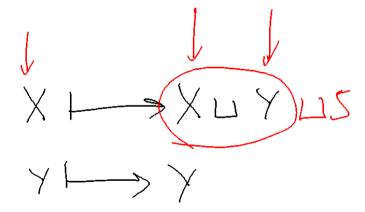
Script generated by TTT

Title: Seidl: Programmoptimierung (23.12.2013)

Date: Mon Dec 23 14:15:37 CET 2013

Duration: 89:59 min

Pages: 29



Improvement (Cont.):

→ Also, composition can be directly implemented:

$$\begin{array}{rcl} (M_1\circ M_2)\;x & = & b'\sqcup\bigsqcup_{y\in I'}y & \text{with} \\ b' & = & b\sqcup\bigsqcup_{z\in I}b_z & \\ I' & = & \bigcup_{z\in I}I_z & \text{where} \\ M_1\;x & = & b\sqcup\bigsqcup_{y\in I}y & \\ M_2\;z & = & b_z\sqcup\bigsqcup_{y\in I_z}y & \end{array}$$

→ The effects of assignments then are:

$$\llbracket x = e ; \rrbracket^{\sharp} = \begin{cases} \operatorname{Id}_{\mathit{Vars}} \oplus \{x \mapsto c\} & \text{if} \quad e = c \in \mathbb{Z} \\ \operatorname{Id}_{\mathit{Vars}} \oplus \{x \mapsto y\} & \text{if} \quad e = y \in \mathit{Vars} \\ \operatorname{Id}_{\mathit{Vars}} \oplus \{x \mapsto \top\} & \text{otherwise} \end{cases}$$

565

Improvement (Cont.):

→ Also, composition can be directly implemented:

$$(M_1 \circ M_2) \ x = b' \sqcup \bigsqcup_{y \in I'} y \qquad \text{with}$$

$$b' = b \sqcup \bigsqcup_{z \in I} b_z$$

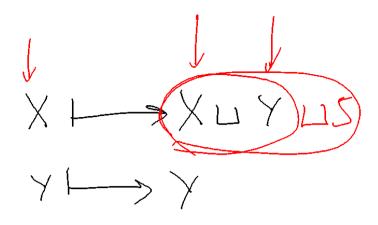
$$I' = \bigcup_{z \in I} I_z \qquad \text{where}$$

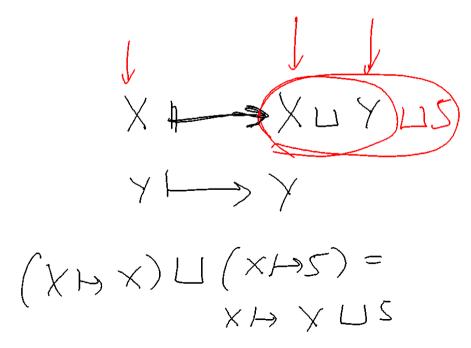
$$M_1 \ x = b \sqcup \bigsqcup_{y \in I} y$$

$$M_2 \ z = b_z \sqcup \bigsqcup_{y \in I} y$$

→ The effects of assignments then are:

$$[\![x=e;]\!]^{\sharp} = \begin{cases} \operatorname{Id}_{\mathit{Vars}} \oplus \{x \mapsto c\} & \text{if} \quad e=c \in \mathbb{Z} \\ \operatorname{Id}_{\mathit{Vars}} \oplus \{x \mapsto y\} & \text{if} \quad e=y \in \mathit{Vars} \\ \operatorname{Id}_{\mathit{Vars}} \oplus \{x \mapsto \top\} & \text{otherwise} \end{cases}$$





Improvement (Cont.):

ightarrow Also, composition can be directly implemented

$$\begin{array}{rcl} (M_1 \circ M_2) \; x & = & b' \sqcup \bigsqcup_{y \in I'} y & \text{with} \\ & b' & = & b \sqcup \bigsqcup_{z \in I} b_z \\ & I' & = & \bigcup_{z \in I} I_z & \text{where} \\ & M_1 \; x & = & b \sqcup \bigsqcup_{y \in I} y \\ & M_2 \; z & = & b_z \sqcup \bigsqcup_{u \in I_z} y \end{array}$$

