Script generated by TTT

Discussion
Title: Seidl: Programmoptimierung (13.01.2014)

e Every live variable should be defined at most once ??

Date: Mon Jan 13 14:16:17 CET 2014

e Every live variable should have at most one definition ?

e All definitions of the same variable should have a common end

Duration: 94:04 min

point !!!

Pages: 47

— Static Single Assignment Form

613

How to arrive at SSA Form: Implementing Step 1:

We proceed in two phases: e Determine for every program point the set of reaching definitions.

e Assumption

Step 1:
All incoming edges of a join point v are labeled with the same
Transform the program such that each program point v is reached parallel assignment = + | r € L, for some set L,.
by at most one definition of a variable » whichis live at . .
y Initially, L, =) for all v.
Step 2: e Ifthe join point v 1is reached by more than one definition for the
same variable » which is live at program point v , insert .« into
e Introduce a separate variant x; for every occurrence of a L,,ie., add definitions + = 27 at the end of each incoming edge

definition of a variable x ! of .
e Replace every use of 2 with the use of the reaching variant

Th ...

614 615

Example Example

Reaching Definitions Reaching Definitions
| T | T
0 (.1'3 ())1 (f,', ()) 0 (: (J), <,u,()
1 {x, 1), (y,0) 1 {, 1), (y,0)
2| {x, 1), {x,5), (v, 2), {y, 4) 2| (e, 1), (o, 5), (y, 2), (. 4)
30 (e, 1), {2, 5), (i, 2), (y, 4) 30 (e, 1), (2, 5), (. 2), (y, 4)
4 (r, 1), {x,5), (y,4) 4 (, 1), {x,5), {y, 4)

5 (x,5), (y,4) 5 {2, 5), (y,4)
G (o, 1), {x,5), (i, 2), {y,4) 6| (o, 1), (2, 5), {y, 2), {y, 4)
TN (e, 1), {2, 00, (y, 20, (y,4) T (e, 1), (e, 5), (y, 2), (y, 4)

616 617

Example Reaching Definitions

Reaching Definitions The complete lattice [® for this analysis is given by:

T
0 {x,0), (y,0) where
1 (x, 1), (y,0) Defs = Vars x Nodes Defs(v) = {x} x Nodes
2| LB (1, 2%" Then:
| v a0 b e bt
. (:M)W (0. 1) [z =r,)R = DR\Defs(z) U {{x,v)}

- (e 5), (y.4) [Caz=a2]rel,v)'R = R\U,., Defs(x) U {{z,v) |z € L}

6|). e 112 gy
(fl)%} {y, 2>W The ordering on R is given by subset inclusion C where the value

at program start is given by Ity = {(x, start) | © € Vars}.

617 618

The Transformation SSA, Step 1:

The label ¢> of the new in-going edges for v is given by:

= {r=ux|xell],#(R[]N Defs(x)) > 1}

619

If the node v is the start point of the program, we add auxiliary edges
whenever there are further ingoing edges into v:

The Transformation SSA, Step 1 (cont.):

where k > 1 and) of the new in-going edges for v is given by:

o= {r=ux|xe L], #(R[v] N Defs(x)) =1}

620

Discussion

e Program start is interpreted as (the end point of) a definition of
every variable 1= :-)
e At some edges, parallel definitions ¢ are introduced !

e Some of them may be useless :-(

621

Discussion

e Program start is interpreted as (the end point of) a definition of
every variable 1 :-)
e At some edges, parallel definitions 1/ are introduced !

e Some of them may be useless :-(

IlTlpl‘O'v'E ment:

e Weintroduce assignments x = 1 before v only if the sets of
reaching definitions for » at incoming edges of v differ !

e This introduction is repeated until every v is reached by exactly one
definition for each variable live at v.

622

Theorem

Assume that every program point in the controlflow graph is reachable
from start and that every left-hand side of a definition is live. Then:

1. The algorithm for inserting definitions 1 = 1 terminates after at
most n-(m+1) roundswere m isthe number of program
points with more than one in-going edges and 7 is the number of
variables.

2. After termination, for every program point w, the set 72[u] has exactly
one definition for every variable » which is live at .

Discussion

The efficiency crucially depends on the number of iterations. If the cfg is
well-structured, it terminates already after one iteration !

624

Discussion

The efficiency crucially depends on the number of iterations. If the cfg is

well-structured, it terminates already after one iteration !

