Script generated by TTT Improvement (Cont.):

> Also, composition can be directly implemented:

Title: Seidl: Programmoptimierung (23.12.2013) (MyoMy) o = YUlery with
b= bull. b
Date: Mon Dec 23 14:15:37 CET 2013 ' = Ul where
J‘Il r = bU |_|”er Yy
Duration: 89:59 min Myz = b.Ul]p v
Pages: 29 » The effects of assignments then are:

Id s @ {.?' — r'} if e=ceZ
[[‘1‘ = ‘:]Ii = Idy,. ®{r—y} if e=ye Vars
Id e @ {2 +— T} otherwise

565

Improvement (Cont.):

> Also, composition can be directly implemented:
! . S (MyoMy)w = VU.cpy with
Vo= bU|l,,0b:
' = U1 where

=€l 7%
Myr = bU |_|¢;c1 Y
Y 7 A‘l’IZ s = b:‘ U LI_r;CI_ Y

» The effects of assignments then are:

if e=ceZ
[z = 'I]Ii = Id . € if e=ye Vars

ld vy @ {2+ T} otherwise

563

k’h Ny XEY
Improvement (Cont.): X }—_i —{_

T

> Also, composition can be directly impkmented:

(MyoMy)r = VU Ll,z;cf' 1y with
Vo= bU| b
I' = UL where
My = bu |—|uC1 y
My > = b. U |_|UC Ly

» The effects of assignments then are:
ldyoe @ {r—=c} if e=ceZ

[e=c] = ldvre @{z =y} if e=ye Vars
Id e @ {2 +— T} otherwise

565
... in the Example:
[[/ = U:ﬂ:1 = {(11 — ap, ret — ret.|f. > O|}
[[u] = f:]]j = {-ul — f‘. ret — ret, ¢ +— !‘.}

In order to implement the analysis, we additionally must construct the

effectofacall k= 1(_ [();,_) fyom the effect of aprocedure | :
W = o)
H (‘hf) - ld‘LomL; by (4‘1{ = enteri”(}iobah

T it x € Globals
enterf 2 =

0 otherwise

366

((/\'}‘@) ﬂ [] 2({((&)@ [«]

... in the Example: /(é
/ —

If [work]? ay v+ ay, ret = ap, b L} Z
then H [work]?

Now we can perform fixpoint iteration :-)

Y Of‘zﬁhqﬁmﬂ H el € F’)DJ
= (b, ko, € o |

work () \

1

Neg (a1) Pos (ay)

|

{(rl — ap, ret > ret, t —)‘.}
work(): 9| {ay — a,ret v ret, t > t}

10 {(rl =y, ret =y oag, e t}

8 {(rl — ap, ret v ret, t —)‘.}

[, .NFo[8]F = {ai—a,retat>t} o
{ay ¥ ay,ret v ret, — t}

= {ul = ap,ret = oap,l— t}

568
work () \
Neg (a1) Pos (ay) 1
... in the Example: 7| {a1 v ay,ret v ret, — t}
work(): 9 {ay ¥ a;,ret v ret,t — t}

If [work]F = {a1 > ay,ret == a1, t > t}
then 7 Jwork]?

Idy @ {a1 ¥ a1, ret > a1}

{(rl = ay, ret = oag, b f}

Now we can perform fixpoint iteration :-)

567

10 {(rl —oap,ret = ag f}

: 8| {a1 — ar,ret v ret, t > t}

[8,...NFo[8]F = {ay+—ai,ret—=ay,t—1t} o
{aq = ay,ret v ret, i > t}

= {u] > ap,ret v oag, t— f}

568

If we know the effects of procedure calls, we can put up a constraint

system for determining the abstract state when reaching a program point:

If we know the effects of procedure calls, we can put up a constraint
system for determining the abstract state when reaching a program point:

R[main] I enter d; R[main] O enter* dy

R/ 3 enterf (R[u]) k= {(u,f();,_) cal RI[f] 3 entert (R[u]) k= (u,[();,_) call
R[] J R[S v entry pointof [Rv] J RIS v entry pointof [
R[v] 3 [k (Ru)) k= (u,_,v) edge R[v] 3 k] (Ru]) k= (u,/g v) edge