 \rightarrow The effects of assignments then are:

$$\llbracket x = e; \rrbracket^{\sharp} = \begin{cases} \operatorname{Id}_{\mathit{Vars}} \oplus \{x \mapsto c\} & \text{if} \quad e = c \in \mathbb{Z} \\ \operatorname{Id}_{\mathit{Vars}} \oplus \{x \mapsto y\} & \text{if} \quad e = y \in \mathit{Vars} \\ \operatorname{Id}_{\mathit{Vars}} \oplus \{x \mapsto \top\} & \text{otherwise} \end{cases}$$

565

... in the Example:

$$[t = 0;]^{\sharp} = \{a_1 \mapsto a_1, \operatorname{ret} \mapsto \operatorname{ret}, [t \mapsto 0]\}$$
$$[a_1 = t;]^{\sharp} = \{[a_1 \mapsto t], \operatorname{ret} \mapsto \operatorname{ret}, t \mapsto t\}$$

In order to implement the analysis, we additionally must construct the effect of a call $k = (_, f();,_)$ from the effect of a procedure f:

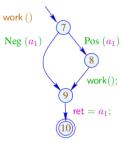
(u, f, v) [2] 2((q)) [2]

... in the Example:

If
$$[\operatorname{work}]^{\sharp} = \{a_1 \mapsto a_1, \operatorname{ret} \mapsto a_1, t \mapsto t\}$$

then $H[\operatorname{work}]^{\sharp} \neq [\operatorname{ld}_{\{t\}}] \oplus \{a_1 \mapsto a_1, \operatorname{ret} \mapsto a_1\}$
 $= \{a_1 \mapsto a_1, \operatorname{ret} \mapsto a_1, t \mapsto t\}$

Now we can perform fixpoint iteration :-)



	1
7	$\{a_1 \mapsto a_1, ret \mapsto ret, t \mapsto t\}$
9	$\{a_1 \mapsto a_1, ret \mapsto ret, t \mapsto t\}$
10	$ \{a_1 \mapsto a_1, ret \mapsto a_1, t \mapsto t\} $
8	$\{a_1 \mapsto a_1, ret \mapsto ret, t \mapsto t\}$

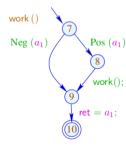
$$[[(8, ..., 9)]]^{\sharp} \circ [[8]]^{\sharp} = \{a_1 \mapsto a_1, \operatorname{ret} \mapsto a_1, t \mapsto t\} \circ$$
$$\{a_1 \mapsto a_1, \operatorname{ret} \mapsto \operatorname{ret}, t \mapsto t\}$$
$$= \{a_1 \mapsto a_1, \operatorname{ret} \mapsto a_1, t \mapsto t\}$$

568

... in the Example:

If
$$\begin{aligned} & [\mathsf{work}]^\sharp &= \{a_1 \mapsto a_1, \mathsf{ret} \mapsto a_1, t \mapsto t\} \\ & \text{then} \quad H \, [\mathsf{work}]^\sharp &= \mathsf{Id}_{\{t\}} \oplus \{a_1 \mapsto a_1, \mathsf{ret} \mapsto a_1\} \\ &= \{a_1 \mapsto a_1, \mathsf{ret} \mapsto a_1, t \mapsto t\} \end{aligned}$$

Now we can perform fixpoint iteration :-)



	1
7	$\{a_1 \mapsto a_1, ret \mapsto ret, t \mapsto t\}$
9	$\left\{ \mathbf{a_1} \mapsto a_1, ret \mapsto ret, t \mapsto t \right\}$
10	$ \{a_1 \mapsto a_1, ret \mapsto a_1, t \mapsto t\} $
8	$ \{a_1 \mapsto a_1, ret \mapsto ret, t \mapsto t \} $