A well-structured cfg can be reduced to a single vertex or edge by:

D @
—P @) =— ©
3 ®

625

Discussion

The efficiency crucially depends on the number of iterations. If the cfg is

well-structured, it terminates already after one iteration !

A well-structured cfg can be reduced to a single vertex or edge by:

@ ®
—>) =——> ©
@ ®

@ ®

Q) —

@ @

626

Discussion (cont.)

¢ Reducible cfgs are not the exception — but the rule :-)

e InJava, reducibility is only violated by loops with breaks/continues.

e If the insertion of definitions does not terminate after £ iterations,
we may immediately terminate the procedure by inserting
definitions = = = before all nodes which are reached by more

than one definition of .

Assume now that every program point u is reached by exactly one
definition for each variable which is live at 1 ...

The Transformation SSA, Step 2:

Each edge (u,lab,v) is replaced with (u, 7T, 4[lab],v) where

duw=uw, if(ru)eRu] and:

Tooli] =
T..s[Neg(e)] =
To.6[Pos(¢)] =
Toole = € =
Toolo = M) =
Tos[Mer] = s =
Tosl{fr=z|rel} =

628

Neg(d(e))

Pos(¢(e))

x, = ¢le)

x, = Mg(e)]
Mlp(er)] = d(e2)]
{r,=¢(x) |z €L}

The Transformation SSA, Step 2:

Eachedge (u,lab,v) isreplaced with (u, T, s[lab],v) where

dr=uw, if{r,u) e R[u and:

Tosl:] =
To.s[Neg(e)] =
To.0[Pos(e)] =
Toale = ¢ =
Tr el = Mel] -
Top[Mler] = e

Toslz =z |z eL)] =

628

Neg(p(e))

Pos(¢(e))

x, = ¢(e)

x, = Mp(e)]
Mlpler)] = ¢le2)]
{r,=¢lz) |z e L}

The Transformation SSA, Step 2:

Eachedge (u,lab,v) isreplaced with (u, 7, 4[lab],v) where
pr=uw, if (r,u) € R[u] and:

Teol:] -

T..o[Neg(e)] = Neg(d(e
Top[Pos(e)] = Pos(¢(c

Toole = ¢ = 1, =

Tosle = Me]] = z,= Mo(e)]
Tos[M[er] = e = Mp(e1)] = ¢(e)]
Tosllr=x|eel} = {ax,=¢(x)|xeL}

628

Each edge (u, lab, 07T
par=uw, if (r,u') € R[u]

Remark

A1)

— all) AR Ak
pa =, Ty, oy =y

in the last row are thought to g executed in parallel, i.e.,

Example

Theorem D

oint is reachable fiym start and the
out assignments t d@ variables.

Assume that every prograj
program is in SSA form

Let }(d.\;nom the maximal number of simultanepusly live variables
and &\ the interferenc graph of the program vafriablg§. Then:
A
A =w(G) = X(6) z
where w(G), x(G) aie the maximal size of a clique in G and the
minimal number of colors (7, respectively. K—_
) ?»\ 3 - ><?_
. -
A minimal coloring of G, i.e., an
in polynomial time.

[B
Q

Discussion

By the theorem, the number A of required registers can be easily
computed :-)

Thus variables which are to be spilled to memory, can be
determined ahead of the subsequent assignment of registers !

Thus here, we may, e.g., insist on keeping iteration variables from
inner loops.

632

Discussion

e By the theorem, the number A of required registers can be easily
computed :-)

e Thus variables which are to be spilled to memory, can be
determined ahead of the subsequent assignment of registers !

e Thus here, we may, e.g., insist on keeping iteration variables from
inner loops.

e Clearly, always A < w(({) < x(G) :—)~.<_ X
.

Therefore, it suffices to color the interference graph with A

colors.

e Instead, we provide an algorithm which directly operates on the cfg

633

| register allocation can be¥Qund

Observation

e Live ranges of variables in programs in SSA form behave similar to
live ranges in basic blocks !

e Consider some dfs spanning tree 7' of the cfg with root start.

o Foreach variable =, the liverange L[r] forms a tree frageent

of T !

e A tree fragment is a subtree from which some subtrees ave been

634

Example

Example

Discussion
e Although the example program is not in SSA form, all live ranges
still form tree fragments :-)
e The intersection of tree fragments is again a tree fragment !

e Aset C of tree fragments forms a clique iff their intersection is
non-empty !!!

e The greedy algorithm will find an optimal coloring ...

