Script generated by TTT

Title: Seidl: Programmoptimierung (07.01.2016)
Date: Thu Jan 07 08:36:31 CET 2016
Duration: 74:01 min

Pages: 41

Implementing Step 1

e Determine for every program point the set of reaching
definitions.

* Assumption

All incoming edges of a join point v are labeled with the same
parallel assignment = =2 |z ¢ L, for some setL,.
Initially, L, = 0 for all v.

s Ifthe join point v is reached by more than one definition
for the same variable = which is live at program point v,
insert z into L, i.e., add definitions = = z; atthe end of
each incoming edge of v.

612

Discussion

e Every live variable should be defined at most once ??
e Every live variable should have at most one definition ?

e All definitions of the same variable should have a common
end point !!!

—— Static Single Assignment Form

610
How to arrive at SSA Form
. ?X = . ?)ﬂg\:
We proceed in two phases: ’% § B
Xz,

Step 1: =

Transform the program such that each program point v is

reached by at most one definition of a variable = which is

live at .
Step 2:

e Introduce a separate variant x; for every occurrence of
a definition of a variable = !

o Replace every use of = with the use of the reaching
variant z ...

611

Implementing Step 1

e Determine for every program point the set of reaching
definitions.
q—_-_-i

e Assumption

All incoming edges of a join pore labeled with the same
parallel assignment ===z |z¢€ L, forsome setL,.
e e e e e,

Initially, L, = @ for all v.
——t
e Ifthe join point Cp is reached by more thanwﬂigg

for the same.variable = which is live at program point v,
insent i.e., add definitions at the end of

each incoming edge of v.

612

Example

Reaching Definitions

H R |

0 (z, 0}, {y, 0)

1 (z, 1}, {y,0)

2| {z,1}, (z,5), (,2), (y,4)
3| {xz, 1}, (x,5), (,2), (,4)
4 (z,1), (z,5), {y,4)

5 (z,5), (v, 4)

6| {x, 1}, {x,5), (1,2), (v, 4)
7| {1}, {x,5), (,2), (v, 4)

614

Example

Reaching Definitions

613

Reaching Definitions

The complete lattice R for this analysis is given by:

R = 2Dcfs
where
Defs = Vars x Nodes — Defs(z) = {} x Nodes
Then:
[Cz=r{v)[FR = R\Defs(z)U {(z,v)}

[(Lz=2]zeLv)]PR = R\U,. Defs(x) U{{r,v) |z € L}

The orderingon R is given by subset inclusion € where the

value at program startis givenby R, = {(x, start) | x € Vars}.

615

The Transformation SSA, Step 1

where k > 2.
The label ' of the new in-going edges for v is given by:
o= {e=ua| e L], #(R[v] N Defs(z)) > 1}
616
Discussion

e Program start is interpreted as (the end point of) a definition
of every variable .

¢ At some edges, parallel definitions 2 are introduced !
¢ Some of them may be useless.

618

If the node v is the start point of the program, we add auxiliary
edges whenever there are further ingoing edges into v:

The Transformation SSA, Step 1 (cont.)

where k > 1and ¢ ofthe new in-going edges for v is given
by:
v = {r=u|ze L], #(R[v] N Defs(x)) > 1}
617
Discussion

¢ Program start is interpreted as (the end point of) a definition
of every variable .

e Atsome edges, parallel definitions 1) are introduced !
e Some of them may be useless.

Improvement

e We introduce assignments « =z before v only if the sets
of reaching definitions for = at incoming edges of v differ !

e This introduction is repeated until every v is reached by
exactly one definition for each variable live at v.

619

Theorem

Assume that every program point in the controlflow graph is
reachable from start and that every left-hand side of a definition
is live. Then:

1. The algorithm for inserting definitions = = = terminates after
atmost n-(m+1) roundswere m isthe number of
program points with mare than one in-going edges and n s
the number of variables.

2. After termination, for every program point u, the set R[u] has
exactly one definition for every variable » which is live at u.

620

Discussion

The efficiency crucially depends on the number of iterations. If the
cfg is well-structured, it terminates already after one iteration !