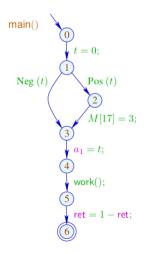
$$[[(8, ..., 9)]]^{\sharp} \circ [[8]]^{\sharp} = \{a_1 \mapsto a_1, \operatorname{ret} \mapsto a_1, t \mapsto t\} \circ$$
$$\{a_1 \mapsto a_1, \operatorname{ret} \mapsto \operatorname{ret}, t \mapsto t\}$$
$$= \{a_1 \mapsto a_1, \operatorname{ret} \mapsto a_1, t \mapsto t\}$$

If we know the effects of procedure calls, we can put up a constraint system for determining the abstract state when reaching a program point:

570

If we know the effects of procedure calls, we can put up a constraint system for determining the abstract state when reaching a program point:

... in the Example:



 $\begin{array}{c|c} 0 & \{a_1 \mapsto \top, \operatorname{ret} \mapsto \top, t \mapsto 0\} \\ 1 & \{a_1 \mapsto \top, \operatorname{ret} \mapsto \top, t \mapsto 0\} \\ 2 & \{a_1 \mapsto \top, \operatorname{ret} \mapsto \top, t \mapsto 0\} \\ 3 & \{a_1 \mapsto \top, \operatorname{ret} \mapsto \top, t \mapsto 0\} \\ 4 & \{a_1 \mapsto 0, \operatorname{ret} \mapsto \top, t \mapsto 0\} \\ 5 & \{a_1 \mapsto 0, \operatorname{ret} \mapsto 0, t \mapsto 0\} \\ 6 & \{a_1 \mapsto 0, \operatorname{ret} \mapsto \top, t \mapsto 0\} \\ \end{array}$

Discussion:

- At least copy-constants can be determined interprocedurally.
- For that, we had to ignore conditions and complex assignments :-(
- In the second phase, however, we could have been more precise :-)
- The extra abstractions were necessary for two reasons:
 - (1) The set of occurring transformers $\mathbb{M} \subseteq \mathbb{D} \to \mathbb{D}$ must be finite;
 - (2) The functions $M \in \mathbb{M}$ must be efficiently implementable :-)
- The second condition can, sometimes, be abandoned ...

Observation:

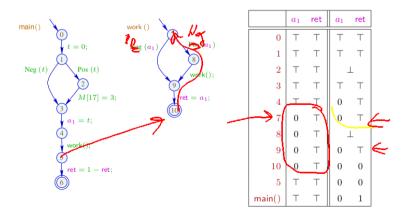
Sharir/Pnueli, Cousot

- Often, procedures are only called for few distinct abstract arguments.
- → Each procedure need only to be analyzed for these :-)
- → Put up a constraint system:

573

... in the Example:

Let us try a full constant propagation ...



Discussion:

- This constraint system may be huge :-(
- We do not want to solve it completely!!!
- It is sufficient to compute the correct values for all calls which occur, i.e., which are necessary to determine the value $[\![\mathsf{main}(), a_0]\!]^\sharp$ \Longrightarrow We apply our local fixpoint algorithm :-))
- The fixpoint algo provides us also with the set of actual parameters $a \in \mathbb{D}$ for which procedures are (possibly) called and all abstract values at their program points for each of these calls:

574

Discussion:

- In the Example, the analysis terminates quickly :-)
- If D has finite height, the analysis terminates if each procedure is only analyzed for finitely many arguments :-))
- Analogous analysis algorithms have proved very effective for the analysis of Prolog :-)
- Together with a points-to analysis and propagation of negative constant information, this algorithm is the heart of a very successful race analyzer for C with Posix threads :-)

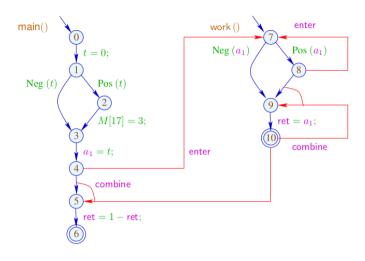
(2) The Call-String Approach:

Idea:

- → Compute the set of all reachable call stacks!
- \rightarrow In general, this is infinite :-(
- \rightarrow Only treat stacks up to a fixed depth d precisely! From longer stacks, we only keep the upper prefix of length d:-)
- \rightarrow Important special case: d = 0.
 - Just track the current stack frame ...

