Script generated by TTT

Title: Seidl: Programmoptimierung (07.01.2016)

Date: Thu Jan 07 08:36:31 CET 2016

Duration: 74:01 min

Pages: 41

Implementing Step 1

- Determine for every program point the set of reaching definitions.
- Assumption

All incoming edges of a join point v are labeled with the same parallel assignment $x=x\mid x\in L_v$ for some set L_v . Initially, $L_v=\emptyset$ for all v.

• If the join point v is reached by more than one definition for the same variable x which is live at program point v, insert x into L_v , i.e., add definitions x=x; at the end of each incoming edge of v.

Discussion

- Every live variable should be defined at most once ??
- Every live variable should have at most one definition?
- All definitions of the same variable should have a common end point !!!

Static Single Assignment Form

610

How to arrive at SSA Form

We proceed in two phases:

Step 1:

Transform the program such that each program point $\ v$ is reached by at most one definition of a variable $\ x$ which is live at $\ v$.

Step 2:

- Introduce a separate variant x_i for every occurrence of a definition of a variable x!
- Replace every use of x with the use of the reaching variant x_h ...

Implementing Step 1

- Determine for every program point the set of reaching definitions.
- Assumption

All incoming edges of a join point v are labeled with the same parallel assignment $\underline{x=x\mid x\in L_v}$ for some set L_v . Initially, $L_v=\emptyset$ for all v.

If the join point v is reached by more than one definition for the same variable x which is live at program point v, insert x into L_v i.e., add definitions x = x; at the end of each incoming edge of v.

612

Example

where $\psi \equiv x = x \mid y = y$

Reaching Definitions

	\mathcal{R}
0	$\langle x, 0 \rangle, \langle y, 0 \rangle$
1	$\langle x, 1 \rangle, \langle y, 0 \rangle$
2	$\langle x, 1 \rangle, \langle x, 5 \rangle, \langle y, 2 \rangle, \langle y, 4 \rangle$
3	$\langle x, 1 \rangle, \langle x, 5 \rangle, \langle y, 2 \rangle, \langle y, 4 \rangle$
4	$\langle x, 1 \rangle, \langle x, 5 \rangle, \langle y, 4 \rangle$
5	$\langle x, 5 \rangle, \langle y, 4 \rangle$
6	$\langle x, 1 \rangle, \langle x, 5 \rangle, \langle y, 2 \rangle, \langle y, 4 \rangle$
7	$\langle x, 1 \rangle, \langle x, 5 \rangle, \langle y, 2 \rangle, \langle y, 4 \rangle$

Example

Reaching Definitions

	\mathcal{R}
0	$\langle x, 0 \rangle, \langle y, 0 \rangle$
1	$\langle x, 1 \rangle, \langle y, 0 \rangle$
2	$\langle x, 1 \rangle, \langle x, 5 \rangle, \langle y, 2 \rangle, \langle y, 4 \rangle$
3	$\langle x, 1 \rangle, \langle x, 5 \rangle, \langle y, 2 \rangle, \langle y, 4 \rangle$
4	$\langle x, 1 \rangle, \langle x, 5 \rangle, \langle y, 4 \rangle$
5	$\langle x, 5 \rangle, \langle y, 4 \rangle$
6	$\langle x, 1 \rangle, \langle x, 5 \rangle, \langle y, 2 \rangle, \langle y, 4 \rangle$
7	$\langle x, 1 \rangle, \langle x, 5 \rangle, \langle y, 2 \rangle, \langle y, 4 \rangle$

613

Reaching Definitions

The complete lattice **ℝ** for this analysis is given by:

$$\mathbb{R} = 2^{Defs}$$

where

$$Defs = Vars \times Nodes$$
 $Defs(x) = \{x\} \times Nodes$

Then:

The ordering on \mathbb{R} is given by subset inclusion \subseteq where the value at program start is given by $R_0 = \{\langle x, start \rangle \mid x \in Vars \}.$

The Transformation SSA, Step 1

where $k \geq 2$.

