Script generated by TTT

Title: groh: profilel (27.05.2015)
Date: Wed May 27 08:22:56 CEST 2015
Duration: 82:49 min

Pages: 72

I : .
Finding Clusters in Profiles

(=@

Social Gaming / Social Computing SS 2015

PD Dr. Georg Groh

Technische Universitdt Miinchen m

® Applied Informatics /
ﬁ Cooperative Systems

AICOS

& : i
Finding Clusters in Profiles

Examples for profile elements that can be embedded in metric spaces:
® Location & Velocity: Metric space: (R3, || . ||)

® Text describing Interests: Metric space: (RVe¢l, || . ||) where Voc

denotes the Vocabulary of the text.

I
like
to
dance
samba
bake

Often: Instead of
term-frequency
(tf) alone: use
term-frequency *
inverse document
frequency (idf);

“l like to dance samba,
bake pizza, watch tv and pizza
plant trees in the garden. | '::> watch

tv

also like to bake cakes. and idf = log (#of docs
Eizgz where t occurs /
in #of docs)
the Q
garden
also
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® How do we compute clusters in metric spaces?

¢ Group models: How do we compute socially meaningful clusters in
metric spaces (and thus avoid quasi-groups)?

® First some notations / basics:

®In graph clustering we had: A graph clustering C={C_1,C 2, .,
C_K} is a partion of V into non-empty subsets C_k

® Now: clustering € X -1 mapping of a metric value space
X to a set of cluster indices /

® Clusterings can be:
® exclusive or non-exclusive
¢ crisp or fuzzy
® hierarchical or non-hierarchical
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® How do we compute clusters in metric spaces?

¢ Group models: How do we compute socially meaningful clusters in
metric spaces (and thus avoid quasi-groups)?

® First some notations / basics:

®In graph clustering we had: A graph clustering C={C_1,C 2, .,
C_K} is a partion of V into non-empty subsets C_k

® Now: clustering €. X —1: mapping of a metric value space
X to a set of cluster indices 1

® Clusterings can be:
® exclusive or non-exclusive I
¢ crisp or fuzzy
® hierarchical or non-hierarchical
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® Exclusive - non overlapping clusters; non-exclusive - overlapping
clusters

® Hierarchical clustering = imposes a tree structure (Dendrogram) on the
C_kwhereanedge C_i-> C'_jimplies Cikic C’_j;

® Crisp clusterings: Conventional characteristic functions a_k for each
Cluster C_k

1 zeC;

ap X = {0,1} with ag(z e &X) = : "

0 =z % Ck_

°Fuzzy clusterings: fuzzy membership function a _k for each Cluster C_k

ap : X —[0,1]

® Exclusive > non overlapping clusters; non-exclusive - overlapping
clusters

® Hierarchical clustering = imposes a tree structure (Dendrogram) on the
C_kwhereanedge C i > C'_jimplies Ckic C’_j;

® Crisp clusterings: Conventional characteristic functions a_k for each
Cluster C_k

Q. ‘)g —{0,1} with ai(z € &) = {{1] i ; gi

4

&

'Fuzzy clusterings: fuzzy membership function a _k for each Cluster C_k

aj : X —[0,1]
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Metric variant of Single / Complete link clustering

® Exclusive - non overlapping clusters; non-exclusive - overlapping
clusters

® Hierarchical clustering = imposes a tree structure (Dendrogram) on the
C kwhereanedge C_i-> C'_jimpliesC icC’_j;

® Crisp clusterings: Conventional characteristic functions a_k for each
Cluster C_k
1 ze(

ap X = {0,1} with ap(z e X) = {O véc

°Fuzzy clusterings: fuzzy membership function a _k for each Cluster C_k

ap : X —[0,1]
ks
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Vietric variant of Single / Complete link clustering

® Metric variant of Single / Complete link clustering: Hierarchical, crisp,
non-overlapping s

¢ Completely analogous to graph clustering case: Start with singletons
and on each level of the dendrogram merge two clusters with minimal
distance (cost)

® Single link:
d(Cry, Chy) = min

T — Tne
{n1,n2len; €Cpy Arng €Cry } | | " " H

® Complete link:

d(Cr,,Cry) = max ||, — Tns|

{n1,m2|Tn4 GCA-lAi‘n-}_ECkQ}
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® Metric variant of Single / Complete link clustering: Hierarchical, crisp,
non-overlapping %

