Script generated by TTT

Title: Seidl: Programmoptimierung (05.11.2012)

Date: Mon Nov 05 15:00:53 CET 2012

Duration: 89:17 min

Pages: 62

Summary and Application:

ightarrow The effects of edges of the analysis of availability of expressions are distributive:

$$(a \cup (x_1 \cap x_2)) \backslash b = ((a \cup x_1) \cap (a \cup x_2)) \backslash b$$
$$= ((a \cup x_1) \backslash b) \cap ((a \cup x_2) \backslash b)$$

 \to $\:$ If all effects of edges are distributive, then the MOP can be computed by means of the constraint system and RR-iteration. :-)

Summary and Application:

 $\rightarrow \,\,$ The effects of edges of the analysis of availability of expressions are distributive:

$$(a \cup (x \cap x_2)) \setminus b = ((a \cup x_1) \cap (a \cup x_2) \setminus b)$$
$$= ((a \cup x_1) \setminus b) \cap (a \cup x_2) \setminus b)$$

192

Summary and Application:

The effects of edges of the analysis of availability of expressions are distributive:

$$(a \cup (x_1 \cap x_2)) \backslash b = ((a \cup x_1) \cap (a \cup x_2)) \backslash b$$
$$= ((a \cup x_1) \backslash b) \cap ((a \cup x_2) \backslash b)$$

- \rightarrow $\:$ If all effects of edges are distributive, then the MOP can be computed by means of the constraint system and RR-iteration. :-)
- → If not all effects of edges are distributive, then RR-iteration for the constraint system at least returns a safe upper bound to the MOP
 :-)

1.2 Removing Assignments to Dead Variables

Example:

1: -x-y+2:

2: y = 5;

3: x = y + 3;

The value of x at program points 1, 2 is over-written before it can be used.

Therefore, we call the variable x dead at these program points :-)

195

Note:

- → Assignments to dead variables can be removed ;-)
- \rightarrow Such inefficiencies may originate from other transformations.

Formal Definition:

The variable x is called live at u along the path π starting at u relative to a set X of variables either:

if $x \in X$ and π does not contain a definition of x; or:

if π can be decomposed into: $\pi = \pi_1 k \pi_2$ such that:

- k is a use of x; and
- π_1 does not contain a definition of x.

Note:

- → Assignments to dead variables can be removed ;-)
- → Such inefficiencies may originate from other transformations.

196

Note:

- → Assignments to dead variables can be removed ;-)
- \rightarrow Such inefficiencies may originate from other transformations.

Formal Definition:

The variable x is called live at u along the path π starting at u relative to a set X of variables either:

if $x \in X$ and π does not contain a definition of x; or:

if π can be decomposed into: $\pi = \pi_1 k \pi_2$ such that:

- k is a use of x; and
- π_1 does not contain a definition of x.

197

Thereby, the set of all defined or used variables at an edge $k=(_,lab,_)$ is defined by:

lab	used	defined
;	Ø	Ø
Pos(e)	$Vars\left(e\right)$	Ø
Neg(e)	$Vars\left(e\right)$	Ø
x = e;	$Vars\left(e\right)$	$\{x\}$
x = M[e];	$Vars\left(e\right)$	$\{x\}$
$M[e_1] = e_2;$	$Vars\left(e_{1}\right)\cup Vars\left(e_{2}\right)$	Ø

198

The variable x is live at u (relative to X) if x is live at u along some path to the exit (relative to X). Otherwise, x is called dead at u (relative to X).

A variable x which is not live at u along π (relative to X) is called dead at u along π (relative to X).

Example:

where $X = \emptyset$. Then we observe:

	live	dead
0	{ <i>y</i> }	{ <i>x</i> }
1	Ø	$\{x,y\}$
2	$\{y\}$	{ <i>x</i> }
3	Ø	$\{x,y\}$

199

The variable x is live at u (relative to X) if x is live at u along some path to the exit (relative to X). Otherwise, x is called dead at u (relative to X).

Question:

How can the sets of all dead/live variables be computed for every u ????

The variable x is live at u (relative to X) if x is live at ualong some path to the exit (relative to X). Otherwise, x is called dead at u (relative to X).

Ouestion:

How can the sets of all dead/live variables be computed for every u ????

Idea:

For every edge k = (u, v), define a function $[k]^{\sharp}$ which transforms the set of variables which are live at v into the set of variables which are live at $u \dots$

Let $\mathbb{L} = 2^{Vars}$.

