

Script generated by TTT

Title: groh: profile1 (27.05.2015)

Date: Wed May 27 08:22:56 CEST 2015

Duration: 82:49 min

Pages: 72

Social Gaming / Social Computing SS 2015

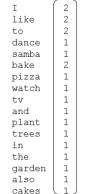
PD Dr. Georg Groh

Finding Clusters in Profiles

Examples for profile elements that can be embedded in metric spaces:

- Location & Velocity: Metric space: (ℝ³, || . ||)
- Text describing Interests: Metric space: ($R^{|Voc|}$, ||.||) where Voc denotes the Vocabulary of the text.

"I like to dance samba, bake pizza, watch tv and plant trees in the garden. I also like to bake cakes."



Often: Instead of term-frequency (tf) alone: use term-frequency * inverse document frequency (idf); idf = log (#of docs where t occurs / #of docs)

Finding Clusters in Profiles

- How do we compute clusters in metric spaces?
- Group models: How do we compute socially meaningful clusters in metric spaces (and thus avoid quasi-groups)?
- First some notations / basics:
 - In graph clustering we had: A graph clustering **C**={C_1, C_2, ..., C_K} is a partion of V into non-empty subsets C_k
 - Now: clustering $\mathscr{C}:\mathcal{X}\to\mathcal{I}$: mapping of a metric value space X to a set of cluster indices I
 - Clusterings can be:
 - exclusive or non-exclusive
 - crisp or fuzzy
 - hierarchical or non-hierarchical

Finding Clusters in Profiles

- How do we compute clusters in metric spaces?
- Group models: How do we compute socially meaningful clusters in metric spaces (and thus avoid quasi-groups)?
- First some notations / basics:
 - In graph clustering we had: A graph clustering **C**={C_1, C_2, ..., C_K} is a partion of V into non-empty subsets C_k
 - Now: clustering $\mathscr{C}:\mathcal{X}\to\mathcal{I}$: mapping of a metric value space X to a set of cluster indices I
 - Clusterings can be:
 - exclusive or non-exclusive
 - crisp or fuzzy
 - hierarchical or non-hierarchical

Finding Clusters in Profiles

- Exclusive → non overlapping clusters; non-exclusive → overlapping clusters
- Hierarchical clustering \rightarrow imposes a tree structure (Dendrogram) on the C k where an edge C i \rightarrow C' j implies C $\[\] \subset$ C'_j;
- $^{\bullet}$ Crisp clusterings: Conventional characteristic functions $\alpha_{-}k$ for each Cluster C_k

$$\alpha_k : \mathcal{X} \to \{0, 1\} \text{ with } \alpha_k(x \in \mathcal{X}) = \begin{cases} 1 & x \in \mathcal{C}_k \\ 0 & x \notin \mathcal{C}_k \end{cases}$$

Fuzzy clusterings: fuzzy membership function α k for each Cluster C k

$$\alpha_k: \mathcal{X} \to [0,1]$$

- How do we compute clusters in metric spaces?
- Group models: How do we compute socially meaningful clusters in metric spaces (and thus avoid quasi-groups)?
- First some notations / basics:
 - In graph clustering we had: A graph clustering **C**={C_1, C_2, ..., C_K} is a partion of V into non-empty subsets C_k
 - Now: clustering $\mathscr{C}:\mathcal{X}\to\mathcal{I}$: mapping of a metric value space X to a set of cluster indices I
 - Clusterings can be:
 - exclusive or non-exclusive
 - crisp or fuzzy
 - hierarchical or non-hierarchical

Finding Clusters in Profiles

- Exclusive → non overlapping clusters; non-exclusive → overlapping clusters
- Hierarchical clustering → imposes a tree structure (Dendrogram) on the
 C k where an edge C i → C' j implies C ki ⊂ C'_j;
- ullet Crisp clusterings: Conventional characteristic functions α_k for each Cluster C $_k$

$$\alpha_k : \mathcal{X} \to \{0,1\} \text{ with } \alpha_k(x \in \mathcal{X}) = \begin{cases} 1 & x \in \mathcal{C}_k \\ 0 & x \notin \mathcal{C}_k \end{cases}$$

Fuzzy clusterings: fuzzy membership function α k for each Cluster C k

$$\alpha_k: \mathcal{X} \to [0,1]$$

Finding Clusters in Profiles

- Exclusive → non overlapping clusters; non-exclusive → overlapping clusters
- Hierarchical clustering → imposes a tree structure (Dendrogram) on the C_k where an edge C_i → C'_j implies C_i ⊂ C'_j;
- $^{\bullet}$ Crisp clusterings: Conventional characteristic functions $\alpha_{_}k$ for each Cluster C $\,k$

$$\alpha_k : \mathcal{X} \to \{0, 1\} \text{ with } \alpha_k(x \in \mathcal{X}) = \begin{cases} 1 & x \in \mathcal{C}_k \\ 0 & x \notin \mathcal{C}_k \end{cases}$$

Fuzzy clusterings: fuzzy membership function α k for each Cluster C k

$$\alpha_k: \mathcal{X} \to [0,1]$$

- Metric variant of Single / Complete link clustering: Hierarchical, crisp, non-overlapping
- Completely analogous to graph clustering case: Start with singletons and on each level of the dendrogram merge two clusters with minimal distance (cost)
 - Single link:

$$d(\mathcal{C}_{k_1}, \mathcal{C}_{k_2}) = \min_{\{n_1, n_2 | x_{n_1} \in \mathcal{C}_{k_1} \land x_{n_2} \in \mathcal{C}_{k_2}\}} ||x_{n_1} - x_{n_2}||$$

Complete link:

$$d(\mathcal{C}_{k_1}, \mathcal{C}_{k_2}) = \max_{\{n_1, n_2 | x_{n_1} \in \mathcal{C}_{k_1} \land x_{n_2} \in \mathcal{C}_{k_2}\}} ||x_{n_1} - x_{n_2}||$$

- Metric variant of Single / Complete link clustering: Hierarchical, crisp, non-overlapping □
- Completely analogous to graph clustering case: Start with singletons and on each level of the dendrogram merge two clusters with minimal distance (cost)
 - Single link:

$$d(\mathcal{C}_{k_1}, \mathcal{C}_{k_2}) = \min_{\{n_1, n_2 | x_{n_1} \in \mathcal{C}_{k_1} \land x_{n_2} \in \mathcal{C}_{k_2}\}} ||x_{n_1} - x_{n_2}||$$