The label ψ of the new in-going edges for v is given by:

$$\psi \equiv \{x = x \mid x \in \mathcal{L}[v], \#(\mathcal{R}[v] \cap Defs(x)) > 1\}$$

616

Discussion

- Program start is interpreted as (the end point of) a definition of every variable x.
- At some edges, parallel definitions ψ are introduced!
- Some of them may be useless.

If the node v is the start point of the program, we add auxiliary edges whenever there are further ingoing edges into v:

The Transformation SSA, Step 1 (cont.)

where $k \geq 1$ and $\quad \psi \quad \text{of the new in-going edges for} \quad {\color{red} v} \quad \text{is given}$ by:

$$\psi \equiv \{x = x \mid x \in \mathcal{L}[v], \#(\mathcal{R}[v] \cap Defs(x)) > 1\}$$

617

Discussion

- Program start is interpreted as (the end point of) a definition of every variable x.
- At some edges, parallel definitions ψ are introduced!
- Some of them may be useless.

Improvement

- We introduce assignments x = x before v only if the sets of reaching definitions for x at incoming edges of v differ!
- This introduction is repeated until every v is reached by exactly one definition for each variable live at v.

Theorem

Assume that every program point in the controlflow graph is reachable from start and that every left-hand side of a definition is live. Then:

- 1. The algorithm for inserting definitions x=x terminates after at most $n\cdot (m+1)$ rounds were m is the number of program points with more than one in-going edges and n is the number of variables.
- 2. After termination, for every program point u, the set $\mathcal{R}[u]$ has exactly one definition for every variable x which is live at u.

620

Discussion

The efficiency crucially depends on the number of iterations. If the cfg is well-structured, it terminates already after one iteration!

A well-structured cfg can be reduced to a single vertex or edge by:

Discussion

The efficiency crucially depends on the number of iterations. If the cfg is well-structured, it terminates already after one iteration!

621

Discussion

The efficiency crucially depends on the number of iterations. If the cfg is well-structured, it terminates already after one iteration!

A well-structured cfg can be reduced to a single vertex or edge by:

Discussion (cont.)

- Reducible cfgs are not the exception but the rule.
- In Java, reducibility is only violated by loops with breaks/continues.
- If the insertion of definitions does not terminate after k iterations, we may immediately terminate the procedure by inserting definitions x=x before all nodes which are reached by more than one definition of x.

Assume now that every program point u is reached by exactly one definition for each variable which is live at u ...

Discussion

The efficiency crucially depends on the number of iterations. If the cfg is well-structured, it terminates already after one iteration!

A well-structured cfg can be reduced to a single vertex or edge by:

623

The Transformation SSA, Step 2

Each edge (u, lab, v) is replaced with $(u, \mathcal{T}_{v,\phi}[lab], v)$ where $\phi x = x_{u'}$ if $\langle x, u' \rangle \in \mathcal{R}[u]$ and:

$$\begin{array}{lll} \mathcal{T}_{v,\phi}[\,;\,] & = & ; \\ \mathcal{T}_{v,\phi}[\mathsf{Neg}(e)] & = & \mathsf{Neg}(\phi(e)) \\ \mathcal{T}_{v,\phi}[\mathsf{pos}(e)] & = & \mathsf{Pos}(\phi(e)) \\ \mathcal{T}_{v,\phi}[x] = e] & = & x_v = \phi(e) \\ \mathcal{T}_{v,\phi}[x] = M[e]] & = & x_v = M[\phi(e)] \\ \mathcal{T}_{v,\phi}[M[e_1] = e_2] & = & M[\phi(e_1)] = \phi(e_2)] \\ \mathcal{T}_{v,\phi}[\{x = x \mid x \in L\}] & = & \{x_v = \phi(x) \mid x \in L\} \end{array}$$

Remark

The multiple assignments:

$$pa = x_{\mathbf{v}}^{(1)} = x_{\mathbf{v_1}}^{(1)} \mid \ldots \mid x_{\mathbf{v}}^{(k)} = x_{\mathbf{v_k}}^{(k)}$$

in the last row are thought to be executed in parallel, i.e.,

$$[\![pa]\!](\rho,\mu) = (\rho \oplus \{x^{(i)}_{v} \mapsto \rho(x^{(i)}_{v_i}) \mid i = 1,\dots,k\},\mu)$$

626

Theorem

Assume that every program point is reachable from start and the program is in SSA form without assignments to dead variables.