For k = (, lab,), define $[\![k]\!]^{\sharp} = [\![lab]\!]^{\sharp}$ by:

$$[]^{\sharp}L = L$$

$$[Pos(e)]^{\sharp}L = [Neg(e)]^{\sharp}L = L \cup Vars(e)$$

$$\llbracket x = e ; \rrbracket^{\sharp} L = (L \setminus \{x\}) \cup Vars(e)$$

$$[x = M[e]]^{\sharp} L = (L \setminus \{x\}) \cup Vars(e)$$

$$\llbracket M[e_1] = e_2; \rrbracket^{\sharp} L = L \cup Vars(e_1) \cup Vars(e_2)$$

Let $\mathbb{L} = 2^{Vars}$.

For
$$k = (_, lab, _)$$
, define $[\![k]\!]^{\sharp} = [\![lab]\!]^{\sharp}$ by:

$$[:]^{\sharp}L = L$$

$$[Pos(e)]^{\sharp}L = [Neg(e)]^{\sharp}L = L \cup Vars(e)$$

$$[x = e]^{\sharp} L = (L \setminus \{x\}) \cup Vars(e)$$

$$[x = M[e];]^{\sharp}L = (L \setminus \{x\}) \cup Vars(e)$$

$$\llbracket M[e_1] = e_2; \rrbracket^{\sharp} L = L \cup Vars(e_1) \cup Vars(e_2)$$

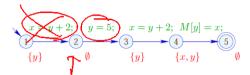
 $\llbracket k \rrbracket^{\sharp}$ can again be composed to the effects of $\llbracket \pi \rrbracket^{\sharp}$ of paths $\pi = k_1 \dots k_r$ by: Kras

$$\llbracket \pi \rrbracket^{\sharp} = \llbracket k_1 \rrbracket^{\sharp} \circ \dots \circ \llbracket k_r \rrbracket^{\sharp}$$

7 p y xy ×

We verify that these definitions are meaningful :-)

We verify that these definitions are meaningful :-)



210

The set of variables which are live at u then is given by:

$$\mathcal{L}^*[u] = \bigcup \{ \llbracket \pi \rrbracket^{\sharp} X \mid \pi : u \to^* stop \}$$

... literally:

- The paths start in u:-) \implies As partial ordering for \mathbb{L} we use $\sqsubseteq = \subseteq$.
- The set of variables which are live at program exit is given by the set *X* :-)

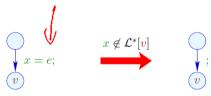
The set of variables which are live at u then is given by:

$$\mathcal{L}^*[u] \ = \ \bigcup \{ \llbracket \pi \rrbracket^\sharp \, X \mid \pi : \underline{u} \to^* \underline{stop} \}$$

- ... literally:
- The paths start in u:-)
 - \implies As partial ordering for \mathbb{L} we use $\sqsubseteq = \subseteq$.
- The set of variables which are live at program exit is given by the set X:-)

211

Transformation 2:



Correctness Proof:

- \rightarrow Correctness of the effects of edges: If L is the set of variables which are live at the exit of the path π , then $\llbracket\pi\rrbracket^{\sharp}L$ is the set of variables which are live at the beginning of π :-)
- → Correctness of the transformation along a path: If the value of a variable is accessed, this variable is necessarily live. The value of dead variables thus is irrelevant :-)
- → Correctness of the transformation: In any execution of the transformed programs, the live variables always receive the same values :-))

213

Correctness Proof:

- Orrectness of the effects of edges: If L is the set of variables which are live at the exit of the path π , then $\llbracket\pi\rrbracket^\sharp L$ is the set of variables which are live at the beginning of π :
- → Correctness of the transformation along a path: If the value of a variable is accessed, this variable is necessarily live. The value of dead variables thus is irrelevant :-)
- → Correctness of the transformation: In any execution of the transformed programs, the live variables always receive the same values :-))

Transformation 2:

$$x = M[e];$$

212

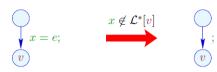
Computation of the sets $\mathcal{L}^*[u]$:

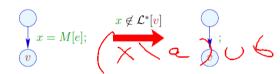
(1) Collecting constraints:

$$\mathcal{L}[stop] \supseteq X$$
 $\mathcal{L}[u] \supseteq [k]^{\sharp}(\mathcal{L}[v]) \qquad k = (u, _, v) \text{ edge}$

