R

— The effects of edges of the analysis of availability of expressions

Script generated by TTT Summary and Application:

are distributive:

e GE I

Title: Seidl: Programmoptimierung (05.11.2012)

((aUz)N{aUa2)\b

((a Uz)\B{Tfa U z2)\b)
_/—\,\)%\/

Date: Mon Nov 05 15:00:53 CET 2012

Duration: 89:17 min

Pages: 62
192
Summary and Application: Summary and Application:
— The effects of edges of the analysis of availability of expressions — The effects of edges of the analysis of availability of expressions
are distributive: are distributive:
(aU(ziNa))\b = ((aUz)N(aUz))\b (aU(ziNa))\b = ((aUz)N(aUx2))\b
= ((aUz1)\b) N ((aUx2)\b) = ((aUz)\b)N((aUz2)\b)
— If all effects of edges are distributive, then the MOP can be — If all effects of edges are distributive, then the MOP can be
computed by means of the constraint system and RR-iteration. :- computed by means of the constraint system and RR-iteration. :-)

— If not all effects of edges are distributive, then RR-iteration for the
constraint system at least returns a safe upper bound to the MOP
=)

193 194

1.2 Removing Assignments to Dead Variables

Example:
1) =g 2
2: Y= 3;
3: rT=y+3

The value of = at program points 1,2 is over-written before it can

be used.

Therefore, we call the variable = dead at these program points -

195

Note:

— Assignments to dead variables can be removed -

— Such inefficiencies may originate from other transformations.

196

Note:

— Assignments (o dead variables can be removed -

— Such inefficiencies may originate from other transformations.

Formal Definition:

The variable = is called live at « along the path 7 starting at
u relative toaset X of variables either:

if X and 7 doesnotcontain a definition of z; or:

if « canbe decomposed into: @« = kmy such that:

e kL isauseof =z ;and

e 7 does not contain a definition of 2.

197

Note:

— Assignments to dead variables can be removed -

— Such inefficiencies may originate from other transformations.

Formal Definition:

The variable 2 iscalled live at « along the path m starting at
u relative toaset X of variables either:

if e X and doesnotcontain a definition of z; or:

if 7 canbe decomposed into: 7 = m k7w, such that:

e kL isauseof z;and

e 1 does not contain a definition of .

197

Thereby, the set of all defined or used variables at an edge
k= (_ lab,_) isdefined by:

lab used defined
0 0

Pos (e) Vars (¢) 0

Neg (e) Vars (e) 0

T =e; Vars (¢) {z}

z = Mlel; Vars () {z}

Mlei] = es; | Vars (e;) U Vars (es) 0

198

A variable z whichisnotliveat = along 7 (relative to X) is
called dead at wu along = (relative to X).

Example:

where X =). Then we observe:

live | dead
0 {v}| {=)
11 0 | {=,y}
21 {yt | {=}
3 0 {‘I‘_”}

199

The variable =z isliveat u (relative to X)if =z isliveat wu
along some path to the exit (relative to X). Otherwise, = is called dead
at wu (relative to X).

200

The variable =z isliveat w (relative to X)if a« isliveat u
along some path to the exit (relative to X). Otherwise, = is called dead
at w (relative to X).

Question:

How can the sets of all dead/live variables be computed for every —wu 777

201

The variable = isliveat « (relative to X) if =z isliveat u Let L = 2Vors
along some path to the exit (relative to X). Otherwise, = is called dead

For k= (_ lab,), define [k]! = [lab]* by:
at u (relative to X). -) [+ = [lad] }

Question: FL = L

[

I = [Neg(e)F L = LU Vars(c)
[+ =€]* L = (L\{z}) U Vars(e)
[(
[

How can the sets of all dead/live variables be computed for every w777

Idea: 6

For every edge & = (u,_,v) , define a function [k]* which transforms
the set of variables wiitch areflive at © into the set of variables which
are live at ...