¢ Completely analogous to graph clustering case: Start with singletons
and on each level of the dendrogram merge two clusters with minimal
distance (cost)

s
® Single link:
d(C,,Cr,) = min Ty — T
( 1 2) {n1,n2|eny €Ciy Atng€Ciq } || n] n.2||
® Complete link:
d(Cr,,Cry) = max ||, — @y

{rn1,n2|rny Gck]_ ATng ECkQ }

® Metric variant of Single / Complete link clustering: Hierarchical, crisp,
non-overlapping

¢ Completely analogous to graph clustering case: Start with singletons
and on each level of the dendrogram merge two clusters with minimal
distance (cost)

® Single link:
d(Cr,,Cry ) = min Ty — Ly
( 1 2) {n1,n2)En €Cky ATngyECky } || n1 nzH
® Complete link: .
d(Cr,,Cry) = max ||, — Tns|

{n1,m2|Tn4 GCA-lAi‘n-}_ECkQ}
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K-Means Clustering

®General idea (also valid in graph clustering): Optimize objective function
that formalizes clustering paradigm.

® K-Means: Optimize intra cluster coherence:

® Describe cluster C_k by prototype u_k; prototype need not be an
actual pattern (If so, algorithm works with slight modifications as well)

K
® Determine cluster for each pattern x_n by nearest neighbour rule:

C(xn) = ka & ||Tn — pp, || = min ||z, — pi|
2
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®General idea (also valid in graph clustering): Optimize objective function
that formalizes clustering paradigm.

® K-Means: Optimize intra cluster coherence:
® Describe cluster C_k by prototype u_k; prototype need not be an
actual pattern (If so, algorithm works with slight modifications as well)

ks
® Determine cluster for each pattern x_n by nearest neighbour rule:

C(xn) = ka ¢ ||2n — pg, || = min ||z, — g ]
z
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® K-Means: Optimize intra cluster coherence:

® Find prototypes by optimizing objective function modeling intra
cluster coherence as mean square error

K
JSQE = Z Z ||-rn - nukllz

k=1 {n|.1‘n EC;.-}

) 1
—dJSQE ; 0 |:> #A = 1A E Iy
e ] gojrecn)
n|ra€Cr

ks

® > cluster prototypes are barycenters (,centers of gravity“) of their
clusters.

® K-Means: Optimize intra cluster coherence:

® Find prototypes by optimizing objective function modeling intra
cluster coherence as mean square error

K
JSQE = Z Z ||-Tn - J“R'“Q

k=1 {'Ill.{‘n Gck} [%

dJsop ! kL
e lo = wepn ¥ m

|Ck | {nl.l'n ECk}

® > cluster prototypes are barycenters (,centers of gravity*) of their
clusters.
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® K-Means: Optimize intra cluster coherence:

® Find prototypes by optimizing objective function modeling intra
cluster coherence as mean square error

K
JSQE = Z Z ||-rn - nukllz

k=1 {n|z,eC
{nl| r[.%} [

dJsop ! L
_dz‘iﬁ =0 > p = C Z T,

d {nlrneCi}

® > cluster prototypes are barycenters (,centers of gravity“) of their
clusters.
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® K-Means: Optimize intra cluster coherence:

® Find prototypes by optimizing objective function modeling intra
cluster coherence as mean square error

K
JSQE = Z Z ||-Tn - J“R'“Q

k=1 {12 |.{‘n Gck}
K

) 1
dJSQE é 0 |::> Hz‘ = — Z Ly
E k] penei)
n|rn€Cl

® > cluster prototypes are barycenters (,centers of gravity*) of their
clusters.
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® K-Means: Optimize intra cluster coherence:

® Find prototypes by optimizing objective function modeling intra
cluster coherence as mean square error

%
K
Jsqe=2 D |l
k=1 {n|.1‘n EC;.-}
&
1

1
dJsqe ! k_
% =0 > n= E Ty

= {nlzneCi}

® > cluster prototypes are barycenters (,centers of gravity“) of their
clusters.