- (2) Solving the constraint system by means of RR iteration. Since \mathbb{L} is finite, the iteration will terminate :-)
- (3) If the exit is (formally) reachable from every program point, then the smallest solution \mathcal{L} of the constraint system equals \mathcal{L}^* since all $\llbracket k \rrbracket^\sharp$ are distributive :-))

Transformation 2:



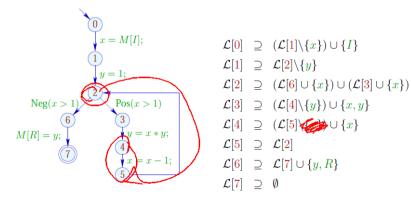


212

We verify that these definitions are meaningful :-)

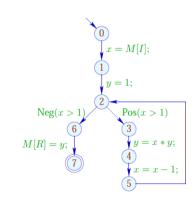
205

Example:



216

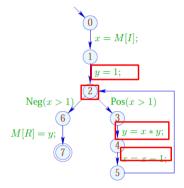
Example:



 $\begin{array}{c|cccc}
 & 1 & 2 \\
7 & \emptyset & \\
6 & \{y, R\} & \\
2 & \{x, y, R\} & \\
5 & \{x, y, R\} & \\
4 & \{x, y, R\} & \\
3 & \{x, y, R\} & \\
1 & \{x, R\} & \\
0 & \{I, R\} & \\
\end{array}$

υ{x}

Example:



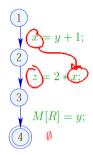
	1	2
7	Ø	
6	$\{y,R\}$	
2	$\{x, y, R\}$	dito
5	$\{x,y,R\}$	
4	$\{x,y,R\}$	
3	$\{x,y,R\}$	
1	$\{x,R\}$	
0	$\{I,R\}$	

217

The left-hand side of no assignment is dead :-)

Caveat:

Removal of assignments to dead variables may kill further variables:

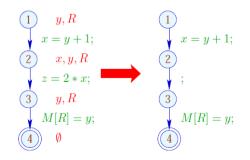


218

The left-hand side of no assignment is dead :-)

Caveat:

Removal of assignments to dead variables may kill further variables:

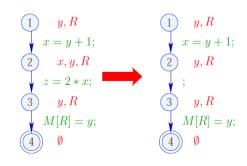


222

The left-hand side of no assignment is dead :-)

Caveat:

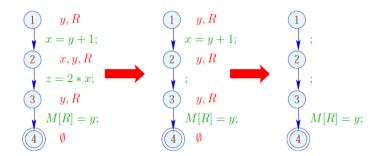
Removal of assignments to dead variables may kill further variables:



The left-hand side of no assignment is dead :-)

Caveat:

Removal of assignments to dead variables may kill further variables:



224

Re-analyzing the program is inconvenient :-(

Idea: Analyze true liveness!

x is called truely live at u along a path π (relative to X), either

if $x \in X$, π does not contain a definition of x; or

if $\ \pi$ can be decomposed into $\ \pi = \pi_1 \, k \, \pi_2$ such that:

- k is a true use of x; \checkmark , \checkmark , \checkmark
- π_1 does not contain any definition of x.

225

The set of truely used variables at an edge $k = (_, lab, v)$ is defined as:

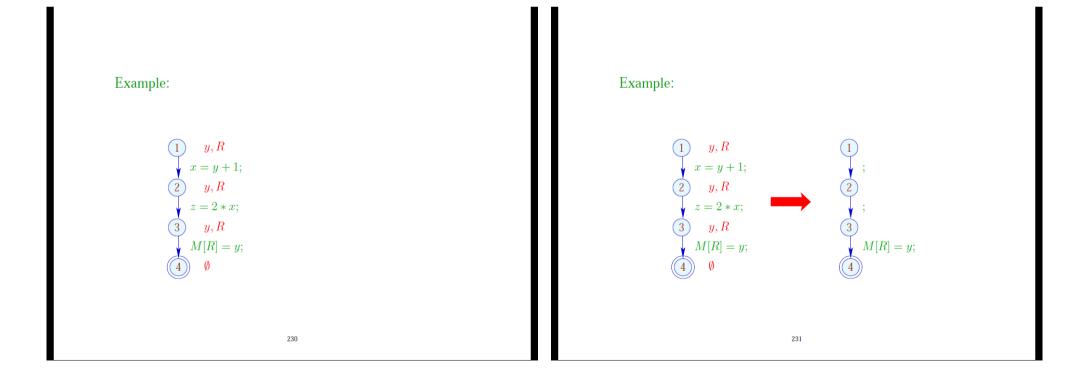
lab	truely used
;	Ø
Pos(e)	$Vars\left(e\right)$
Neg(e)	$Vars\left(e\right)$
x = e;	$Vars\left(e\right)$ (*)
x = M[e];	$Vars\left(e\right) \qquad {\left(*\right)}$
$M[e_1] = e_2;$	$Vars(e_1) \cup Vars(e_2)$