Complete link:

$$d(\mathcal{C}_{k_1}, \mathcal{C}_{k_2}) = \max_{\{n_1, n_2 | x_{n_1} \in \mathcal{C}_{k_1} \land x_{n_2} \in \mathcal{C}_{k_2}\}} ||x_{n_1} - x_{n_2}||$$

- Metric variant of Single / Complete link clustering: Hierarchical, crisp, non-overlapping
- Completely analogous to graph clustering case: Start with singletons and on each level of the dendrogram merge two clusters with minimal distance (cost)
 - Single link:

$$d(\mathcal{C}_{k_1}, \mathcal{C}_{k_2}) = \min_{\{n_1, n_2 | x_{n_1} \in \mathcal{C}_{k_1} \land x_{n_2} \in \mathcal{C}_{k_2}\}} ||x_{n_1} - x_{n_2}||_{\mathbb{R}}$$

Complete link:

$$d(\mathcal{C}_{k_1}, \mathcal{C}_{k_2}) = \max_{\{n_1, n_2 | x_{n_1} \in \mathcal{C}_{k_1} \land x_{n_2} \in \mathcal{C}_{k_2}\}} ||x_{n_1} - x_{n_2}||$$

K-Means Clustering

- General idea (also valid in graph clustering): Optimize objective function that formalizes clustering paradigm.
- K-Means: Optimize intra cluster coherence:
 - Describe cluster C_k by prototype μ_k ; prototype need not be an actual pattern (If so, algorithm works with slight modifications as well)
 - Determine cluster for each pattern x n by nearest neighbour rule:

$$\mathscr{C}(x_n) = k_a \leftrightarrow ||x_n - \mu_{k_a}|| = \min_i ||x_n - \mu_k||$$

■ [•] K-Means Clustering

- K-Means: Optimize intra cluster coherence:
 - Find prototypes by optimizing objective function modeling intra cluster coherence as mean square error

$$J_{\text{SQE}} = \sum_{k=1}^{K} \sum_{\{n | x_n \in \mathcal{C}_k\}} ||x_n - \mu_k||^2$$

$$\frac{\mathrm{d}J_{\mathrm{SQE}}}{\mathrm{d}\mu_k} \stackrel{!}{=} 0 \quad \Longrightarrow \quad \mu^k = \frac{1}{|\mathcal{C}_k|} \sum_{\substack{\{n \mid x_n \in \mathcal{C}_k\}\\ \geqslant k}} x_n$$

→ cluster prototypes are barycenters ("centers of gravity") of their clusters.

- •General idea (also valid in graph clustering): Optimize objective function that formalizes clustering paradigm.
- K-Means: Optimize intra cluster coherence:
 - ullet Describe cluster C_k by prototype μ_k ; prototype need not be an actual pattern (If so, algorithm works with slight modifications as well)
 - Determine cluster for each pattern x_n by nearest neighbour rule:

$$\mathscr{C}(x_n) = k_a \leftrightarrow ||x_n - \mu_{k_a}|| = \min_i ||x_n - \mu_k||$$

K-Means Clustering

- K-Means: Optimize intra cluster coherence:
 - Find prototypes by optimizing objective function modeling intra cluster coherence as mean square error

$$J_{\text{SQE}} = \sum_{k=1}^{K} \sum_{\{n \mid x_n \in \mathcal{C}_k\}} ||x_n - \mu_k||^2$$

$$\frac{\mathrm{d}J_{\mathrm{SQE}}}{\mathrm{d}\mu_k} \stackrel{!}{=} 0 \quad \square \qquad \qquad \mu^k = \frac{1}{|\mathcal{C}_k|} \sum_{\{n \mid x_n \in \mathcal{C}_k\}} x_n$$

→ cluster prototypes are barycenters ("centers of gravity") of their clusters.

- K-Means: Optimize intra cluster coherence:
 - Find prototypes by optimizing objective function modeling intra cluster coherence as mean square error

$$J_{\text{SQE}} = \sum_{k=1}^{K} \sum_{\{n|x_n \in \mathcal{C}_k\}} ||x_n - \mu_k||^2$$

$$\frac{dJ_{\text{SQE}}}{d\mu_k} \stackrel{!}{=} 0 \quad \Longrightarrow \quad \mu^k = \frac{1}{|\mathcal{C}_k|} \sum_{\{n|x_n \in \mathcal{C}_k\}} x_n$$

→ cluster prototypes are barycenters ("centers of gravity") of their clusters.

K-Means Clustering

- K-Means: Optimize intra cluster coherence:
 - Find prototypes by optimizing objective function modeling intra cluster coherence as mean square error

$$J_{\text{SQE}} = \sum_{k=1}^{K} \sum_{\{n|x_n \in \mathcal{C}_k\}} ||x_n - \mu_k||^2$$

$$\frac{dJ_{\text{SQE}}}{d\mu_k} \stackrel{!}{=} 0 \quad \Longrightarrow \quad \mu^k = \frac{1}{|\mathcal{C}_k|} \sum_{\{n|x_n \in \mathcal{C}_k\}} x_n$$

 → cluster prototypes are barycenters ("centers of gravity") of their clusters.

- K-Means: Optimize intra cluster coherence:
 - Find prototypes by optimizing objective function modeling intra cluster coherence as mean square error

$$J_{\text{SQE}} = \sum_{k=1}^{K} \sum_{\{n \mid x_n \in \mathcal{C}_k\}} ||x_n - \mu_k||^2$$

$$\frac{dJ_{\text{SQE}}}{d\mu_k} \stackrel{!}{=} 0 \quad \Longrightarrow \quad \mu^k = \frac{1}{|\mathcal{C}_k|} \sum_{\{n \mid x_n \in \mathcal{C}_k\}} x_n$$

→ cluster prototypes are barycenters ("centers of gravity") of their clusters.

- K-Means: Optimize intra cluster coherence:
 - Find prototypes by optimizing objective function modeling intra cluster coherence as mean square error

$$J_{\text{SQE}} = \sum_{k=1}^{K} \sum_{\{n | x_n \in \mathcal{C}_k\}} ||x_n - \mu_k||^2$$

$$\frac{\mathrm{d}J_{\mathrm{SQE}}}{\mathrm{d}\mu_k} \stackrel{!}{=} 0 \quad \Longrightarrow \quad \mu^k = \frac{1}{|\mathcal{C}_k|} \sum_{\{n \mid x_n \in \mathcal{C}_k\}} x_n$$

 → cluster prototypes are barycenters ("centers of gravity") of their clusters.