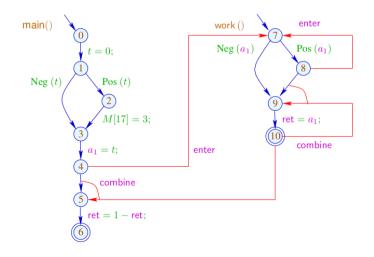
577

... in the Example:



579

... in the Example:



579

The conditions for 5, 7, 10, e.g., are:

$$\mathcal{R}[5] \supseteq \mathsf{combine}^{\sharp} (\mathcal{R}[4], \mathcal{R}[10])$$

$$\mathcal{R}[7] \supseteq \mathsf{enter}^{\sharp} (\mathcal{R}[4])$$

$$\mathcal{R}[7] \supseteq \operatorname{enter}^{\sharp}(\mathcal{R}[8])$$

$$\mathcal{R}[9] \supseteq \mathsf{combine}^{\sharp}(\mathcal{R}[8], \mathcal{R}[10])$$

Warning:

The resulting super-graph contains obviously impossible paths ...

The conditions for 5, 7, 10, e.g., are:

$$\mathcal{R}[5] \supseteq \mathsf{combine}^{\sharp} (\mathcal{R}[4], \mathcal{R}[10])$$

$$\mathcal{R}[7] \supseteq \operatorname{enter}^{\sharp}(\mathcal{R}[4])$$

$$\mathcal{R}[7] \supseteq \mathsf{enter}^{\sharp} \left(\mathcal{R}[8] \right)$$

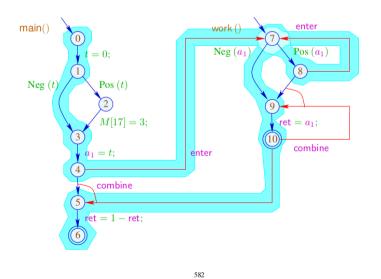
$$\mathcal{R}[9] \supseteq \mathsf{combine}^{\sharp} (\mathcal{R}[8], \mathcal{R}[10])$$

Warning:

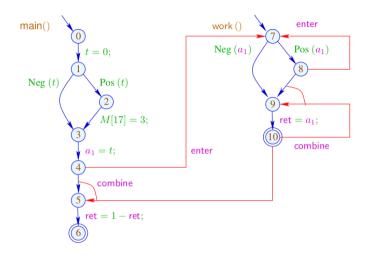
The resulting super-graph contains obviously impossible paths ...

580

... in the Example this is:



... in the Example this is:



581

The conditions for 5, 7, 10, e.g., are:

$$\mathcal{R}[5] \supseteq \mathsf{combine}^{\sharp} (\mathcal{R}[4], \mathcal{R}[10])$$

$$\mathcal{R}[\mathbf{7}] \ \supseteq \ \mathsf{enter}^\sharp \left(\mathcal{R}[4]\right)$$

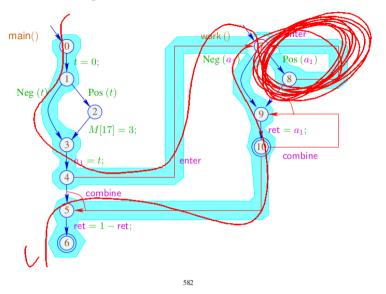
$$\mathcal{R}[7] \supseteq \operatorname{enter}^{\sharp} (\mathcal{R}[8])$$

$$\mathcal{R}[9] \supseteq \mathsf{combine}^{\sharp}(\mathcal{R}[8], \mathcal{R}[10])$$

Warning:

The resulting super-graph contains obviously impossible paths ...

... in the Example this is:



Note:

- → In the example, we find the same results:
 more paths render the results less precise.
 In particular, we provide for each procedure the result just for one (possibly very boring) argument :-(
- → The analysis terminates whenever D has no infinite strictly ascending chains :-)
- → The correctness is easily shown w.r.t. the operational semantics with call stacks.
- → For the correctness of the functional approach, the semantics with computation forests is better suited :-)