(*) – given that x is truely live x : -

The set of truely used variables at an edge $k = (_, lab, v)$ is defined as:

lab	truely used
;	Ø
Pos(e)	$Vars\left(e\right)$
Neg(e)	$Vars\left(e\right)$
x = e;	$Vars\left(e\right) \qquad {*}$
x = M[e];	$Vars\left(e\right) \qquad {*}$
$M[e_1] = e_2;$	$Vars(e_1) \cup Vars(e_2)$

(*) – given that x is truely liverature :-) V Y f f f



The Effects of Edges:

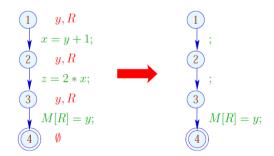
232

The Effects of Edges:

$$\begin{split} & [\![]\!]^\sharp L & = L \\ & [\![\operatorname{Pos}(e)]\!]^\sharp L & = [\![\operatorname{Neg}(e)]\!]^\sharp L = L \cup \mathit{Vars}(e) \\ & [\![x = e ;]\!]^\sharp L & = (L \backslash \{x\}) \cup (x \in L) ? \mathit{Vars}(e) : \emptyset \\ & [\![x = M[e] ;]\!]^\sharp L & = (L \backslash \{x\}) \cup (x \in L) ? \mathit{Vars}(e) : \emptyset \\ & [\![M[e_1] = e_2 ;]\!]^\sharp L & = L \cup \mathit{Vars}(e_1) \cup \mathit{Vars}(e_2) \end{split}$$

233

Example:



The Effects of Edges:

$$\begin{split} & [\![]\!]^\sharp L & = L \\ & [\![\operatorname{Pos}(e)]\!]^\sharp L & = [\![\operatorname{Neg}(e)]\!]^\sharp L = L \cup \mathit{Vars}(e) \\ & [\![x = e ;]\!]^\sharp L & = (L \backslash \{x\}) \cup (x \in L) ? \mathit{Vars}(e) : \emptyset \\ & [\![x = M[e] ;]\!]^\sharp L & = (L \backslash \{x\}) \cup (x \in L) ? \mathit{Vars}(e) : \emptyset \\ & [\![M[e_1] = e_2 ;]\!]^\sharp L & = L \cup \mathit{Vars}(e_1) \cup \mathit{Vars}(e_2) \end{split}$$

231

Note:

- The effects of edges for truely live variables are more complicated than for live variables ::)
- Nonetheless, they are distributive!!

The Effects of Edges:

$$\begin{split} & [\![]\!]^\sharp L & = L \\ & [\![\operatorname{Pos}(e)]\!]^\sharp L & = [\![\operatorname{Neg}(e)]\!]^\sharp L & = \underline{L} \cup \mathit{Vars}(e) \\ & [\![x = e ;]\!]^\sharp L & = (\underline{L} \backslash \{x\}) \cup (x \in L) ? \mathit{Vars}(e) \colon \emptyset \\ & [\![x = M[e] ;]\!]^\sharp L & = (\underline{L} \backslash \{x\}) \cup (x \in L) ? \mathit{Vars}(e) \colon \emptyset \\ & [\![M[e_1] = e_2 ;]\!]^\sharp L & = L \cup \mathit{Vars}(e_1) \cup \mathit{Vars}(e_2) \end{split}$$

233

234

Note:

- The effects of edges for truely live variables are more complicated than for live variables :-)
- Nonetheless, they are distributive !!