- K-Means: Optimize intra cluster coherence:
 - Find prototypes by optimizing objective function modeling intra cluster coherence as mean square error

$$J_{\text{SQE}} = \sum_{k=1}^{K} \sum_{\{n|x_n \in \mathcal{C}_k\}} ||x_n - \mu_k||^2$$

$$\frac{dJ_{\text{SQE}}}{d\mu_k^k} \stackrel{!}{=} 0 \quad \Longrightarrow \quad \mu^k = \frac{1}{|\mathcal{C}_k|} \sum_{\{n|x_n \in \mathcal{C}_k\}} x_n$$

→ cluster prototypes are barycenters ("centers of gravity") of their clusters.

K-Means Clustering

- K-Means: Optimize intra cluster coherence:
 - Find prototypes by optimizing objective function modeling intra cluster coherence as mean square error

$$J_{\text{SQE}} = \sum_{k=1}^{K} \sum_{\{n | x_n \in \mathcal{C}_k\}} ||x_n - \mu_k||^2$$

$$\frac{\mathrm{d}J_{\mathrm{SQE}}}{\mathrm{d}\mu_{k|_{k}}} \stackrel{!}{=} 0 \quad \qquad \qquad \mu^{k} = \frac{1}{|\mathcal{C}_{k}|} \sum_{\{n \mid x_{n} \in \mathcal{C}_{k}\}} x_{n}$$

 $\stackrel{\bullet}{\to}$ cluster prototypes are barycenters ("centers of gravity") of their clusters.

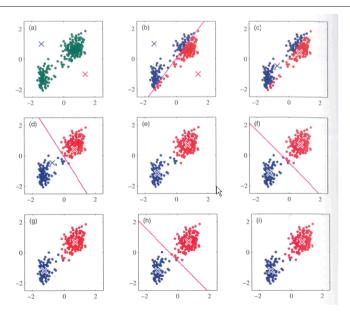
- K-Means: Optimize intra cluster coherence:
 - Find prototypes by optimizing objective function modeling intra cluster coherence as mean square error

$$J_{\text{SQE}} = \sum_{k=1}^{K} \sum_{\{n | x_n \in \mathcal{C}_k\}} ||x_n - \mu_k||^2$$

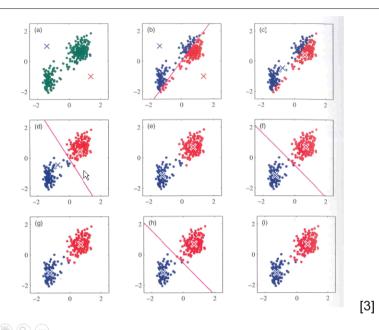
$$\frac{\mathrm{d}J_{\mathrm{SQE}}}{\mathrm{d}\mu_{k}} \stackrel{!}{=} 0 \quad \square \qquad \qquad \mu^{k} = \frac{1}{|\mathcal{C}_{k}|} \sum_{\{n \mid x_{n} \in \mathcal{C}_{k}\}} x_{n}$$

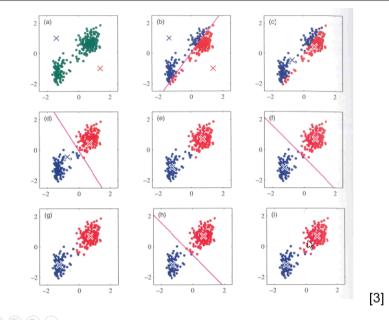
→ cluster prototypes are barycenters ("centers of gravity") of their clusters.

K-Means Clustering



K-Means Clustering





K-Means Clustering

K-Means Clustering

Dunn Index:

$$D = \min_{k_1 \in [1,K]} \left(\min_{k_2 \in [1,K]} \left(\frac{d_1(\mathcal{C}_{k_1}, \mathcal{C}_{k_2})}{\max_{k_2 \in [1,K]} d_2(\mathcal{C}_{k_3})} \right) \right)$$

where $d_1(\mathcal{C}_{k_1}, \mathcal{C}_{k_2})$ is the distance function between two clusters defined by

$$d_1(\mathcal{C}_{k_1}, \mathcal{C}_{k_2}) = \min_{\{(n_1, n_2) | x_{n_1} \in \mathcal{C}_{k_1} \land x_{n_2} \in \mathcal{C}_{k_2}\}} ||x_{n_1} - x_{n_2}||$$

(that is the single link distance from SAHN).

The "diameter" d_2 of the clusters is defined by

$$d_2(\mathcal{C}_i) = \max_{\{(n_1,n_2) | x_{n_1} \in \mathcal{C}_i \land x_{n_2} \in \mathcal{C}_i\}} ||x_{n_1} - x_{n_2}||$$

Dunn Index:

$$D = \min_{k_1 \in [1,K]} \left(\min_{k_2 \in [1,K]} \left(\frac{d_1(\mathcal{C}_{k_1},\mathcal{C}_{k_2})}{\max_{k_3 \in [1,K]} d_2(\mathcal{C}_{k_3})} \right) \right)$$

where $d_1(\mathcal{C}_{k_1}, \mathcal{C}_{k_2})$ is the distance function between two clusters defined by

$$d_1(\mathcal{C}_{k_1},\mathcal{C}_{k_2}) = \min_{\{(n_1,n_2) | x_{n_1} \in \mathcal{C}_{k_1} \land x_{n_2} \in \mathcal{C}_{k_2}\}} ||x_{n_1} - x_{n_2}||$$

(that is the single link distance from SAHN).