(-
()
... in the Example:
Discussion:

main(

0] {ayr— T ret— Tt 0}
1| {ay— T,ret = T,t+ 0}
2| {a; = T,ret—= Tt 0}
3| {ar = Tiret— T, 0}
4| {ay = 0,ret = Tt 0}

5| {ay > 0,ret 0,1 0}

6| {a1 > 0,ret = T.i— 0}

e At least copy-constants can be determined interprocedurally.
e For that, we had to ignore conditions and complex assignments :-(
e In the second phase, however, we could have been more precise :-)
e The extra abstractions were necessary for two reasons:
(1) The set of occurring transformers M C D — [} must be
finite;
(2) The functions AM € M must be efficiently implementable
)

e The second condition can, sometimes, be abandoned ...

Observation: Sharir/Pnueli, Cousot
Discussion:
> Often, procedures are only called for few distinct abstract

arguments. e This constraint system may be huge :-(

> Each procedure need only to be analyzed for these :-) e We do not want to solve it completely!!!

> Putupa constraint system: e Itis sufficient to compute the correct values for all calls which

occur, i.e., which are necessary to determine the value

[r,a]* 3 a v entry point -
) i " [main(), ag]F —— We apply our local fixpoint algorithm
[v,a]* 2O combine (Ju,a],[f, enter® FIt))
(u, f():;,0) O{ . . .)
’ e The fixpoint algo provides us also with the set of actual parameters
[v,al* 2 [lab]*[u,a]* k= (u,lab,v) edge a € 1D for which procedures are (possibly) called and all abstract
[f,a]f 2 [stop;, al? stop, end pointef [4] values at their program points for each of these calls :-)
/i [v.a]* = value for the argument a . ’TO/ d
573 574

... in the Example:
Let us try a full constant propagation ... Discussion:

| | ap ret || ay ret ‘

e In the Example, the analysis terminates quickly :-)

T T e If DD has finite height, the analysis terminates if each procedure

T 1 is only analyzed for finitely many arguments :-))

T e Analogous analysis algorithms have proved very effective for the
analysis of Prolog :-)

e Together with a points-to analysis and propagation of negative
constant information, this algorithm is the heart of a very successful

noIp

race analyzer for C with Posix threads :-)

\
|’
S
o o o

“4 A A
o o 4
“4 o+
[

o o o o
o o -

main()

575 576

(2) The Call-String Approach:

... in the Example:

work () \ enter
(7

7
Neg (1) Pos (a;)
Idea:
> Compute the set of all reachable call stacks!
> In general, this is infinite :-(.
oy
> Only treat stacks up to a fixed depth precisely! From longer
stacks, we only keep the upper prefix of length d :-) enter
> Important special case: d = (.
= Just track the current stack frame ...
57 579
... in the Example:
The conditions for 5,7,10, e.g., are:
work () \ enter

Neg (ap)

enter

31

Pos (ay)

R[5] 2 combine (R[4], R[10])
R[7] 3 entert (RH])
R[7] 2 enter* (R[8])
R[9] 2 combine’ (R[8], R[10])

Warning:

The resulting super-graph contains obviously impossible paths ...

580

The conditions for 5,7,10, e.g., are:

8
U

28
I I

R[9]

L

combine* (R[4], R[10])

enter® (R[4])
enter’ (R[8))

combinef (R[8], R[10])

... in the Example this is:

work () \ enter
(7

Neg (1) Pos (a;)

enter
Warning:
The resulting super-graph contains obviously impossible paths ...
580 581
... in the Example this is:
\ The conditions for 5,7,10, e.g., are:
A A t
work 1 N enter
Neg (a1), Ros (a1) R[5] 2 combine? (R[4], R[10])
R[7] 3T entert (R[4])
R[7] 2 enter* (R[8])
h R[9] 2 combine? (R[8], R[L0])
enter
\mmbme Warning:
T ot The resulting super-graph contains obviously impossible paths ...
582

580

... in the Example this is:

Note:

In the example, we find the same results:
more paths render the results less precise.

In particular, we provide for each procedure the result just for one
(possibly very boring) argument :-(

The analysis terminates — whenever [0 has no infinite strictly
ascending chains :-)

The correctness is easily shown w.r.t. the operational semantics
with call stacks.

For the correctness of the functional approach, the semantics with
computation forests is better suited :-)

583

