lim_{n\to\infty} P(Q|n,p) = \begin{cases} 0 & \text{if } \lim_{n\to\infty} p(n) / q(n) = 0 \\ 1 & \text{if } \lim_{n\to\infty} p(n) / q(n) = \infty \end{cases}$$

(adaptated from [3])

Random Graph Models: Poisson Graph

- Given: property Q_{\triangleright} ("is connected", "has diameter xyz" etc.) of $G_{n,p}$: " $G_{n,p}$ has property Q with high probability": $P(Q|n,p) \rightarrow 1$ iff $n \rightarrow \infty$ (adaptated from [2] (which, in turn, is adaptated from [3]))
- In such models G_{n,p} phase transitions exist for properties Q: "threshold function" q(n) (with q(n) → ∞ if n → ∞) so that:

$$\lim_{n\to\infty} P(Q|n,p) = \begin{cases} 0 & \text{if } \lim_{n\to\infty} p(n) / q(n) = 0 \\ 1 & \text{if } \lim_{n\to\infty} p(n) / q(n) = \infty \end{cases}$$

(adaptated from [3])

Random Graph Models: Poisson Graph

- Given: property Q ("is connected", "has diameter xyz" etc.) of $G_{n,p}$: " $G_{n,p}$ has property Q with high probability": $P(Q|n,p) \rightarrow 1$ iff $n \rightarrow \infty$ (adaptated from [2] (which, in turn, is adaptated from [3]))
- In such models $G_{n,p}$ phase transitions exist for properties Q: "threshold function" q(n) (with $q(n) \rightarrow \infty$ if $n \rightarrow \infty$) so that:

$$\lim_{n\to\infty} P(Q|n,p) = \begin{cases} 0 & \text{if } \lim_{n\to\infty} p(n) / q(n) = 0 \\ 1 & \text{if } \lim_{n\to\infty} p(n) / q(n) = \infty \end{cases}$$

(adaptated from [3])

1

ਾ Kandom Graph Models: Poisson Graph

Example: giant component / connectedness of G_{n,p}

- Let u be the fraction of nodes that do not belong to giant component X == probability for a given node i to be not in X ⊾
- probability for a given node i (with assumed degree k) to be not in X
 == probability that none of its neighbors is in X
 == u^k
- \rightarrow u (k fixed) == u^k \rightarrow $u = \sum_{k=0}^{\infty} p_k u^k = \mathrm{e}^{-z} \sum_{k=0}^{\infty} \frac{(zu)^k}{k!} = \mathrm{e}^{z(u-1)}$
- \rightarrow fraction S of graph occupied by X is $S=1-u \rightarrow$

$$S = 1 - e^{-zS}$$

Random Graph Models: Poisson Graph

Example: giant component / connectedness of G_{n,p}

- Let u be the fraction of nodes that do not belong to giant component X
 == probability for a given node i to be not in X
- probability for a given node i (with assumed degree k) to be not in X == probability that none of its neighbors is in X $_{\Bbbk}$ == u^k_{\Bbbk}
- $^{\bullet}$ \rightarrow fraction S of graph occupied by X is $\ S=1-u\ \Rightarrow$

$$S = 1 - e^{-zS}$$

Random Graph Models: Poisson Graph

Example: giant component / connectedness of G_{n,p}

- Let u be the fraction of nodes that do not belong to giant component X
 == probability for a given node i to be not in X
- probability for a given node i (with assumed degree k) to be not in X
 == probability that none of its neighbors is in X
 == u^k
- \rightarrow u (k fixed) == u^k $\rightarrow u = \sum_{k=0}^{\infty} p_k u^k = \mathrm{e}^{-z} \sum_{k=0}^{\infty} \frac{(zu)^k}{k!} = \mathrm{e}^{z(u-1)}$
- \rightarrow fraction S of graph occupied by X is $S=1-u \rightarrow$

$$S = 1 - e^{-zS}$$

Random Graph Models: Poisson Graph

Example: giant component / connectedness of G_{n,p}

- Let u be the fraction of nodes that do not belong to giant component X
 == probability for a given node i to be not in X
- probability for a given node i (with assumed degree k) to be not in X
 == probability that none of its neighbors is in X
 == u^k
- $\stackrel{\bullet}{\rightarrow} \text{u (k fixed)} == \text{u}^{\text{k}} \quad \stackrel{}{\rightarrow} \quad u = \sum_{k=0}^{\infty} p_k u^k = \mathrm{e}^{-z} \sum_{k=0}^{\infty} \frac{(zu)^k}{k!} = \mathrm{e}^{z(u-1)}$
- \rightarrow fraction S of graph occupied by X is $S = 1 u \rightarrow$

$$S = 1 - e^{-zS}$$

्। Kandom Graph Models: Poisson Graph

Example: giant component / connectedness of Gn.p.