The "diameter" d_2 of the clusters is defined by

$$d_2(\mathcal{C}_i) = \max_{\{(n_1,n_2) | x_{n_1} \in \mathcal{C}_i \wedge x_{n_2} \in \mathcal{C}_i\}} ||x_{n_1} - x_{n_2}||$$

Dunn Index:

$$D = \min_{k_1 \in [1, K]} \left(\min_{k_2 \in [1, K]} \left(\frac{d_1(\mathcal{C}_{k_1}, \mathcal{C}_{k_2})}{\max_{k_3 \in [1, K]} d_2(\mathcal{C}_{k_3})} \right) \right)$$

where $d_1(C_{k_1}, C_{k_2})$ is the distance function between two clusters defined by

$$d_1(\mathcal{C}_{k_1},\mathcal{C}_{k_2}) = \min_{\{(n_1,n_2) | x_{n_1} \in \mathcal{C}_{k_1} \land x_{n_2} \in \mathcal{C}_{k_2}\}} ||x_{n_1} - x_{n_2}||$$

(that is the single link distance from SAHN). The "diameter" d_2 of the clusters is defined by

$$d_2(\mathcal{C}_i) = \max_{\{(n_1,n_2) | x_{n_1} \in \mathcal{C}_i \wedge x_{n_2} \in \mathcal{C}_i\}} ||x_{n_1} - x_{n_2}||$$

Example Application: Clustering locations

- Problem: How do we distinguish socially relevant clusters (candidates for groups) from quasi groups?
 - Compute clusterings over period of time: Good candidates: clusters that appear over and over again, clusters that appear periodically
 - Establish threshold for distance in clusters: Human "social distance": A few meters (if groups are very small); few tens of meters (if groups are medium sized)

K-Means is "OK" as cluster algorithm, but has certain disadvantages:

• Include velocities: If divergent → no group

DRSCAN

- K-Means is "OK" as cluster algorithm, but has certain disadvantages:

 - need to know K
 - no notion of noise
- Alternative → DBSCAN [4] (de facto state of the art):
 - Idea: Two parameters: minPt, ε
 - Rough idea: iterate:

visit previously unseen pattern x:

if in ε-neighborhood {x'} of x: |{x'}|≥ minPt then start new cluster: include x and {x'} and those of their ε-neighborhoods {x"} that are dense enough (|{x"}|≥ minPt), etc.

else: x is noise

- - favors spherical clusters

- N
 - [5]

Rough idea: iterate:

(de facto state of the art):

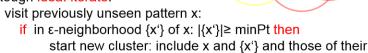
Idea: Two parameters: minPt, ε

favors spherical clusters

need to know K

no notion of noise

• Alternative → DBSCAN [4]



ε-neighborhoods {x"} that are dense enough (|{x"}|≥ minPt), etc.

[5]

else: x is noise

K-Means is "OK" as cluster algorithm, but has certain disadvantages:

N

- favors spherical clusters
- need to know K
- no notion of noise
- Alternative → DBSCAN [4] (de facto state of the art):
 - Idea: Two parameters: minPt, ε
 - Rough idea: iterate: visit previously unseen pattern x:

if in ε-neighborhood {x'} of x: |{x'}₁|≥ minPt then start new cluster: include x and {x'} and those of their ε-neighborhoods {x''} that are dense enough (|{x''}₁|≥ minPt), etc.

else: x is noise

K-Means Clustering

- Interesting aspect: How do we determine correct number k of clusters? (Same problem with graph clustering: where to cut dendrogram?)
- Answer: Compute for every k clusterings; chose the best clustering with a cluster quality measure
- Cluster quality measures for metric case: (countless variants exist in literature; for an overview: e.g. [2]) (Objective functions modeling clustering paradigm):
 - Dunn-Index
 - Entropy based indices
 - ...

- Advantages of DBSCAN:
 - We do not need to know K in advance
 - arbitrarily shaped clusters
 - notion of noise
- Disadvantages:

[5]

- instead of having to know K, we need to "guess" minPt and ϵ instead (can be a problem for high dimensional pattern spaces (\rightarrow curse of dimensionality))
- ullet original DBSCAN has fixed (minPt, ϵ) \rightarrow problems when cluster density varies

■ [•] Fuzzy C-Means Clustering

- K-Means was a crisp algorithm. Now: fuzzy variant
- Reformulate K-Means objective function with membership matrix r_{nk} : Membership of pattern x_n in class C_k

$$J_{SQE} = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n - \mu_k||^2$$

optimization criterion

$$\mathrm{d}J_{SQE}/\mathrm{d}\mu_k = 0$$

together with non-overlaping constraint

$$\forall n(\exists k(r_{nk} = 1) \land ((k' \neq k) \rightarrow (r_{nk'} = 0)))$$

leads to well known K-Means

$$\mu_k = \sum_{n=1}^{N} r_{nk} x_n / \sum_{n=1}^{N} r_{nk} = (1/|\mathcal{C}_k|) \sum_{n|x_n \in \mathcal{C}_k} x_n$$

- K-Means was a crisp algorithm. Now: fuzzy variant
- $^{\bullet}$ Reformulate K-Means objective function with membership matrix $r_{nk}\!\!:$ Membership of pattern x_n in class C_k

$$J_{SQE} = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n - \mu_k||^2$$

optimization criterion

$$\mathrm{d}J_{SQE}/\mathrm{d}\mu_k = 0$$

together with non-overlaping constraint

$$\forall n(\exists k(r_{nk} = 1) \land ((k' \neq k) \rightarrow (r_{nk'} = 0)))$$

leads to well known K-Means

$$\mu_k = \sum_{n=1}^{N} r_{nk} x_n / \sum_{n=1}^{N} r_{nk} = (1/|\mathcal{C}_k|) \sum_{n|x_n \in \mathcal{C}_k} x_n$$

- K-Means was a crisp algorithm. Now: fuzzy variant
- Reformulate K-Means objective function with membership matrix r_{nk} : Membership of pattern x_n in class C_k

$$J_{SQE} = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n - \mu_k||^2$$

optimization criterion

$$\mathrm{d}J_{SQE}/\mathrm{d}\mu_k = 0$$

together with non-overlaping constraint

$$\forall n(\exists k(r_{nk}=1) \land ((k' \neq k) \rightarrow (r_{nk'}=0)))$$

leads to well known K-Means

$$\mu_k = \sum_{n=1}^{N} r_{nk} x_n / \sum_{n=1}^{N} r_{nk} = (1/|\mathcal{C}_k|) \sum_{n|x_n \in \mathcal{C}_k} x_n$$

- K-Means was a crisp algorithm. Now: fuzzy variant
- Reformulate K-Means objective function with membership matrix r_{nk} : Membership of pattern x_n in class C_k

$$J_{SQE} = \sum_{n=1}^{M} \sum_{k=1}^{K} r_{nk} ||x_n - \mu_k||^2$$

optimization criterion

$$\mathrm{d}J_{SQE}/\mathrm{d}\mu_k = 0$$

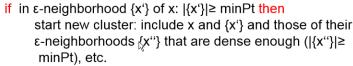
together with non-overlaping constraint

$$\forall n(\exists k(r_{nk} = 1) \land ((k' \neq k) \rightarrow (r_{nk'} = 0)))$$