A well-structured cfg can be reduced to a single vertex or edge by:

—P @) w— ©

@) @

622

Discussion

The efficiency crucially depends on the number of iterations. If the
cfg is well-structured, it terminates already after one iteration !

621

Discussion

The efficiency crucially depends on the number of iterations. If the
cfg is well-structured, it terminates already after one iteration !

A well-structured cfg can be reduced to a single vertex or edge by:

D, @

) &)
D) (bo)
(@ —

623

Discussion (cont.)

¢ Reducible cfgs are not the exception — but the rule.

s InJava, reducibility is only violated by loops with
breaks/continues.

e If the insertion of definitions does not terminate after &
iterations, we may immediately terminate the procedure by
inserting definitions « == before all nodes which are
reached by more than one definition of .

Assume now that every program point « is reached by exactly
one definition for each variable which is live at u ...

624

Discussion

The efficiency crucially depends on the number of iterations. If the
cfg is well-structured, it terminates already after one iteration !

A well-structured cfg can be reduced to a single vertex or edge by:

®
@) w— @
@
® @
@ —
@ @

623

The Transformation SSA, Step 2

v
ach edge (u,lab,v) isreplaced with (u, T, 4[lab],v) where
:,w it (r,u) € Rlu] and:

7;@[;] =
7u.6[Neg(e)] = Neg(g(e))
Tos[Pos(e)] = Pos(¢(e))

e] = x,=¢e)
Mie]] = x, = M[p(e)]

= Yt
: 58
7;,;[4-1.1[(_,1] = e = Mg(er)] = ples)]
Toollz=z|z€L}] = {z,=¢(x)|z€ L} \//
T

625

Remark
The multiple assignments:

0 — 1) — (1) k) — (k)
pa=zy =x)|y =2y

in the last row are thought to be executed in parallel, i.e.,

[pa] (o) = (p@ {2V = p(z9,) | i=1,...,k}, 1)

626

Theorem

Assume that every program paint is reachable from start and
the program is in SSA form without assignments to dead variables.

Let A denote the maximal number of simultaneously live

variablesand G the interference graph of the program variables.

Then:
A =w(G) = x(G)

where w(G), x(G) are the maximal size of a clique in G and the
minimal number of colors for G, respectively.
A minimal coloring of G, i.e., an optimal register allocation can be

found in polynomial time.

628

Example

Y = xz3=21 | Ys =1

Py = xy=1Ta | =12

627

Discussion
e By the theorem, the number X of required registers can be
easily computed.

e Thus variables which are to be spilled to memary, can be
determined ahead of the subsequent assignment of registers.

e Thus here, we may, e.g., insist on keeping iteration variables
from inner loops.

629

Discussion

¢ By the theorem, the number X of required registers can be
easily computed.

e Thus variables which are to be spilled to memory, can be

determined ahead of the subsequent assignment of registers.

s Thus here, we may, e.g., insist on keeping iteration variables
from inner loops.

e Clearly, always X <w(G) < x(G).

Therefore, it suffices to color the interference graph with A
colors.

e Instead, we provide an algorithm which directly operates on
the cfg ...

630

Example

632

Observation

e Live ranges of variables in programs in SSA form behave
similar to live ranges in basic blocks.

e Consider some dfs spanning tree T of the cfg with root
start.

e Foreachvariable =z,theliverange L[z] formsa tree
fragment of T ("\

¢ Atree fragment is a subtree from which somg subtrees have
been removed ...

Proof of the Intersection Property
(1) Assume I 1nL#0 and wv; isthercotof I;. Then:
ifglagmipe e i I e
(2) Let C denote a clique of tree fragments.

Then there is an enumeration € ={[;,...,1.} withroots
v1,...,u. such that

v; € I forall j7<i

In particular, v, € I; foralli.