- Let u be the fraction of nodes that do not belong to giant component X
 == probability for a given node i to be not in X
- probability for a given node i (with assumed degree k) to be not in X
 == probability that none of its neighbors is in X
 == u^k
- $\stackrel{\bullet}{\rightarrow} \text{u (k fixed)} == \text{u}^{\text{k}} \quad \stackrel{}{\rightarrow} \quad u = \sum_{k=0}^{\infty} p_k u^k = \mathrm{e}^{-z} \sum_{k=0}^{\infty} \frac{(zu)^k}{k!} = \mathrm{e}^{z(u-1)}$
- \rightarrow fraction S of graph occupied by X is $S=1-u \rightarrow$

$$S = 1 - e^{-zS}$$

Random Graph Models: Poisson Graph

Example: giant component / connectedness of G_{n,p}

- Let u be the fraction of nodes that do not belong to giant component X
 == probability for a given node i to be not in X
- probability for a given node i (with assumed degree k) to be not in X
 == probability that none of its neighbors is in X
 == u^k
- \rightarrow fraction S of graph occupied by X is $S=1-u \rightarrow$

$$S = 1 - e^{-zS}$$

Random Graph Models: Poisson Graph

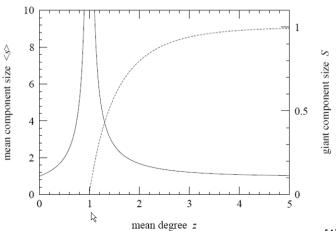
Example: giant component / connectedness of G_{n,p}

- Let u be the fraction of nodes that do not belong to giant component X
 == probability for a given node i to be not in X
- probability for a given node i (with assumed degree k) to be not in X
 == probability that none of its neighbors is in X
 == u^k
- \rightarrow u (k fixed) == u^k $\rightarrow u = \sum_{k=0}^{\infty} p_k u^k = \mathrm{e}^{-z} \sum_{k=0}^{\infty} \frac{(zu)^k}{k!} = \mathrm{e}^{z(u-1)}$
- $^{\bullet}$ \rightarrow fraction S of graph occupied by X is $\ S=1-u \ \Rightarrow$

$$S = 1 - e^{-zS}$$

Kandom Graph Models: Poisson Graph

- $S = 1 e^{-zS}$
- mean size <s> of smaller rest components (no proof): $\langle s \rangle = \frac{1}{1-z+zS}$



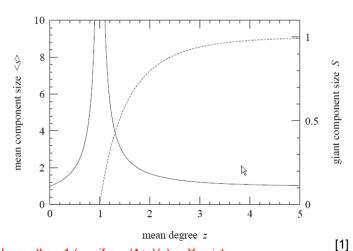
Kandom Graph Models: Poisson Graph

Example: giant component / connectedness of G_{n,p}

- Let u be the fraction of nodes that do not belong to giant component X
 == probability for a given node i to be not in X
- probability for a given node i (with assumed degree k) to be not in X
 == probability that none of its neighbors is in X
 == u^k
- $\stackrel{\bullet}{\rightarrow} \text{u (k fixed)} == \text{u}^{\text{k}} \quad \stackrel{}{\rightarrow} \quad u = \sum_{k=0}^{\infty} p_k u^k = \mathrm{e}^{-z} \sum_{k=0}^{\infty} \frac{(zu)^k}{k!} = \mathrm{e}^{z(u-1)}$
- \rightarrow fraction S of graph occupied by X is S=1-u \rightarrow $S=1-\mathrm{e}^{-zS}$

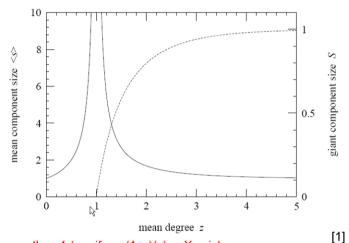
Random Graph Models: Poisson Graph

- $S = 1 e^{-zS}$
- mean size <s> of smaller rest components (no proof): $\langle s \rangle = \frac{1}{1-z+zS}$



Random Graph Models: Poisson Graph

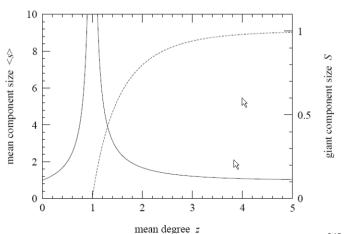
- $S = 1 e^{-zS}$
- mean size <s> of smaller rest components (no proof): $\langle s \rangle = \frac{1}{1-z+zS}$



 \rightarrow if the avidegree z is larger than 1 (== if p ~ (1+ ϵ)/n): X exists

Kandom Graph Models: Poisson Graph

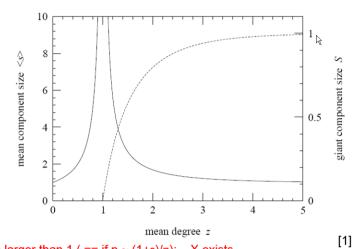
- $S = 1 e^{-zS}$
- mean size <s> of smaller rest components (no proof): $\langle s \rangle = \frac{1}{1-z+zS}$



 \rightarrow if the av degree z is larger than 1 (== if p ~ (1+ ϵ)/n): X exists

Random Graph Models: Poisson Graph

- $S = 1 e^{-zS}$
- mean size <s> of smaller rest components (no proof): $\langle s \rangle = \frac{1}{1-z+zS}$

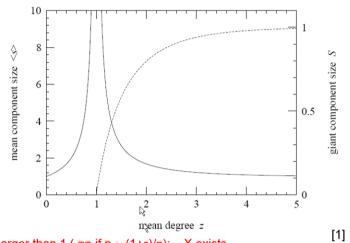


 \rightarrow if the av degree z is larger than 1 (== if p ~ (1+ ϵ)/n): X exists

Random Graph Models: Poisson Graph

•
$$S = 1 - e^{-zS}$$

• mean size <s> of smaller rest components (no proof): $\langle s \rangle = \frac{1}{1-z+zS}$



 \rightarrow if the av degree z is larger than 1 (== if p ~ (1+ ϵ)/n): X exists