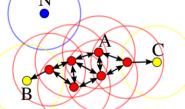
leads to well known K-Means

$$\mu_k = \sum_{n=1}^{N} r_{nk} x_n / \sum_{n=1}^{N} r_{nk} = (1/|\mathcal{C}_k|) \sum_{n|x_n \in \mathcal{C}_k} x_n$$

- K-Means is "OK" as cluster algorithm, but has certain disadvantages:
 - favors spherical clusters
 - need to know K
 - no notion of noise
- Alternative → DBSCAN [4] (de facto state of the art):
 - Idea: Two parameters: minPt, ε
 - Rough idea: iterate: visit previously unseen pattern x:



else: x is noise



[5]

Dunn Index:

$$D = \min_{k_1 \in [1,K]} \left(\min_{k_2 \in [1,K]} \left(\frac{d_1(\mathcal{C}_{k_1}, \mathcal{C}_{k_2})}{\max_{k_3 \in [1,K]} d_2(\mathcal{C}_{k_3})} \right) \right)$$

where $d_1(C_{k_1}, C_{k_2})$ is the distance function between two clusters defined by

$$d_1(\mathcal{C}_{k_1},\mathcal{C}_{k_2}) = \min_{\{(n_1,n_2) | x_{n_1} \in \mathcal{C}_{k_1} \land x_{n_2} \in \mathcal{C}_{k_2}\}} ||x_{n_1} - x_{n_2}||$$

(that is the single link distance from SAHN).

The "diameter" d_2 of the clusters is defined by

$$d_2(\mathcal{C}_i) = \max_{\{(n_1, n_2) | x_{n_1} \in \mathcal{C}_i \land x_{n_2} \in \mathcal{C}_i\}} ||x_{n_1} - x_{n_2}||$$

[7]

- K-Means was a crisp algorithm. Now: fuzzy variant
- ullet Reformulate K-Means objective function with membership matrix r_{nk} : Membership of pattern x_n in class C_k

$$J_{SQE} = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n - \mu_k||^2$$

optimization criterion

$$\mathrm{d}J_{SQE}/\mathrm{d}\mu_k = 0$$

together with non-overlaping constraint

$$\forall n(\exists k(r_{nk} = 1) \land ((k' \neq k) \rightarrow (r_{nk'} = 0)))$$

leads to well known K-Means

$$\mu_k = \sum_{n=1}^N r_{nk} x_n / \sum_{n=1}^N r_{nk} = (1/|\mathcal{C}_k|) \sum_{n|x_n \in \mathcal{C}_k} x_n$$

- K-Means was a crisp algorithm. Now: fuzzy variant
- Reformulate K-Means objective function with membership matrix r_{nk} : Membership of pattern x_n in class C_k

$$J_{SQE} = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n - \mu_k||^2$$

optimization criterion

$$\mathrm{d}J_{SOE}/\mathrm{d}\mu_k = 0$$

together with non-overlaping constraint

$$\forall n(\exists k(r_{nk} = 1) \land ((k' \neq k) \rightarrow (r_{nk'} = 0)))$$

leads to well known K-Means

$$\mu_k = \sum_{n=1}^{N} r_{nk} x_n / \sum_{n=1}^{N} r_{nk} = (1/|\mathcal{C}_k|) \sum_{n|x_n \in \mathcal{C}_k} x_n$$

Fuzzy C-Means Clustering

Now modify objective function to:

$$J_{GSQE} = \sum_{n=1}^{N} \sum_{k=1}^{K} (r_{nk})^m ||x_n - \mu_k||^2$$

Exponent m models degree of fuzzyness:

m → 1 : K-Means (crisp case);

 $m \rightarrow \infty$: $r_{nk} \rightarrow 1/K$ (where K is the number of clusters)

Optimize the obj. fct. under the conditions:

$$\forall x_n : \sum_{k=1}^K \alpha_k(x_n) = \sum_{k=1}^K r_{nk} = 1$$

B

$$\forall C_k : \sum_{n=1}^N \alpha_k(x_n) = \sum_{n=1}^N r_{nk} > 0$$

■ • Fuzzy C-Means Clustering

Now modify objective function to:

$$J_{GSQE} = \sum_{n=1}^{N} \sum_{k=1}^{K} (r_{nk})_{k}^{m} ||x_{n} - \mu_{k}||^{2}$$

Exponent m models degree of fuzzyness:

 $m \rightarrow 1$: K-Means (crisp case);

 $m \rightarrow \infty$: $r_{nk} \rightarrow 1/K$ (where K is the number of clusters)

Optimize the obj. fct. under the conditions:

$$\forall x_n : \sum_{k=1}^{K} \alpha_k(x_n) = \sum_{k=1}^{K} r_{nk} = 1$$

$$\forall \, \mathcal{C}_k \quad : \qquad \sum_{n=1}^N \alpha_k(x_n) = \sum_{n=1}^N r_{nk} > 0$$

Fuzzy C-Means Clustering

Now modify objective function to:

$$J_{GSQE} = \sum_{n=1}^{N} \sum_{k=1}^{K} (r_{nk})^m ||x_n - \mu_k||^2$$

Exponent m models degree of fuzzyness:

m → 1 : K-Means (crisp case);

 $m \rightarrow \infty : r_{nk} \rightarrow 1/K$ (where K is the number of clusters)

Optimize the obj. fct. under the conditions:

$$\forall x_n : \sum_{k=1}^{K} \alpha_k(x_n) = \sum_{k=1}^{K} r_{nk} = 1$$

$$\forall C_k : \sum_{n=1}^N \alpha_k(x_n) = \sum_{n=1}^N r_{nk} > 0$$

Fuzzy C-Means Clustering

Now modify objective function to:

$$J_{GSQE} = \sum_{n=1}^{N} \sum_{k=1}^{K} (r_{nk})^m ||x_n - \mu_k||^2$$

Exponent m models degree of fuzzyness:

 $m \rightarrow 1$: K-Means (crisp case);

m $ightarrow \infty$: $r_{nk}
ightarrow 1/K$ (where K is the number of clusters)

Optimize the obj. fct. under the conditions:

$$\forall x_n : \sum_{k=1}^{K} \alpha_k(x_n) = \sum_{k=1}^{K} r_{nk} = 1$$

$$\forall C_k : \sum_{n=1}^{N} \alpha_k(x_n) = \sum_{n=1}^{N} r_{nk} > 0$$

Fuzzy C-Means Clustering

Now modify objective function to:

$$J_{GSQE} = \sum_{n=1}^{N} \sum_{k=1}^{K} (r_{nk})^m ||x_n - \mu_k||^2$$

Exponent m models degree of fuzzyness:

 $m \rightarrow 1$: K-Means (crisp case);

 $m \rightarrow \infty$: $r_{nk} \rightarrow 1/K$ (where K is the number of clusters)

Optimize the obj. fct. under the conditions:

$$\forall x_n : \sum_{k=1}^K \alpha_k(x_n) = \sum_{k=1}^K r_{nk} = 1_{\geqslant k}$$

$$\forall \mathcal{C}_k : \sum_{n=1}^N \alpha_k(x_n) = \sum_{n=1}^N r_{nk} > 0$$

Fuzzy C-Means Clustering

- K-Means was a crisp algorithm. Now: fuzzy variant
- Reformulate K-Means objective function with membership matrix r_{nk} : Membership of pattern x_n in class C_k

$$J_{SQE} = \sum_{n=1}^{N} \sum_{k=\frac{1}{N}}^{K} r_{nk} ||x_n - \mu_k||^2$$

optimization criterion

$$\mathrm{d}J_{SQE}/\mathrm{d}\mu_k = 0$$

together with non-overlaping constraint

$$\forall n(\exists k(r_{nk} = 1) \land ((k' \neq k) \rightarrow (r_{nk'} = 0)))$$

leads to well known K-Means

$$\mu_k = \sum_{n=1}^{N} r_{nk} x_n / \sum_{n=1}^{N} r_{nk} = (1/|\mathcal{C}_k|) \sum_{n|x_n \in \mathcal{C}_k} x_n$$

■ [•]、 Fuzzy C-Means Clustering

• Limit m → ∞ gives:

$$r_{nk} \stackrel{m \to \infty}{\longrightarrow} \frac{1}{\sum_{k'=1}^{K} 1} = \frac{1}{K}$$

• Limit m → 1 we get the nearest neighbor rule (K-Means) because:

$$r_{nk} = 1/((\sum_{k' \neq k} (\frac{\|x_n - \mu_k\|}{\|x_n - \mu_{k'}\|})^{\frac{2}{m-1}}) + 1)$$

in the limit m→1 the first sum in the denominator becomes ∞ if

$$||x_n - \mu_k|| \neq \min_{1 \le k' \le K} ||x_n - \mu_{k'}||$$

and it becomes 0 if

$$||x_n - \mu_k|| = \min_{1 \le k' \le K} ||x_n - \mu_{k'}||$$

• Result:

$$r_{nk} = \left(\sum_{k'=1}^{K} \left(\frac{||x_n - \mu_k||}{||x_n - \mu_{k'}||}\right)^{\frac{2}{m-1}}\right)^{-1} \quad (\varnothing)$$

$$\mu_k = \sum_{n=1}^{N} \frac{r_{nk}^m x_n}{r_{nk}} \qquad (\varnothing \varnothing)$$

• the result assumes that no patterns and prototypes coincide

$$\forall n, k: ||x_n - \mu_k|| \neq 0$$

if they do coincide, set $r_{nk} = 1$ for $x_n = \mu_k$ and $r_{nk} = 0$ for $x_n \neq \mu_k$

Fuzzy C-Means Clustering

• Limit m → ∞ gives:

$$r_{nk} \stackrel{m \to \infty}{\longrightarrow} \frac{1}{\sum_{k'=1}^{K} 1} = \frac{1}{K}$$

• Limit m → 1 we get the nearest neighbor rule (K-Means) because:

$$r_{nk} = 1/((\sum_{k' \neq k} (\frac{\|x_n - \mu_k\|}{\|x_n - \mu_{k'}\|})^{\frac{2}{m-1}}) + 1)$$

in the limit $m\rightarrow 1$ the first sum in the denominator becomes ∞ if

$$||x_n - \mu_k|| \neq \min_{1 \le k' \le K} ||x_n - \mu_{k'}||$$

and it becomes 0 if

$$||x_n - \mu_k|| = \min_{1 \le k' \le K} ||x_n - \mu_{k'}||$$

Fuzzy C-Means Clustering

• Limit m → ∞ gives:

$$r_{nk} \stackrel{m \to \infty}{\longrightarrow} \frac{1}{\sum_{k'=1}^{K} 1} = \frac{1}{K}$$

• Limit m → 1 we get the nearest neighbor rule (K-Means) because:

$$r_{nk} = 1/((\sum_{k' \neq k} (\frac{\|x_n - \mu_k\|}{\|x_n - \mu_{k'}\|})^{\frac{2}{m-1}}) + 1)$$

in the limit m→1 the first sum in the denominator becomes ∞ if

$$||x_n - \mu_k|| \neq \min_{1 \le k' \le K} ||x_n - \mu_{k'}||$$

and it becomes 0 if

$$||x_n - \mu_k|| = \min_{1 \le k' \le K} ||x_n - \mu_{k'}||$$

■ [•] ⊢uzzy C-Means Clustering

• Limit m → ∞ gives:

$$r_{nk} \stackrel{m \to \infty}{\longrightarrow} \frac{1}{\sum_{k'=1}^{K} 1} = \frac{1}{K}$$

• Limit m → 1 we get the nearest neighbor rule (K-Means) because:

$$r_{nk} = 1/((\sum_{k' \neq k} (\frac{\|x_n - y_k\|}{\|x_n - \mu_{k'}\|})^{\frac{2}{m-1}}) + 1)$$

in the limit m→1 the first sum in the denominator becomes ∞ if

$$||x_n - \mu_k|| \neq \min_{1 \le k' \le K} ||x_n - \mu_{k'}||$$

and it becomes 0 if

$$||x_n - \mu_k|| = \min_{1 \le k' \le K} ||x_n - \mu_{k'}||$$

Fuzzy C-Means Clustering

• Limit m → ∞ gives:

$$r_{nk} \stackrel{m \to \infty}{\longrightarrow} \frac{1}{\sum_{k'=1}^K 1} = \frac{1}{K}$$