Let $\ \lambda$ denote the maximal number of simultaneously live variables and $\ G$ the interference graph of the program variables. Then:

$$\lambda = \omega(G) = \chi(G)$$

where $\omega(G), \chi(G)$ are the maximal size of a clique in G and the minimal number of colors for G, respectively.

A minimal coloring of G, i.e., an optimal register allocation can be found in polynomial time.

Example

627

Discussion

- By the theorem, the number λ of required registers can be easily computed.
- Thus variables which are to be spilled to memory, can be determined ahead of the subsequent assignment of registers.
- Thus here, we may, e.g., insist on keeping iteration variables from inner loops.

Discussion

- By the theorem, the number λ of required registers can be easily computed.
- Thus variables which are to be spilled to memory, can be determined ahead of the subsequent assignment of registers.
- Thus here, we may, e.g., insist on keeping iteration variables from inner loops.
- Clearly, always $\lambda \leq \omega(G) \leq \chi(G)$. Therefore, it suffices to color the interference graph with λ colors.
- Instead, we provide an algorithm which directly operates on the cfg ...

630

- Live ranges of variables in programs in SSA form behave similar to live ranges in basic blocks.
- Consider some dfs spanning tree T of the cfg with root start.
- For each variable x, the live range $\mathcal{L}[x]$ forms a tree fragment of T.
- A tree fragment is a subtree from which some subtrees have been removed ...

Proof of the Intersection Property

(1) Assume $I_1 \cap I_2 \neq \emptyset$ and v_i is the root of I_i . Then:

 $v|_{\mathcal{C}}|_{\mathcal{C}}|_{\mathcal{C}}|_{\mathcal{C}}|_{\mathcal{C}}|_{\mathcal{C}}$

(2) Let C denote a clique of tree fragments. Then there is an enumeration $C=\{I_1,\ldots,I_r\}$ with roots v_1,\ldots,v_r such that

 $v_i \in I_j$ for all $j \le i$

In particular, $v_r \in I_i$ for all i.

The Greedy Algorithm

```
\begin{split} & \text{forall } (u \in Nodes) \ visited[\underline{u}] = \text{false}; \\ & \text{forall } (x \in \mathcal{L}[start]) \ \Gamma(x) = \text{extract}(free); \\ & \text{alloc}(start); \\ & \text{void alloc } (\text{Node } \underline{u}) \ \ \{ \\ & visited[\underline{u}] = \text{true}; \\ & \text{forall } ((lab, v) \in edges[\underline{u}]) \\ & \text{if } (\neg visited[v]) \ \ \{ \\ & \text{forall } (x \in \mathcal{L}[\underline{u}] \backslash \mathcal{L}[\underline{v}]) \ \text{insert}(free, \Gamma(x)); \\ & \text{forall } (x \in \mathcal{L}[\underline{v}] \backslash \mathcal{L}[\underline{u}]) \ \Gamma(x) = \text{extract}(free); \\ & \text{alloc}(\underline{v}); \\ & \} \\ & \} \end{split}
```

635

Example

Example

636

Remark

- Intersection graphs for tree fragments are also known as cordal graphs ...
- A cordal graph is an undirected graph where every cycle with more than three nodes contains a cord.
- Cordal graphs are another sub-class of perfect graphs.
- Cheap register allocation comes at a price:

when transforming into SSA form, we have introduced parallel register-register moves.

Problem

The parallel register assignment:

$$\psi_1 = R_1 = R_2 \mid R_2 = R_1$$

is meant to exchange the registers R_1 and R_2 .