636

Proof of the Intersection Property

(1) Assume I 1nIly#0@ and v; istherootof

m €1y or

Ug E_lrl

(2) Let (' denote a clique of tree fragments.

Then there is an enumeration C' = {I,...,I.}

U1,...,0 such that

v; € I; forall 7 <1

In particular, v, € I; forall .

637

)

I;. Then:

with roots

Example

640

Example

640

Example

640

Remark:

e Intersection graphs for tree fragments are also known as cordal
graphs ...

e A cordal graph is an undirected graph where every cycle with more
than three nodes contains a cord :-)

e Cordal graphs are another sub-class of perfect graphs :-))

e Cheap register allocation comes at a price:

when transforming into SSA form, we have introduced parallel
register-register moves -(

641

Remark:

e Intersection graphs for tree fragments are also known as cordal
graphs ...

e A cordal graph is an undirected graph where every cycle with more
than three nodes contains a cord :-)

e Cordal graphs are another sub-class of perfect graphs :-))

e Cheap register allocation comes at a price:

when transforming into SSA form, we have introduced parallel
register-register moves :-(

641

Problem

The parallel register assignment:

'f,‘:l"l = J.{I)J = 1’]‘2 ‘ 1’]‘2 = jill

is meant to exchange the registers /i, and IV, :-)

There are at least two ways of implementing this exchange ...

642

Problem

The parallel register assignment:

?,-".-'l = 1'1‘1 = 11)2 | 11)2 = .L{I)J

is meant to exchange the registers /7; and /i, :-)

There are at least two ways of implementing this exchange ...

(1) Using an auxiliary register:

R = Ry
1{1 = 11722
Ry = R;

643

(2) XOR:
Ry R @ R
Rs R @ Ro;
R, Ry @ Rs:

644

(2) XOR:
R = R @ Ry
Ry = R @ Ry
Ry = Ry ® Ry
But what about cyclic shifts such as:
’t,f"k = HJ = 1’1‘2 ‘ | fi',ll 1 = fl',ll ‘ [a];I. = .L{I)J

fork =277

645

(2) XOR:
R, = R, @ Ry
R, = R, @Ry
Ry & Ry:

ey
J

=
Il

But what about cyclic shifts such as:

’Q'Z",(- = J'J'J = Hg | | fi),.\ 1= i],.\ | J.{l);, = H]
fork =277
Then at most k& — 1 swaps of two registers are needed:

P = Hl > 11'2:
Ry 5 Rg;

jl)..‘l. 1 & jl);l.i

646

Next complicated case: permutations.

e Every permutation can be decomposed into a set of disjoint shifts
=)

e Any permutation of n registers with r shifts can be realized by n — r
SWaps ...

647

(2) XOR:
]1)1 =]1)1@‘]1)2
]1)2 =]1)1@]1)2
R = R1® Ro;
But what about cyclic shifts such as:
thy = [= Ry | | Ri_1 = Ry, | R =R

fork > 277

Then at most & — 1 swaps of two registers are needed:

T,':"'l;- = ji)l > 11'2:
ji)-‘g > jl’;j:

fi)..“ 1 jl);‘i

646

Next complicated case: permutations.

e Every permutation can be decomposed into a set of disjoint shifts
)

e Any permutation of n registers with r shifts can be realized by n — r
swaps ...

647

Next complicated case: permutations.

¢ Every permutation can be decomposed into a set of disjoint shifts
)

e Any permutation of n registers with r shifts can be realized by n — r
SWaps ...

Example
=R =R | Br=R; JRs =Ry | Ri=Rs| Rs = Ry
consists of the cycles (17, s, [75) and (R, [7,). Therefore:

'i;‘l.-' = JII‘J —r jl)gi
Ry < Rs;
1’1)4 Ad jl)ti_

648

The general case:

e Every register receives its value at most once.

e The assignment therefore can be decomposed into a permutation
together with tree-like assignments (directed towards the leaves) ...

Example

=Ry =M | Ra=NRy| Rz = R;

Rs = Ry

The parallel assignment realizes the linear register moves for /iy, /7, and
R, together with the cyclic shift for /75 and R5:

'Lfl“ = ji)] = fl)gi
11)2 = Il)[:
ja);:, — .!,I",Z

649

