Script generated by TTT

Title:
Date:
Duration:

Pages:

Example:

app

Seidl: Programmoptimierung (30.01.2013)
Wed Jan 30 08:30:41 CET 2013
89:52 min

38

= funz — funy — matchzwith[] — y

| ziixs — xappasy

Abstract interpretation yields the system of equations:

[eppli bi by = by A (ByV 1)
— b

We conclude that we may conclude for sure only for the first argument
that its top constructor is required -}

860

—

= N L
(= e

[match ey with [] — e | zas = e]fp = \'é
[eolt A ([l v [(0 @ {7 > 1))
[match ey with (z1,22) — e]f p N

[eo® p A [ed]? (p B {zy, 0 1))
[[Fp = lerzeltp = [ene)lfp =1

e The rules for match are analogous to those for if.

e In case of ::, we know nothing about the values beneath the
constructor; therefore {x, xs — 1}.

e We check our analysis on the function app ...

Example:
app = funz — funy — matchz with[] — y
TS —» T Iapp sy
Abstract interpretation yields the system of equations:

lapplF by by = by A (B 1)
— bl

We conclude that we may conclude for sure only for the first argument
that its top constructor is required :-)

860

R

app = funz — funy — matchzwith[] — y

Example:

| zixs — xoappasy
Abstract interpretation yields the system of equations:

[[app]]ﬁ bl bz = bl A (b l)
by 1

We conclude that we may conclude for sure only for the first argument
that its top constructor is required :-)

860

Example:
app = funz — funy — matchzwith[] — y
| zuxs — xappxsy
Abstract interpretation yields the system of equations:

lapplF by by = by A (V1)
= b

We conclude that we may conclude for sure only for the first argument
that its top constructor is required :-)

860

Total Strictness

Assume that the result of the function application is totally required.
Which arguments then are also totally required ?

We again refer to Boolean functions ...

[match e with [] — e | z,:1258 =] p = letb=[e] pin

bA el pV [ea]? (p%Et{;l‘Hb::rsH 1NV [e]f (p@ {z— 1,25 = b))

[match ey with (z1,25) — e p = letb=[e]* pin
[edf (p@ a1 = 1o DY)V [ed]? (p@ {21 = by v 1))

g 1

[er s p = [e] pAlea]f p

[[(f’l 2 p = [a]fprlelfp

861

—
Ll

A e }QY‘* f(ywv
Lﬁf(éﬂwv

Total Strictness

Assume that the result of the function application is totally required.
Which arguments then are also totally required ?

We again refer to Boolean functions ...

[match ey with [] — e | z,225 —] p = letb=[e]* pin

bafefpvie] (p@{x—bas—= 1) Vet (p@ {z = 1,25 = b})

[match e, with (z,25) — e p = letb=[e]" pin
[el]f (p® iz = Lza=s b} V [e]f (p @ {z1 = b, zo = 1})

[11% p =1

[er el p = [e]fprle]fp

[(er,e2)]" p = [l pAledfp

Total Strictness

Assume that the result of the function application is totally required.
Which arguments then are also totally required ?

We again refer to Boolean functions ...

[match ey with

bAfel]f pV

[match ey with (z1,22) — €] p

[ei]f (p&{m = Liza=s b Vel (p&{x = boay = 1})

[o =1
[er 2] p = [alfpale]p
[(er, e2)]" p = et p el p

861 861
Discussion:
Example:
e The rules for constructor applications have changed.
e Also the treatment of match now involves the components z and
4, Tg. app = funz — funy — matchz with[] — y

e Again, we check the approach for the function app.

Example:

Abstract interpretation yields the system of equations:

[app]® by by = by Abs V by AJapp]f 1 ba vV 1 A [app]® by by
= by Abyv b A fapp]* 1 b2 Vv [app]* by be

862

| ziiws — i appasy

™ {
% Q"f v (S n,' 26.‘
Abstract interpretation yields the system 6f eqliations: —

[[app]]u bJ bQ = bl N (bg \% l)
- b

We conclude that we may conclude for sure only for the first argument
that its top constructor is required :-)

860

Discussion:

e The rules for constructor applications have changed.