® K-Means: Optimize intra cluster coherence:

® Find prototypes by optimizing objective function modeling intra
cluster coherence as mean square error

K
JSQE = Z Z ||-Tn - J“R'“Q

k=1 {12 |.{‘n Gck}

. 1
dJsqe ; 0 |::> H‘A =1, Z Ln
dpg |Cr| fnlomec
[% n|.1n€ k}

® > cluster prototypes are barycenters (,centers of gravity*) of their
clusters.
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® K-Means: Optimize intra cluster coherence:

® Find prototypes by optimizing objective function modeling intra
cluster coherence as mean square error

K
Jsqe=>_ > llwn— il

k=1 {11|In€c,‘,.-} [%
1
dJsqr L E_ _~
T =0 —> p |CA-|{ Ec }r,).
n|rp€Cr

® > cluster prototypes are barycenters (,centers of gravity“) of their
clusters.
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® K-Means: Optimize intra cluster coherence:

® Find prototypes by optimizing objective function modeling intra
cluster coherence as mean square error

K
Tsqe=Y_ > llen— mlf

k=1 {'n|-l'n Gck}

dJsoe ! k1
%?;:0 |::> o= Z L

Cs.
| I'l {n|.m€Ck}

® > cluster prototypes are barycenters (,centers of gravity*) of their
clusters.
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® K-Means: Optimize intra cluster coherence:

® Find prototypes by optimizing objective function modeling intra
cluster coherence as mean square error

K
Jsqe=>_ > llwn— il

k=1 {11|In EC,‘,,-}

dJsop ! k_ 1
TE20 = M= Y

Cy;
| k | {n|.rﬂECk}

® > cluster prototypes are barycenters (,centers of gravity“) of their
clusters. .

[3]
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K-Means Clustering
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K-Means Clustering

® Dunn Index:

D= min (min ( d1 (Cry . Cry) ))
ki€ [1K] \kze[1.K] \ maxp, g1, 1] d2(Cry )

where dy(Cy,,Cy,) is the distance function between two clusters defined by

Ly
d1(Cry . Ciy) = min

= N
{(“l?ﬂz)lrnléck,/\rngech}” ™ na|

B

(that is the single link distance from SAHN).

The “diameter” dz of the clusters is defined by
da(C;) = max

Ty, — T
{(nl‘HQ)IInléclﬁfnzeci}” " n2“

® Dunn Index:

D= mi ( . ( dy (Cy, Cry) ))
= 1min min
k1€[1.K9§ k2e[1.K] \ MaXp, (1, K] do (Cks)

where di(Cp,,Cy,) is the distance function between two clusters defined by

d1(Cry.Ciy) = min Tpy — @
( 1 2) {(n1:12) [y €Cky AZny €Cky} ” ny nz“
(that is the single link distance from SAHN).
The “diameter” dz of the clusters is defined by
da(C;) = max ”‘Tﬂl - Iﬂz“

{{n1.n2)|zn, €CiATn, Ci}
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® Dunn Index:

. . ( d‘l {‘Ck‘l 'Ckg ) ))
D= min min —
kﬁ[l.l\'& k2€[LK] \ MaXp,e(1,K) da(Cry)

where dy(Cy,,Cy,) is the distance function between two clusters defined by

d1(Cry ,Ciy ) = min [|n, — Znsl|

{(n1.m2)|zny ECry ATny E(Tkz}

(that is the single link distance from SAHN).
The “diameter” da of the clusters is defined by

1max
{(n1,n2)|2n, €CiAzn, €C

d2(C;) =

}”‘Pm - Tnz“

[7
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Example Application: Clustering locations

® Problem: How do we distinguish socially relevant clusters (candidates
for groups) from quasi groups? |

° Compute clusterings over period of time: Good candidates: clusters
that appear over and over again, clusters that appear periodically

® Establish threshold for distance in clusters: Human “social distance”:
A few meters (if groups are very small); few tens of meters (if groups
are medium sized)

® Include velocities: If divergent - no group

&
DBSCAN

® K-Means is ,OK* as cluster algorithm, but has certain disadvantages:
® favors spherical clusters
® need to know K

® o notion of noise

® Alternative > DBSCAN [4]
(de facto state of the art):

® |dea: Two parameters: minPt, Ek

® Rough idea: iterate: A y [5]
visit previously unseen pattern x:
if in e-neighborhood {x‘} of x: [{x'}|=2 minPt then
start new cluster: include x and {x'} and those of their
e-neighborhoods {x“} that are dense enough (|{x“}|=
minPt), etc.
else: X is noise

® K-Means is .OK" as cluster algorithm, but has certain disadvantages:
® favors spherical clusters
® need to know K

® o notion of noise

® Alternative = DBSCAN [4]
(de facto state of the art):