• Limit m → 1 we get the nearest neighbor rule (K-Means) because:

$$r_{nk} = 1/((\sum_{k' \neq k} (\frac{\|x_n - \mu_k\|}{\|x_n - \mu_{k'}\|})^{\frac{2}{m-1}}) + 1)$$

in the limit $m \rightarrow 1$ the first sum in the denominator becomes ∞ if

$$||x_n - \mu_k|| \neq \min_{1 \le k' \le K} ||x_n - \mu_{k'}||$$

and it becomes 0 if

₽

$$||x_n - \mu_k|| = \min_{1 \le k' \le K} ||x_n - \mu_{k'}||$$

Fuzzy C-Means Clustering

Now modify objective function to:

$$J_{GSQE} = \sum_{n=1}^{N} \sum_{k=1}^{K} (r_{nk})^m ||x_n - \mu_k||^2$$

Exponent m models degree of fuzzyness:

 $m \rightarrow 1$: K-Means (crisp case);

 $m \rightarrow \infty$: $r_{nk} \rightarrow 1/K$ (where K is the number of clusters)

Optimize the obj. fct. under the conditions:

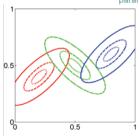
$$\forall x_n : \sum_{k=1}^K \alpha_k(x_n) = \sum_{k=1}^K r_{nk} = 1$$

$$\forall \, \mathcal{C}_k \quad : \qquad \sum_{n=1}^N \alpha_k(x_n) = \sum_{n=1}^N r_{nk} > 0$$

Example: Gaussian Mixture Models (GMM)

· Linear combination of Gaussians

$$p(x) = \sum_{k=1}^K \pi_k \mathcal{N}(x|\mu_k, \Sigma_k) \quad \text{where} \quad \sum_{k=1}^K \pi_k = 1, \quad 0 \leqslant \pi_k \leqslant 1$$



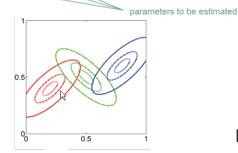
[6]

• Fuzzy C-Means is "OK" as a non-crisp clustering alg. but (as K-Means) favors spherical clusters → better approaches

Example: Gaussian Mixture Models (GMM)

· Linear combination of Gaussians

$$p(x) = \sum_{k=1}^K \pi_k \mathcal{N}(x|\mu_k, \Sigma_k) \text{ where } \sum_{k=1}^K \pi_k = 1, \quad 0 \leqslant \pi_k \leqslant 1$$



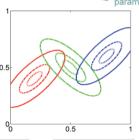
[6]

Fuzzy C-Means is "OK" as a non-crisp clustering alg. but (as K-Means) favors spherical clusters → better approaches

Example: Gaussian Mixture Models (GMM)

Linear combination of Gaussians

$$p(x) = \sum_{k=1}^K \pi_k \mathcal{N}(x|\mu_k, \Sigma_k) \text{ where } \sum_{k=1}^K \pi_k = 1, \quad 0 \leqslant \pi_k \leqslant 1$$



[6]

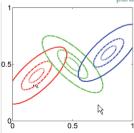
Fuzzy C-Means is "OK" as a non-crisp clustering alg. but (as K-Means) favors spherical clusters → better approaches

Example: Gaussian Mixture Models (GMM)

· Linear combination of Gaussians

$$p(x) = \sum_{k=1}^K \pi_k \mathcal{N}(x|\mu_k, \Sigma_k) \quad \text{where } \sum_{k=1}^K \pi_k = 1, \quad 0 \leqslant \pi_k \leqslant 1$$

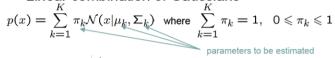
parameters to be estimated

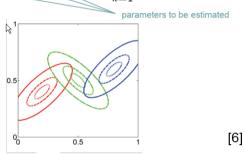


[6]

Gaussian Mixture Models

- Fuzzy C-Means is "OK" as a non-crisp clustering alg. but (as K-Means) favors spherical clusters → better approaches
- Example: Gaussian Mixture Models (GMM)
 - · Linear combination of Gaussians





Gaussian Mixture Models

- Fuzzy C-Means is "OK" as a non-crisp clustering alg. but (as K-Means) favors spherical clusters → better approaches
- Example: Gaussian Mixture Models (GMM)
 - · Linear combination of Gaussians

$$p(x) = \sum_{k=1}^K \pi_k \mathcal{N}(x|\mu_k, \Sigma_k) \quad \text{where} \quad \sum_{k=1}^K \pi_k = 1, \quad 0 \leqslant \pi_k \leqslant 1$$

this is usually written as $p(x|\Theta)$ denoting the dependency on the parameters $\Theta = \{\pi_k, \mu_k, \Sigma_k\}_{\{k \in \{1,2,\dots,K\}\}}$

Writing this as a conditional probability makes sense in connection with Bayesian Machine Learning (see [8])

0 0.5 1 [0]

- Fuzzy C-Means is "OK" as a non-crisp clustering alg. but (as K-Means) favors spherical clusters → better approaches
- Example: Gaussian Mixture Models (GMM)
 - · Linear combination of Gaussians

$$p(x) = \sum_{k=1}^K \pi_k \mathcal{N}(x|\mu_k, \Sigma_k) \quad \text{where} \quad \sum_{k=1}^K \pi_k = 1, \quad 0 \leqslant \pi_k \leqslant 1$$

this is usually written as $p(x|\Theta)$ denoting the dependency on the parameters $\Theta = \{\pi_k, \mu_k, \Sigma_k\}_{k \in \{1,2,\dots,K\}}$

णि

Writing this as a conditional probability makes sense in connection with Bayesian Machine Learning (see [8])

Gaussian Mixture Models

- Fuzzy C-Means is "OK" as a non-crisp clustering alg. but (as K-Means) favors spherical clusters → better approaches
- Example: Gaussian Mixture Models (GMM)
 - · Linear combination of Gaussians

$$p(x) = \sum_{k=1}^K \pi_k \mathcal{N}(x|\mu_k, \Sigma_k) \quad \text{where} \quad \sum_{k=1}^K \pi_k = 1, \quad 0 \leqslant \pi_k \leqslant 1$$

this is usually written as $p(x|\Theta)$ denoting the dependency on the parameters $\Theta = \{\pi_k, \mu_k, \Sigma_k\}_{\{k \in \{1,2,\dots,K\}\}}$

Writing this as a conditional probability makes sense in connection with Bayesian Machine Learning (see [8])

0 0.5 1

from here we follow [3], so citations for images etc. are omitted

B

Machine Learning

- For a distribution $p(x|\Theta)$ parametrized by a set of parameters Θ and iid data $X = \{x_1, x_2, ..., x_N\}$, simple machine learning corresponds to finding the Θ that best explains the data
- iid: "identically independently drawn" $\Rightarrow p(X|\Theta) = \prod_i p(x_i|\Theta)$
- p(X|Θ) is called likelihood
- "finding the Θ that best explains the data":