¢ Also the treatment of match now involves the components 2 and
Iy, To.

e Again, we check the approach for the function app.

Example:

Abstract interpretation yields the system of equations:

[app]® by by by A by V by A [app]? 1 by \Vﬁ([app]* by by

by A ba W by A [app]? 1 bo v [app]* by b2

862

Discussion:

e The rules for constructor applications have changed.

e Also the treatment of match now involves the components z and
Iy, To.

e Again, we check the approach for the function app.

Example:

Abstract interpretation yields the system of equations:

lappl? by b = by A by V by A Japp]* 1 by V 1 A Japp] by by
= by Aby V by A Japp] 1 be V [app]? by bo

:"bnf\L’tw\/ LD/, ~AD VO

This results in the following fixpoint iteration:

0| funz — funy — 0

1| funz — funy -z Ay

2 || funz —» funy -z Ay

We deduce that both arguments are definitely totally required if the result
is totally required :-)

Warning:

Whether or not the result is totally required, depends on the context of the

function call!

In such a context, a specialized function may be called ...

863

Discussion:

e The rules for constructor applications have changed.

e Also the treatment of match now involves the components z and
€Iy, Ty

e Again, we check the approach for the function app.

Example:

Abstract interpretation yields the system of equations:

[appl? by by = by A by Vv by A Japp]f 1 by V 1 A [app]F by by
= by Abav by A fapp]* 1 b v [app]® by b2

= bqb’?_.-\ﬁmbawbl v Lo

/!sz_._

This results in the following fixpoint iteration:

0| funz — funy — 0

1| funz — funy -z Ay

2| funz — funy —z Ay

We deduce that both arguments are definitely totally required if the result

is totally required :-)

Warning:

Whether or not the result is totally required, depends on the context of the

function call!

In such a context, a specialized function may be called ...

863

< f\(= (><\l~/1v
Ve = [o] o
"
D fllo > ©

‘
appMnn Yo dun y (}('t # =z and ?‘#y g ét 4 /]
match 'z with |
. rzixs — let #7 =x:

G e LT

e Both strictness ana&ﬁgs empIoy the same complete lattice.

g
¢ Results and application, though, are quite different :-)

® Thereby swa yca the fﬂ”nwing description relations:

—_—

WTDP Strictness 1 A0

ota ess if L occurs in 2.
o th anglysegean atso be conibined to an a joint analysis .

864

Combined Strictness Analysis

e We use the complete lattice:
T={0c1lc 2}
e The description relation is given by:

1L A0 zA1(zcontains L) =z A 2 (zvalue)

e The lattice is more informative, the functions, though, are no longer
as efficiently representable, e.g., through Boolean expressions :-(

e We require the auxiliary functions:

. . y ifiCux
(tCx)y=
0 otherwise

865

The Combined Evaluation Function:

[matcheywith[] — e, | a5 — e]fp = let b= [e] pin
(2C0):[el]f p U
(1Ch); ([ex]* (p & {a — 2,25 — b})
U e (p® {z — bzs — 2}))
[match eg with (21, 22) — el p = let b= [eo]* pin
(1Ch); ([ea* (p@ {21 = 2,20 = b))

Example:
For our beloved function app, we obtain:
. dz [N

(2Cd)
(1= dy); (LU [appl dy do U dy M [app]* 2 dy)

= (_)Edl)dz [N
(1Cdy)
(d

[appl* dy dy

" [N J.E 1) 1u
U le BT > b, ag = 2
ﬂ [[tl]] (p 9{ 1 2 1) 1C 1):[[app]]udl do L
[p - “ dy M [app]* 2 dy
[er:: ea]? p =
[(er, e)]F p = 1U([e]tp et p) this results in the fixpoint computation:
866 867

0| funz — funy — 0 Further Directions’

1{funz — funy — (2Cz),yU(1Cx); 1

9 e ; 2) (.