L\{z}) U Vars(e)
LU Vars(e) U Vars(e,)

= '8
=
= |l
—_— —
—~
I =
P
-
t—q
([

202 203

For k= (_,lab,), define [E]f = [lab]* by:

1L = L We verify that these definitions are meaningful :-)
[Pos(e)]* L = [Neg(e)]*L = LU Vars(e) ‘)

[t =e]* L = (I\{z}) U Vars(e)

[« = MJFL = (L\{z})U Vars(e)

[Mle| =ex:]FL = LU Vars(e;) U Vars(es)

[¥]* can again be composed to the effects of []* of paths
T="ky ...k by

204 205

We verify that these definitions are meaningful :-)

210

The set of variables which are live at « then is given by:

L] = U{[[ﬁ]]: X | m:u—" stop}

... literally: ﬁ

e The pathsstartin =~ u :-)
—— As partial ordering for L weuse LC=C.

e The set of variables which are live at program exit is given by the set
X)

The set of variables which are liveat « then is given by

L] = U{[[?T]]:X | 7:u—" stop}

... literally:

The paths startin =~ «)
—— Aspartial ordering for L weuse C=C.

The set of variables which are live at program exit is given by the set
X)

211

Transformation 2:

S ré C*[f'] N
O v & L) O

| e—{
Il
=
=

S e—{

212

Correctness Proof: Transformation 2:

— Correctness of the effects of edges: If L is the set of variables
which are live at the exit of the path 7, then [x]* L is the set
of variables which are live at the beginning of 7 :-)

— Correctness of the transformation along a path: If the value of a
variable is accessed, this variable is necessarily live. The value of

dead variables thus is irrelevant :-) ' & L])

N 1 L N

— Correctness of the transformation: In any execution of the l v — Mlel: ﬁ ; .
transformed programs, the live variables always receive the same —~ o A~

\ " (v) (v)

values :-)) N L/

213 212

Computation of the sets L£*[u] :

Correctness Proof:
(1) Collecting constraints:
Llstop] 2 X
Lu] D [K]F(L[v]) k= (u, ,v) edge

— Correctness of the effects of edges: If L is the set of variables
which are live at the exit of the path 7, then [r]* L is the set

of variables which are live at the beginning of = :-)

— Correctness of the transformation along a path: If the value of a (&) Solving the constraint system by means of RR iteration.

variable is accessed, this variable is necessarily live. The value of Since L is finite, the iteration will terminate :-)

dead variables thus is irrelevant :-)
(3) If the exit is (formally) reachable from every program

point, then the smallest solution £ of the constraint
system equals £ sinceall [k]* are distributive :))

— Correctness of the transformation: In any execution of the
transformed programs, the live variables always receive the same
values :-))

213 214

Transformation 2:

N N
\ | . *[o, { | T . .
~ v & L[] g We \-'erlfW meaningful)

:\: / \ = 7‘_’:_ Yy = _-" =y+2 -”:’-‘ - L
), (2 (3} 1) 5
(f cgcp] O
v = Mlel; /ﬁ :
Example: Example:
RO T
o] > (E\=) Ui g 0
L] 2 LR2N\{y} "i"_,,‘zlz 6| {y, R}
L2 2 (L[6Ju{z})u(LB]u{z}) ,2‘— 2\ {x,y, B} | dito
LB 2 (LAN{yH U {z v} Neg(],/ Jostr = 1) 5 [{z. 0. B}
LU 2 (LB]ggsy (=} — N i’z 4| {2,y R}
£s] 2 £ ' + @ 3| 0. 1) |
E[?} 2 L[U{y. R} :.;_g";:": 711 1| {xz R}
L 20 0| {I,R}

216 217

The left-hand side of no assignment is dead :-)

Example:

Caveat:

1 9 Removal of assignments to dead variables may kill further variables:
7 0
6| {y, R}
2 E x,y, R} | dito
51 {z,y, R}
4| {x,y, R}
3| {z,y, R}
1| {z, R}
0| {I,R}
217 218
The left-hand side of no assignment is dead :-) The left-hand side of no assignment is dead :-)
Caveat: Caveat:
Removal of assignments to dead variables may kill further variables: Removal of assignments to dead variables may kill further variables:
) wnR (D) (1) wR 1) uR
1 r=y+1; l.f':j,‘-i-l: 1 r=y+1; l r=y+1;
:Z: x,y, R ,E: (é) vy, R /E: y, IR
¢ z=2%1 - | : ¢ ¢ ;
(2: y, R i&; 3 y, It (3> y, R
J, MI[R] = y; & MR =y & U[L —y: M[R] = y;

222 223

The left-hand side of no assignment is dead :-)

Caveat:

Removal of assignments to dead variables may kill further variables:

Re-analyzing the program is inconvenient :-(

Idea: Analyze true liveness!