634

The Greedy Algorithm

forall (u € Nodes) visited[u] = false;
forall (x € L[start]) T'(x) = extract(free);

alloc(start);

void alloc (Node u) {
visited[u] = true;
forall ((lab,v) € edges[u])
if (—wisited[v]) {
forall (z € L[u]\L[v]) insert(free,'(x));
forall (z € L[v]\L[u]) T'(x) = extract(free);

alloc (v);
635
Example
RN
T = MIA; Ry = MA];
y=z+1; Ro=HRy +1;
Neg (y) Pos (y) Neg (Hz) Pos (R3)
t=—y-1 =zx-x Ry, = —R; - Ry; Ry =R -R
MA] = t; MA] = z; M[A] = Ry, MIA] = Ry;

637

Example

x = M[A];

y=z+1;

Neg (y) Pos (y)

636

Remark

e Intersection graphs for tree fragments are also known as
cordal graphs ...

e A cordal graph is an undirected graph where every cycle with
more than three nodes contains a cord.

e Cordal graphs are another sub-class of perfect graphs.

¢ Cheap register allocation comes at a price:

when transforming into SSA form, we have introduced parallel
register-register maves.

638

Problem

The parallel register assignment:

L‘"}l = -H-l = _H“) | -Hj = -H-l

is meant to exchange the registers R, and F,.

There are at least two ways of implementing this exchange ...

639
(2) XOR:
Ry = R;® Rs;
Ry = Ri@ Ry
Ry = R ® Ry
641

Problem

The parallel register assignment:

L"'.‘l = -Hl = _HQ ‘ _HQ = -Hl

is meant to exchange the registers 17, and R..

There are at least two ways of implementing this exchange ...

(1) Using an auxiliary register:

R = Ry
R1 = Rz;
640
(2) XOR:
Ry = R, D Rsy;
Ry = Ri® Ry
Ry = Ry ® Ry

But what about cyclic shifts such as:
!;",';‘_ _H.Q | | .H.;,. 1= .H.;,. ‘ _Hg == -H-l

TR RTRIER

fork > 277

642

(2) XOR:
R, = R, ® Ry
Ry = R, ® Ru;
R, = R, ® Ry

But what about cyclic shifts such as:
wk = -Hl = _HQ ‘ s | _Hg. 1= _Hg | .H.;,. = _H.]_
fork > 277 T /‘\ T T 'V t(

Then at most k& — 1 swaps of two registers are needed:

'(j:ik = 1'1’1 —r b’z;

Ry +» Rg;
1"!";‘ 1 & f‘l’;\‘;

643

Next complicated case: permutations.

¢ Every permutation can be decomposed into a set of disjoint

shifts.

¢ Any permutation of n registers with r shifts can be realized by
n —r SWaps ...

Example

P =R = Rs | FRs = Ry | R3 = Ry | Ri= Rs3 | Rs =R,
consists of the cycles (Ry, Ra, Rs) and (Rs, R,). Therefore:

Y = Ry < Ry
Ry <+ Rs;

Rs <+ Ry,

645

Next complicated case: permutations.

e Every permutation can be decomposed into a set of disjoint
shifts.

e Any permutation of n registers with r shifts can be realized by
n — 1 SwWaps ...

644

The general case

o Every register receives its value at most once.

e The assignment therefore can be decomposed into a
permutation together with tree-like assignments (directed

towards the leaves) .
Example @ 6\@(\@
P /‘)
ADEOED

The parallel assignment realizes the linear register moves for
Ry, R, and R, together with the cyclic shift for 123 and R:

d) = -H-l = _H)',
Rs = Ry
Rs ++ Rs;

646

The general case

e« Every register receives its value at most once.

e The assignment therefore can be decomposed into a
permutation together with tree-like assignments (directed
towards the leaves) ...

Example
V=R =Ry |Ry=Ry| Ry =Rs | Rs = Ry

The parallel assignment realizes the linear register moves for
Ry, Ry and R, together with the cyclic shift for R; and R;:

P = Ry = Ry
Ry = Ry;
fi‘;; > fi'g;

646

Interprocedural Register Allocation

> For every local variable, there is an entry in the stack frame.

> Before calling a function, the locals must be saved into the
stack frame and be restored after the call.

» Sometimes there is hardware support.
Then the call is transparent for all registers.
» If it is our responsibility to save and restore, we may ...

e save only registers which are over-written;

e restore overwritten registers only.

> Alternatively, we save only registers which are still live after
the call — and then possibly into different registers ——
reduction of life ranges

647