2| funz > funy > (2La);yU (L) 1 e Our Approach is also applicable to other data structures.

We conclude

¢ that both arguments are totally required if the result is totally
required; and

e that the root of the first argument is required if the root of the result
is required :-)

Remark:

The analysis can be easily generalized such that it guarantees evaluation
uptoadepth d)

868

e In principle, also higher-order (monomorphic) functions can be
analyzed in this way :-)

e Then, however, we require higher-order abstract functions — of %
which there are many :-(

e Such functions therefore are approximated by: ! 2
funz;, — ... funz, — T Z
=)
e For some known higher-order functions such as map, foldl, loop, ...

this approach then should be improved :-))

869

Further Directions:

e Our Approach is also applicable to other data structures.

¢ In principle, also higher-order (monomorphic) functions can be 3 Optlmlzatlﬂﬂ of LOgIC Pl‘Ogl‘amS
analyzed in this way :-)
e Then, however, we require higher-order abstract functions — of)) o . R .
We only consider the mini language PuP (“Pure Prolog”). In particular,

which there are many :-()
- we do not consider:
e Such functions therefore are approximated by:) .
e arithmetic;

funz; — ... funz, — T
e the cut-operator.

=) . .
o Self-modification by means of assert and retract.
e For some known higher-order functions such as map, foldl, loop, ...

this approach then should be improved :-))

869 870

Example: .. yields the tree:
bigger(X.,Y) X = elephant,Y = horse
bigger(X.Y) X = horse, Y = donkey
bigger(X,Y) X = donkey,Y = dog
bigger(X.Y) X = donkey,Y = monkey

is_bigger(X,Y)
is_bigger(X,Y)

bigger(X,Y)
bigger(X, Z),is_bigger(Z,Y)
is_bigger(elephant, dog)

A R A A A B

.. yields the tree:

[dea (2):

Decision trees are exponentially large :-(
Often, however, many sub-trees are isomorphic :-)

[somorphic sub-trees need to be represented only once ...

890 891
Idea (2):
.. vields the tree: e Decision trees are exponentially large - (

e Often, however, many sub-trees are isomorphic :-)
e Isomorphic sub-trees need to be represented only once ...

TN

&3

o —
-
e
~
e
N X\

890

891

Idea (3):

¢ Nodes whose test is irrelevant, can also be abandoned ...

. ROZDD

Discussion:

e This representation of the Boolean function f is unique !
Equality of functions is efficiently decidable !!

e For the representation to be useful, it should support the basic
operations: A, V, =, =, Jx; ..

[bl A I)‘Z]L’ = b| A b‘Z
[fAgliei = funz — if o then [f1Agl];
else [f0 A g0];

analogous for the remaining operators

892 893
Background 6: Binary Decision Diagrams
Idea (1): .. yields the tree:
¢ Choose an ordering x, . .., 2, on the arguments ...
e Represent the function f:B— ... =B by [flo where:
B =10 ,-‘ ij
[flici = funa;, — if 2; then [f 1]; _/-//
e ™ ™
else [f 0] [22 | 22 |
. S A
\ / N
/ \
TN
\zs] |23 \za] |73
hand

Example: faraawg = o1 A (12 ¢ 23)

e 7

_

890

[Hz;. flici = funa; — if »; then [Ha;. f1);

else [Tx;. f0]; ifi<j
Bz, flia = [fOV 1], Discussion:
e Originally, BDDs have been developped for circuit verification.
e Today, they are also applied to the verification of software ...
e A system state is encoded by a sequence of bits.
o Operations are executed bottom-up. e A BDD then describes the set of all reachable system states.
o Root nodes of already constructed sub-graphs are stored in a e Warning: Repeated application of Boolean operations may increase

unique-table the size dramatically !

— e The variable ordering may have a dramatic impact ...

Isomorphy can be tested in constant time !

e The operations thus are polynomial in the size of the input BDDs -

894 895

Example: (21 ¢ 22) A (3 & 24)

896