(1) wR (1) uR (1
1 =y i1 1 v =yt 1 a is called truely live at along a path « (relative to X)), either
N : N 5 N . -) -
(2) =zuy R (2) oy, R (2) if e X, mdoesnotcontain a definition of z; or
NS _./ oS
J z=2%1 ¢ : ‘ ; , ,
A) Y if 7 canbe decomposed into = m kmy such that:
2N 5) 5 N
(3) uy, R (3) uy R (3)
~ ~ T e k isatueuseof z; by ‘(
| MR =y | MR=y | MIRI=y ‘ SR AL A VN (N
) 0) 0 @ e m does not contain any definition of .
Nt/ 4 Nt/
224 225
-, - T2 -k = N e T2 K =
) (U ']-, e (V) > D ,,:\11.': — > ./»—)m;\ } >

The set of truely used variables at anedge k& = (_, lab,v) is defined as:

truely used

Pos (e)
Neg ()
T = ¢

J-[[e];

Hi

Mley] = ey;

o
Vars (¢)
Vars (¢)
Vars (e) ()
Vars (¢) (*)

Vars(e,) U Vars(es)

(%) - given that

z s truely livebizz. o)

226

The set of truely used variables at an edge &k = (_, lab,v) is defined as:

lab

truely used

Pos (€)
N{'g (e)

r — €]

Mle,] =

z = Mlel;

€9,

0
Vars (e)
Vars (e)
Vars (e) ()
Vars (e) (%)
Vars(e;) U Vars(es)

(%) - given that

x s truely livewfog., @)
L _Y‘,t i W_s,

226

Example: Example:
N N
< ()
R Tomyer
/\3;‘ :/\72) y, I?
l = 2s2a ¢ B
o) I >
3) IE 3) I8
l MIR] = y; l MR =y,
e A
(1) 0 (1) 0
N4 N
228 229
Example: Example:

:1:\ y, R \/1) y, R :1?
l r=y+1 i r=y+1; i
)) Y > N
(2) u. R (2) y R (2)
Ny N N

= 2% % z=2x%x - l ;
o R Y) o0
\3) y, R .\3/- y, R \3/.
1 M[R] = y MI[R] = y: MI[R] = y;
ON (x) o ©)
i N/ N/

230

231

The Effects of Edges: The Effects of Edges:

[IFL = L [L - L
[Pos(e)]* L = [Neg(e)P L = LU Vars(e) [Pos(e)]* L = [Neg(e)FL = LU Vars(e)

[z =] L = (I\{zhHu Vars(e) [r =¢] L = (I\{z})U (z € L)? Vars(e): 0
[z =ML = (L\{z}H)U Vars(e) [r=Me[JFL = (I\{z})U (z € L)? Vars(e): 0
[Mle)) =exs]F L = LU Vars(e;) U Vars(e,) [Mle)) =ex;]P L = LU Vars(e;)U Vars(es)

232 233

Example:
The Effects of Edges:

1) 4. R :\/1\

l r=1y+ l: l [H]ﬁ]; = L

2) u.R (2) [Pos(e)]* L = [Neg(e)]fL = LU Vars(e)

l o, : [=]t L = (I\{z})U (z € L)? Vars(e): 0
D R D c ML = (DN{#W)U (2 € L)? Vars(e): §
(3) R (3) I : AU;,]] L (I\{z})U (z € L)? Vars(c): 0
l M[R] = y:; l M[R] = y; [M[e]=exFL = LU Vars(e;) U Vars(es)
@) @
N/ N/

231 233

Note:

e The effects of edges for truely live variables are more complicated
than for live variables _--)

o Nonetheless, they

234

The Effects of Edges:

JL = L

‘;’
=
t—..|
Il
Z
.»I:'
=
t-.|

TN{z})U (z e L)7? Vars(e): 0
o tTe Lt varse) s U

LU Vars(e;) U Vars(es)