 Maximum Likelihood: $\Theta_{ML} = argmax_{\Theta} \ p(X|\Theta) \Rightarrow \nabla_{\Theta} \ p(X|\Theta) \stackrel{!}{=} 0$
- convenient: use $\log p(X|\theta)$ instead of $p(X|\theta)$ $\Rightarrow \log p(X|\theta) = \sum_i \log p(x_i|\theta)$

ıvlachine Learning

- For a distribution $p(x|\Theta)$ parametrized by a set of parameters Θ and iid data $X = \{x_1, x_2, ..., x_N\}$, simple machine learning corresponds to finding the Θ that best explains the data
- iid: "identically independently drawn" $\Rightarrow p(X|\Theta) = \prod_i p(x_i|\Theta)$
- p(X|Θ) is called likelihood
- "finding the Θ that best explains the data":

 Maximum Likelihood: $\Theta_{ML} = argmax_{\Theta} \ p(X|\Theta) \Rightarrow \nabla_{\Theta} \ p(X|\Theta) \stackrel{!}{=} 0$
- convenient: use $\log p(X|\theta)$ instead of $p(X|\theta)$ $\Rightarrow \log p(X|\theta) = \sum_i \log p(x_i|\theta)$

wachine Learning

- For a distribution $p(x|\Theta)$ parametrized by a set of parameters Θ and iid data $X = \{x_1, x_2, ..., x_N\}$, simple machine learning corresponds to finding the Θ that best explains the data
- iid: "identically independently drawn" $\Rightarrow p(X|\Theta) = \prod_i p(x_i|\Theta)$
- $p(X|\Theta)$ is called likelihood
- "finding the Θ that best explains the data":

 Maximum Likelihood: $\Theta_{ML} = argmax_{\Theta} \ p(X|\Theta) \Rightarrow \nabla_{\Theta} \ p(X|\Theta) \stackrel{!}{=} 0$
- convenient: use $\log p(X|\theta)$ instead of $p(X|\theta)$ $\Rightarrow \log p(X|\Theta) = \sum_i \log p(x_i|\Theta)$

iviachine Learning

- For a distribution $p(x|\Theta)$ parametrized by a set of parameters Θ and iid data $X = \{x_1, x_2, ..., x_N\}$, simple machine learning corresponds to finding the Θ that best explains the data
- iid: "identically independently drawn" $\Rightarrow p(X|\Theta) = \prod_i p(x_i|\Theta)$
- $p(X|\Theta)$ is called likelihood

l,

- "finding the Θ that best explains the data":

 Maximum Likelihood: $\Theta_{ML} = argmax_{\Theta} \ p(X|\Theta) \Rightarrow \nabla_{\Theta} \ p(X|\Theta) \stackrel{!}{=} 0$
- convenient: use $\log p(X|\theta)$ instead of $p(X|\theta)$ $\Rightarrow \log p(X|\theta) = \sum_i \log p(x_i|\theta)$

iviachine Learning

- For a distribution $p(x|\Theta)$ parametrized by a set of parameters Θ and iid data $X = \{x_1, x_2, ..., x_N\}$, simple machine learning corresponds to finding the Θ that best explains the data
- iid: "identically independently drawn" $\Rightarrow p(X|\Theta) = \prod_i p(x_i|\Theta)$
- p(X|Θ) is called likelihood
- "finding the Θ that best explains the data":

 Maximum Likelihood: $\Theta_{ML} = argmax_{\Theta} \ p(X|\Theta) \Rightarrow \nabla_{\Theta} \ p(X|\Theta) \stackrel{!}{=} 0$
- convenient: use $\log p(X|\theta)$ instead of $p(X|\theta)$ $\Rightarrow \log p(X|\Theta) = \sum_i \log p(x_i|\Theta)$

ıvlachine Learning

- For a distribution $p(x|\Theta)$ parametrized by a set of parameters Θ and iid data $X = \{x_1, x_2, ..., x_N\}$, simple machine learning corresponds to finding the Θ that best explains the data
- iid: "identically independently drawn" $\Rightarrow p(X|\Theta) = \prod_i p(x_i|\Theta)$
- p(X|Θ) is called likelihood
- "finding the Θ that best explains the data":

 Maximum Likelihood: $\Theta_{ML} = argmax_{\Theta} \ p(X|\Theta) \Rightarrow \nabla_{\Theta} \ p(X|\Theta) \stackrel{!}{=} 0$
- convenient: use $\log p(X|\theta)$ instead of $p(X|\theta)$ $\Rightarrow \log p(X|\theta) = \sum_i \log p(x_i|\theta)$

iviachine Learning

- For a distribution $p(x|\Theta)$ parametrized by a set of parameters Θ and iid data $X = \{x_1, x_2, ..., x_N\}$, simple machine learning corresponds to finding the Θ that best explains the data
- iid: "identically independently drawn" $\Rightarrow p(X|\Theta) = \prod_i p(x_i|\Theta)$
- p(X|Θ) is called likelihood
- "finding the Θ that best explains the data":

 Maximum Likelihood: $\Theta_{ML} = argmax_{\Theta} \ p(X|\Theta) \Rightarrow \nabla_{\Theta} \ p(X|\Theta) \stackrel{!}{=} 0$
- convenient: use $\log p(X|\theta)$ instead of $p(X|\theta)$ $\Rightarrow \log p(X|\Theta) = \sum_{i} \log p(x_i|\Theta)$

iviachine Learning

- For a distribution $p(x|\Theta)$ parametrized by a set of parameters Θ and iid data $X = \{x_1, x_2, ..., x_N\}$, simple machine learning corresponds to finding the Θ that best explains the data
- iid: "identically independently drawn" $\Rightarrow p(X|\Theta) = \prod_i p(x_i|\Theta)$
- $p(X|\Theta)$ is called likelihood

- "finding the Θ that best explains the data":

 Maximum Likelihood: $\Theta_{ML} = argmax_{\Theta} \ p(X|\Theta) \implies \nabla_{\Theta} \ p(X|\Theta) \stackrel{!}{=} 0$
- convenient: use $\log p(X|\theta)$ instead of $p(X|\theta)$ $\Rightarrow \log p(X|\theta) = \sum_{i} \log p(x_i|\theta)$