There are at least two ways of implementing this exchange ...

639

(2) XOR:

$$R_1 = R_1 \oplus R_2;$$

$$R_2 = R_1 \oplus R_2;$$

$$R_1 = R_1 \oplus R_2;$$

Problem

The parallel register assignment:

$$\psi_1 = R_1 = R_2 \mid R_2 = R_1$$

is meant to exchange the registers R_1 and R_2 .

There are at least two ways of implementing this exchange ...

(1) Using an auxiliary register:

$$R = R_1;$$

$$R_1 = R_2;$$

$$R_2 = R;$$

640

(2) XOR:

$$R_1 = R_1 \oplus R_2;$$

$$R_2 = R_1 \oplus R_2;$$

$$R_1 = R_1 \oplus R_2;$$

But what about cyclic shifts such as:

$$\psi_k = R_1 = R_2 \mid \dots \mid R_{k-1} = R_k \mid R_k = R_1$$

for k > 2 ??

(2) XOR:

$$R_1 = R_1 \oplus R_2;$$

 $R_2 = R_1 \oplus R_2;$
 $R_1 = R_1 \oplus R_2;$

But what about cyclic shifts such as:

$$\psi_k=R_1=R_2\mid\ldots\mid R_{k-1}=R_k\mid R_k=R_1$$
 for $k>2$??

Then at most k-1 swaps of two registers are needed:

$$\begin{array}{rcl} \psi_k & = & R_1 \leftrightarrow R_2; \\ & R_2 \leftrightarrow R_3; \\ & \dots \\ & R_{k-1} \leftrightarrow R_k; \end{array}$$

643

Next complicated case: permutations.

- Every permutation can be decomposed into a set of disjoint shifts.
- Any permutation of n registers with r shifts can be realized by n-r swaps ...

Example

$$\psi = R_1 = R_2 \mid R_2 = R_5 \mid R_3 = R_4 \mid R_4 = R_3 \mid R_5 = R_1$$

consists of the cycles (R_1, R_2, R_5) and (R_3, R_4) . Therefore:

$$\psi = R_1 \leftrightarrow R_2;$$

$$R_2 \leftrightarrow R_5;$$

$$R_3 \leftrightarrow R_4;$$

645

Next complicated case: permutations.

- Every permutation can be decomposed into a set of disjoint shifts.
- Any permutation of n registers with r shifts can be realized by n-r swaps ...

644

The general case

- Every register receives its value at most once.
- The assignment therefore can be decomposed into a permutation together with tree-like assignments (directed towards the leaves) ...

Example

$$\psi = R_1 = R_2 | R_2 = R_4 | R_3 = R_5 | R_5 = R_3$$

The parallel assignment realizes the linear register moves for R_1, R_2 and R_4 together with the cyclic shift for R_3 and R_5 :

$$\psi = R_1 = R_2;$$

$$R_2 = R_4;$$

$$R_3 \leftrightarrow R_5;$$

The general case

- Every register receives its value at most once.
- The assignment therefore can be decomposed into a permutation together with tree-like assignments (directed towards the leaves) ...

Example

$$\psi = R_1 = R_2 \mid R_2 = R_4 \mid R_3 = R_5 \mid R_5 = R_3$$

The parallel assignment realizes the linear register moves for R_1 , R_2 and R_4 together with the cyclic shift for R_3 and R_5 :

$$\psi = R_1 = R_2;$$

$$R_2 = R_4;$$

$$R_3 \leftrightarrow R_5;$$

646

Interprocedural Register Allocation

- → For every local variable, there is an entry in the stack frame.
- Before calling a function, the locals must be saved into the stack frame and be restored after the call.
- → Sometimes there is hardware support.
 Then the call is transparent for all registers.
- → If it is our responsibility to save and restore, we may ...
 - save only registers which are over-written;
 - restore overwritten registers only.
- → Alternatively, we save only registers which are still live after the call — and then possibly into different registers ⇒ reduction of life ranges

647