® |dea: Two parameters: minPt, E[%

® Rough idea: iterate: AN . [5]
visit previously unseen pattern x:
if in e-neighborhood {x'} of x: |{x'}|=2 minPt then
start new cluster: include x and {x‘} and those of their
e-neighborhoods {x“} that are dense enough (|{x"}|=2
minPt), etc.
else: x is noise
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® K-Means is ,OK* as cluster algorithm, but has certain disadvantages:
® favors spherical clusters
® need to know K

® o notion of noise

® Alternative > DBSCAN [4]
(de facto state of the art):

® |dea: Two parameters: minPt, €

® Rough idea: iterate:
visit previously unseen pattern x:
if in e-neighborhood {x‘} of x: [{x'}|=2 minPt then
start new cluster: include x and {x'} and those of their
e-neighborhoods {x“} that are dense enough (|{x“}|=
minPt), etc.
else: x is noise

CIEN ,
K-Means Clustering

® Advantages of DBSCAN:
® We do not need to know K in advance
® arbitrarily shaped clusters Iz

® notion of noise

¢ Disadvantages:

® instead of having to know K, we need to ,guess‘ minPt and €
instead (can be a problem for high dimensional pattern spaces (=
curse of dimensionality))

® original DBSCAN has fixed (minPt, €) - problems when cluster
density varies

@, _
Fuzzy C-Means Clustering

® Interesting aspect: How do we determine correct number k of clusters?
(Same problem with graph clustering: where to cut dendrogram?)

® Answer: Compute for every k clusterings; chose the best clustering with
a cluster quality measure

® Cluster quality measures for metric case: (countless variants exist in
literature; for an overview: e.g. [2]) (Objectivg functions modeling
clustering paradigm):

® Dunn-Index

® Entropy based indices

® K-Means was a crisp algorithm. Now: fuzzy variant

® Reformulate K-Means objective function with membership matrix
. Membership of pattern x,, in class C,

N K
Jsor = Z Z Froke||n — pie] |2

n=1 k=1

¢ optimization criterion
d.]_gQE/d,uk =0

¢ together with non-overlaping constraint
Yn(3k(rr = 1) A (K # k) = (rir = 0)))
leads to well known K-Means

.‘\'r :\r
i = Zn=1 ‘7‘)1};11771/2,1:1 Tnk = (1/|C}-|) an:nec,\. T
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® K-Means was a crisp algorithm. Now: fuzzy variant

® Reformulate K-Means objective function with membership matrix
. Membership of pattern x,, in class Cy

N K
Jsqr = ZZ o |r— |

n=1 k=1

® optimization criterion
dJsop/dp; =0
° together with non-overlaping constraint
Yn(Fk(re = 1) A (K # k) = (rpe = 0)))

leads to well known K-Means

.'\‘r .‘\'r
Hi = Zn:l '1',1.1;117,1/2_,1:1 Tnk = (1/|CA|) Zﬂl.l'neck Tn

CIEN ,
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® K-Means was a crisp algorithm. Now: fuzzy variant

® Reformulate K-Means objective function with membership matrix
. Membership of pattern x,, in class C,

K K
Tsap =2 D ragllen — il

n=1 k=1

¢ optimization criterion
dJsop/dpr =0
¢ together with non-overlaping constraint
Yn(Fk(rge = 1) A (K # k) = (rae = 0)))

leads to well known K-Means

.‘\'r .'\‘r
i = Zn=1 ‘rnklrn/z,q:l Tnk = (1/|Ck|] Z”Ll.neck Ty
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DBSCAN

® K-Means was a crisp algorithm. Now: fuzzy variant

® Reformulate K-Means objective function with membership matrix
. Membership of pattern x, in class C,

kK K
']SQE = Z Z Tn.k[ilmn - ;Uffl I2
i

n=1 k=1

® optimization criterion
(1J5'QE/(1}l-k =0
° together with non-overlaping constraint
Yn(Fk(re = 1) A (K # k) = (rpe = 0)))

leads to well known K-Means

.'\‘r .‘\'r
HE = Zn=l 'rnklrn/zn=1 Tk = (1/|CL|) an.l'nECk Tn

® K-Means is .OK" as cluster algorithm, but has certain disadvantages:
® favors spherical clusters
® need to know K

® o notion of noise

® Alternative > DBSCAN [4]
(de facto state of the art):
® |dea: Two parameters: minPt, €