To see this, consider for $\ \mathbb{D}=2^U$, $\ f\,y=(u\in y)\,?\,b\colon \emptyset$ We verify:

$$f(y_1 \cup y_2) = (u \in y_1 \cup y_2)?b: \emptyset$$

$$= (u \in y_1 \lor u \in y_2)?b: \emptyset$$

$$= (u \in y_1)?b: \emptyset \cup (u \in y_2)?b: \emptyset$$

$$= fy_1 \cup fy_2$$

The Effects of Edges:

Note:

- The effects of edges for truely live variables are more complicated than for live variables :-)
- Nonetheless, they are distributive!!

To see this, consider for $\mathbb{D}=2^U$, $fy=(u\in y)?b:\emptyset$ We verify:

$$f(y_1 \cup y_2) = (u \in y_1 \cup y_2)?b: \emptyset$$

$$= (u \in y_1 \lor u \in y_2)?b: \emptyset$$

$$= (u \in y_1)?b: \emptyset \cup (u \in y_2)?b: \emptyset$$

$$= fy_1 \cup fy_2$$

235

Note:

- The effects of edges for truely live variables are more complicated than for live variables :-)
- Nonetheless, they are distributive!!

To see this, consider for $\ \mathbb{D}=2^U$, $\ f\,y=(u\in y)\,?\,b:$ We verify:

$$f(y_1 \cup y_2) = (u \in y_1 \cup y_2)?b: \emptyset$$

= $(u \in y_1 \lor u \in y_2)?b: \emptyset$
= $(u \in y_1)?b: \emptyset \cup (u \in y_2)?b: \emptyset$
= $f y_1 \cup f y_2$

⇒ the constraint system yields the MOP :-))

236

Note:

- The effects of edges for truely live variables are more complicated than for live variables :-)
- Nonetheless, they are distributive !!

To see this, consider for $\ \, \mathbb{D}=2^U$, $\ \, f\,y=(u\in y)\,?\,b:\,\emptyset$. We verify:

$$f(y_{1} \cup y_{2}) = (u \in y_{1} \cup y_{2})?b: \emptyset$$

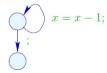
$$= (u \in y_{1} \lor u \in y_{2})?b: \emptyset$$

$$= (u \in y_{1})?b: \emptyset \cup (u \in y_{2})?b: \emptyset$$

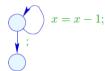
$$= f y_{1} \cup f y_{2}$$

⇒ the constraint system yields the MOP :-))

 True liveness detects more superfluous assignments than repeated liveness!!!



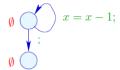
• True liveness detects more superfluous assignments than repeated liveness !!!



237

 True liveness detects more superfluous assignments than repeated liveness!!!

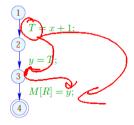
True Liveness:



239

1.3 Removing Superfluous Moves

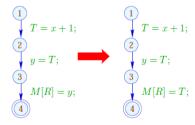
Example:



This variable-variable assignment is obviously useless :-(

1.3 Removing Superfluous Moves

Example:

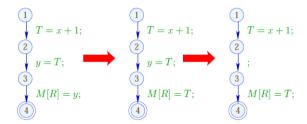


This variable-variable assignment is obviously useless :-(Instead of y, we could also store T :-)

242

1.3 Removing Superfluous Moves

Example:



Advantage: Now, y has become dead :-)

244

Idea:

For each expression, we record the variable which currently contains its value :-)

We use: $\mathbb{V} = Expr \rightarrow 2^{Vars}$ and define:

$$\label{eq:pose} \begin{split} [\![:]\!]^{\sharp} \, V &= V \\ [\![\operatorname{Pos}(e)]\!]^{\sharp} \, V \, e' &= [\![\operatorname{Neg}(e)]\!]^{\sharp} \, V \, e' &= \left\{ \begin{array}{ll} \emptyset & \text{if } e' = e \\ V \, e' & \text{otherwise} \end{array} \right. \end{split}$$

for Expr.

The an all.

From Varable

Idea:

For each expression, we record the variable which currently contains its value :-)

We use: $\mathbb{V} = Expr \rightarrow 2^{Vars}$...

245

analogously for the diverse stores

247

analogously for the diverse stores

In the Example:

$$\begin{cases} x + 1 \mapsto \{T\} \} & \text{2} \\ x + 1 \mapsto \{T\} \} & \text{3} \\ \{x + 1 \mapsto \{y, T\} \} & \text{3} \\ \{x + 1 \mapsto \{y, T\} \} & \text{4} \end{cases}$$

248

The J-e; TVe =

Sporte & E & E & Les