[l
ey
=
~

Il

_4
=
Il
&
e
=
r—‘
|

233

Note:

e The effects of edges for truely live variables are more complicated
than for live variables -

e Nonetheless, they are distributive !!
To see this, consider for D=2V, fy=(ucy)?h:) We
verify:
flnUy) = (wey Uy)?h: 0
= (ueyp Vuey)?h: 0

(wey)?b: OU(uey)?b:

Ffu U fu

235

f/,b‘) . 7@(%)

The Effects of Edges:

[L -1

[Pos(e)]t L — [Neg(e)fL = LU Vars(e)
[c =]t L = (IN{z)U (z € L)? Vars(e): 0
[i Te): 0
[

233

Note: Note:

e The effects of edges for truely live variables are more complicated e The effects of edges for truely live variables are more complicated
than for live variables :-) than for live variables :-)
e Nonetheless, they are distributive !! e Nonetheless, they are distributive !!
To see this, consider for D=2Y, fy=(ucy)?b: 0 We To see this, consider for D=2Y, fy=(ucy)?b: 0 We
verify: verify:
fnUmp) = (wey Uy)7h: 0 flnumw) = (uey Uy)?b: 0
= (uey Vucy)?b: 0 = (uey Vuecy)?h: 0
= (uey)?b: 0U(uecy)?h: 0 = (uey)?b: 0U(uey)?b: 0
= fnUfy = fpUfy
—— the constraint system yields the MOP :-))
235 236

Note:

o The effects of edges for truely live variables are more complicated e True liveness detects more superfluous assignments than repeated

than for live variables :-) liveness !!!

e Nonetheless, they are distributive !!

To see this, consider for D=2V, fy=(ucy)?h:) We

verify:
flynUge) = (weyUys)?b: 0 ./""(\j: R
= (uey Vucy)?b: 0 "\-J'/\ /
= (uey)?b: VU (uey)?b: 0 P |
)
= JypUfy _/

—— the constraint system yields the MOP :-))

236 231

e True liveness detects more superfluous assignments than repeated e True liveness detects more superfluous assignments than repeated
liveness !!! liveness !!!

True Liveness:

\\
N
A
N
A
Il
|

4

(:) 0 '(_ Y,
237 239
1.3 Removing Superfluous Moves 1.3 Removing Superfluous Moves
Example: Example:

(€S

This variable-variable assignment is obviously useless :-(This variable-variable assignment is obviously useless :-(

Instead of y, we could also store 1" :-)

240 242

1.3 Removing Superfluous Moves

Example:

*-1
Il
}

_/

TN

e
Nt

" TN TN
(o e e e)
Il
~

\ISS (FICH WESR (f (O} ISR e

Advantage: Now, ¢ hasbecome dead :-))

244

[dea:

For each expression, we record the variable which currently contains its
value :-)

We use: V= FEupr — 2707

245

Idea:

For each expression, we record the variable which currently contains its
value :-)

We use: V= Erpr — 2" and define:

Mu v -V

1] if e = ¢
H[Z)“\Ef ”]: L! el — II_\'(,Q\.E(]]]: L,r 6’ _ { 1I ¢

Ve’ otherwise

//ﬂf Epr,

ALK s
» M-\.. Uarpa

bopve o [Wave i d=
. (Ve\{z} otherwise
[# =u]F Ve _ (Ve)u{a} if yeVe
B (Ve)\{z} otherwise
I[‘:(]:If{ _ {'} if & =¢
- (Ve)\{z} otherwise
o= MAFVE = (V)
o= MFVE = (VNa)
[o= MEFVe = {@v ire =
(Ve\{zr} otherwise

/ analogously for the diverse stores

247

[z =c]iVe _ (Ve U{ } i &=
| (Ve otherwise

[z =y]*Ve _ W ')U{} it yeVe
(Ve)\{r} otherwise
[z =] Ve — {{:} if ¢ =¢
(Ve \{ '} otherwise

.:
Il
—
[
-
y
=
N
I
—
=

[[-f' = Uru ;ﬂﬂ Ve =
[[.z' = —U:f]i]]:V(" _ { @

|
—
=

ife’ = ¢

(Ve)\{z} otherwise

I analogously for the diverse stores

247

In the Example:

{r+1={T}} (

{r+1—{y,T}}

P — ~
([o e 0 || 9 | '—‘/;
W o/ o/ "

{z+1={y,T}} (1)

248

<2