B
® Rough idea: iterate: AN . [5]
visit previously unseen pattern x:
if in e-neighborhood {x'} of x: |{x'}|=2 minPt then
start new cluster: include x and {x‘} and those of their
e-neighborhoods {x“} that are dense enough (|{x"}|2
minPt), etc.
else: x is noise
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® Dunn Index:

b ( ( A1 (i, Chy) ))
= min mi1
k1<[1,K] \ k2e[d h] maXp, e, k] 42(Crs )

where dy(Cy,,Cy,) is the distance function between two clusters defined by

d1(Cry.Cry) = min Tpy — T
( 1 2 {(nleHZ}IIn]eckl-"\rngeckg} “ ny ng”
(that is the single link distance from SAHN).
The “diameter” da of the clusters is defined by
&
da(C;) = max [|2ry, — Zns|

{(n1 JZ")II‘H[ECH\TBGEC }

[7
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® K-Means was a crisp algorithm. Now: fuzzy variant

® Reformulate K-Means objective function with membership matrix

r.«. Membership of pattern x, in class Cy

N K
JsQe =Y > rakllen — il

n=1 k=1

¢ optimization criterion
dJsop/dp; =0
¢ together with non-overlaping constraint
Yo(Jk(r =) A (K #k)— (r

leads to well known K-Means

.‘Nr .'\r
Hi: = Zn:l ‘?‘?lk‘.l“fl/th:l ?‘Hé‘i = (1/|C}\|) Zn|.1.'nECk Tn

i
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® K-Means was a crisp algorithm. Now: fuzzy variant

® Reformulate K-Means objective function with membership matrix
r«. Membership of pattern x,, in class C,

N K
JsqE = ZZ ok | |20 — pok|?

n=1 k=1

® optimization criterion
dJS'QE/dF-A- =0
° together with non-overlaping constraint
Vn(Ik(r = 1) A

(K # k) = (rne = 0)))

leads to well known K-Means

.'\r .‘\‘r
Mt = Zn:l 'rnk'rn[%/zn=1 Tnk = (1/|CL|) Zﬂ|£71€ck T

® Now modify objective function to:
N K
GSQE = ZZ ri) ™ |20 — pei|
=1 k=1

¢ Exponent m models degree of fuzzyness:
m - 1 : K-Means (crisp case);

m = ©: r,.~> 1/K (where K is the number of clusters)
® Optimize the obj. fct. under the conditions:

Yo, : Za;, Tn) = Z ok =1

k=1
N N

VG an{rn):Zr‘nk =0
n=1 n=1

nkt = 0)))
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® Now modify objective function to:

JGbQE_ZZ Prk) |1n—ﬂl\”2

n=1 k=1

® Exponent m models degree of fuzzyness:
m = 1: K-Means (crisp case);

m = ©:r,~> 1/K (where K is the number of clusters)

® Optimize the obj. fct. under the conditions:

K
Vo, Z“k Z ok = 1

® Now modify objective function to:
K

Z k) |In_ﬂkll2

1 k=1

IIM-"

¢ Exponent m models degree of fuzzyness:
m - 1 : K-Means (crisp case);

m = ©: r,.~> 1/K (where K is the number of clusters)
b

® Optimize the obj. fct. under the conditions:

Yo, : Za;, Tn) = Z ok =1

k=1 k=1
N N N
VG ZOA Z e > 0 VG Zo-k{.rn):Zr‘nk>D
n=1 n=1 n=1
CIEN , @, _
Fuzzy C-Means Clustering Fuzzy C-Means Clustering
® Now modify objective function to: ® Now modify objective function to:
N K N K
Jasqe =Y 3 ()™l — pil GsQ ZZZ ri) ™ |20 — pei|
n=1 k=1 =1 k=1

® Exponent m models degree of fuzzyness:
m = 1: K-Means (crisp case);

m—> ©:r,~> 1/K &where K is the number of clusters)

® Optimize the obj. fct. under the conditions:

K

Van : Z“k Z ok = 1

YC. Zak(rn):Zrnk >0
n=1 n=1

¢ Exponent m models degree of fuzzyness:
m - 1 : K-Means (crisp case);

m = ©: r,.~> 1/K (where K is the number of clusters)

® Optimize the obj. fct. under the conditions:

Yo, : Za;, Tn) = Z nk:l%

k=1
N N

VG an{rn):Zr‘nk =0
n=1 n=1
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® K-Means was a crisp algorithm. Now: fuzzy variant

® Reformulate K-Means objective function with membership matrix
. Membership of pattern x,, in class Cy

N K
Jsqr = ZZ o |r— |

n=1 L'=[%

® optimization criterion
dJsop/dp; =0
° together with non-overlaping constraint
Vn(Fk(rae = 1) A (K # k) = (re = 0)))
leads to well known K-Means

.'\‘r .‘\'r
Hi = Zn:l '1',1.1;117,1/2_,1:1 Tnk = (1/|CA|) Zﬂl.l'neck Tn

CIEN ,
Fuzzy C-Means Clustering

® Result:
||7~n _.W\H —2 1
= )
;; ”ln .U,LH (@)
N P
T—— n=1"nk* (@@)

Z;}:l Tnk
® the result assumes that no patterns and prototypes coincide
Ynk: ||z, —pi||#0

if they do coincide, set r, =1 for x, =y and r, = 0 for x,, # p

@, _
Fuzzy C-Means Clustering

® Limit m > = gives:

® Limitm > 1 we get the nearest neighbor rule (K-Means) because:

Thk = 1/ ZA';&L TIIMHT)?R 1)+ 1)

Cpn —Hps
in the limit m—=>1 the first sum in the denominator becomes « if

||2n — p|] # ming<preg || — ||

and it becomes 0 if

2 — pui|| = miny<pr <k [Jen — ||

® Limit m > = gives:

® Limitm > 1 we get the nearest neighbor rule (K-Means) because:

Tk = 1/ Zl.’;ék Tllwll.[)m 1)4+1)

n—Hp!
in the limit m—=>1 the first sum in the denominator becomes « if

|n — pr|| # ming<cpreg ||2n — |

and it becomes 0 if

|27 — pr|| = miny<pr<ic |20 — pae||
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® Limit m > = gives:

® Limitm > 1 we get the nearest neighbor rule (K-Means) because:

2

Pk = 1/(Sp (=) ™) + 1)
in the limit m—=>1 the first sum in the denominator becomes « if

||2n — p|] # ming<preg || — ||

and it becomes 0 if

2 — pui|| = miny<pr <k [Jen — ||

CIEN ,
Fuzzy C-Means Clustering

® Limit m > = gives:

® Limitm > 1 we get the nearest neighbor rule (K-Means) because:

2

Pk = 1/((Dpr (=l m=1) 41)

Tn—Hpt
in the limit m—=>1 the first sum in the denominator becomes « if

|n — pr|| # ming<cpreg ||2n — |

and it becomes 0O if K

|27 — pr|| = miny<pr<ic |20 — pae||
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Fuzzy C-Means Clustering

® Limit m > = gives:

® Limitm > 1 we get the nearest neighbor rule (K-Means) because:

Tn— [}k 2
rak = /(T () »=1) + 1)

in the limit m—=>1 the first sum in the denominator becomes « if

||2n — p|] # ming<preg || — ||

and it becomes 0 if

2 — pui|| = miny<pr <k [Jen — ||

® Now modify objective function to:
N

K
Jasqe = D O (ri) ™ len — pil*

n=1 k=1
¢ Exponent m models degree of fuzzyness:

m - 1 : K-Means (crisp case);

m = ©: r,.~> 1/K (where K is the number of clusters)
i

® Optimize the obj. fct. under the conditions:

K K

Yo, : E ap(rn) = Z Pk = 1
k=1 k=1
N N

Ve i Y aw(za) =) ra >0

n=1 n=1
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® Fuzzy C-Means is “OK” as a non-crisp clustering alg. but (as K-
Means) favors spherical clusters 2 better approaches

® Example: Gaussian Mixture Models (GMM)

» Linear combination of Gaussians
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® For a distribution p(x|©) parametrized by a set of parameters ©
and iid data X = {x;,x,, ..., xy}, simple machine learning
corresponds to finding the © that best explains the data

® jid: Jidentically independently drawn" = p(X|0) = [[;p(x;|®)
® p(X|0) is called likelihood

° ,finding the © that best explains the data“:
Maximum Likelihood: @y;;, = argmaxg p(X|0) = Vg p(X|0) =0

® convenient: use log p(X|6) instead of p(X|6)
= log p(X|0) = ¥,;log p(x_i|©)
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