SCript - generated by TIT Is Multiple Inheritance the Ultimate Principle in

Reusability?
Title: Petter: Programmiersprachen (27.01.2016)
Date: Wed Jan 27 14:21:58 CET 2016 :
Learning outcomes
Duration: 75:10 min @ Identify problems of composition and decomposition
© Understand semantics of traits
Pages: 38 © Separate function provision, object generation and class relations
@ Traits and existing program languages
Introduction 2/27
Reusability = Inheritance? T Duplication T
FiIeStreamw ﬁSynchRW ﬁ‘SocketStream\
) il ())
A
" .-* v, P
@ Codesharing in Object Oriented Systems is mostly inheritance-centric. mixin * smiin

@ Inheritance itself comes in different flavours:
» |single inheritance |

» [multiple inheritance|

» |mixin inheritance |

@ All flavours of inheritance tackle problems of decomposition and L J L J
composition

(SynchedFiIeStreanﬂ ﬁ‘:ynchedSocketStreanﬂ

N Duplication

@ Convenient implementation needs second order types, only available with
~ Mixinsor |- Templates |

Problems with Inheritance and Composability Decomposition Problems 427

Problems with Inheritance and Composability 3/27

Duplication [

FileStream] @ynch RW (SocketStream]

read(acquireLock read
wﬂtee) I \relqeaseLockg Lwrite(e) J

ﬁynchedFileStreanﬂ SynchedSocketStream

&R |

N\ Duplication

@ Convenient implementation needs second order types, only available with
~+ Mixins or ~~ Templates

@ With multiple inheritance, read/write Code is essentially identical but
duplicated

Problems with Inheritance and Composability

Lack of Control T

R
PrecisionGun
shoot()

(MountablePlane)

fuel
equipment

CameraPlane
download():pics

PoliceDrone

SpyCamera
shoot ()

equipmen

equipment

CombatPlane

/A Control
@ Common base classes are shared or duplicated at class level
@ Linearization overrides all identically named ancestor methods in parallel

Decompaosition Problems 4/27

ol
Decomposition Problems 5/27

Problems with Inheritance and Composability

Lack of Control [
SpyCamera (MountablePlane)
shoot() fuel shoot()
/quuipment J\

equipment

CameraPlane
download():pics
.
PoliceDrone '
/\ Control

@ Common base classes are shared or duplicated at class level

reload(Ammunition)

o
Decomposition Problems 5/27

Problems with Inheritance and Composability

Lack of Control U]

Shp\:(():amera (MountablePlane |

fuel
equipmen

S
PrecisionGun
shoot()

equipment

CameraPlane

download():pics

CombatPlane

PoliceDrone

\ Control
@ Common base classes are shared or duplicated at class level
@ Linearization overrides all identically named ancestor methods in parallel
@ super as ancestor reference vs. qualified specification

~+ No fine-grained specification of duplication or sharing

w
Decomposition Problems 5/27

Problems with Inheritance and Composability

Fragility [

acquireLock()
releaselock()

y

FileStream SocketStream
read() Lread(] J
write() write()

" A]

(SynchedFNeStrea m} (SynchedSocketStrearﬂ

(I)

N\ Inappropriate Hierarchies
@ Implemented methods (acquireLock/releaseLock) to high

Problems with Inheritance and Composability

Fragility T

Decompaosition Problems 6/27

LinkedList

add(int, Object)
remove(int)
clear()

Stack

stackpointer: int

push(Object)
pushMany(Object...)
pop()

N Inappropriate Hierarchies
@ Implemented methods (acquireLock/releaseLock) to high

@ High up specified methods turn obsolete, but there is no statically safe
way to remove them /N Liskov Substitution Principle!

Problems with Inheritance and Composability

Decomposition Problems 6/27

Fragility

TR
LinkedList

add(int, Object)
remove(int)
clear()

pu— m—

Stack

stackpointer: int

push(Object)
pushMany(Object...)
pop()

N Inappropriate Hierarchies

@ Implemented methods (acquireLlock/releaseLock) fo high

@ High up specified methods furn obsolete, but there is no statically safe

way to remove them

Problems with Inheritance and Composability

Is Implementation Inheritance even an
Anti-Pattern?

Problems with Inheritance and Composability

Decomposition Problems

Decomposition Problems

Excerpt from the Java 8 APl documentation for class Properties: Excerpt from the Java 8 APl documentation for class Properties:

“Because Properties inherits from Hashtable, the put and putAll “Because Properties inherits from Hashtable, the put and putAll
methods can be applied to a Properties object. Their use is methods can be applied fo a Properties object. Their use is
strongly discouraged as they allow the caller to insert eniries whose strongly discouraged as they allow the caller to insert entries whose
keys or values are not Strings. The setProperty method should be keys or values are not Strings. The setProperty method should be
used instead. If the store or save method is called on a used instead. If the store or save method is called on a
“compromised” Properties object that contains a non-String key or “compromised” Properties object that contains a non-String key or
value, the call will fail.. . ” value, the call will fail...”

& Misuse of inheritance

Implementation Inheritance itself as a pattern for code reusage is often
misused!
w|AII that is not explicitely prohibited will eventually be done! |

oxcomposin sors 8127 onconpostion sl 8127
Fragility T (De-)Composition Problems T

"?¢=1.,
([LinkedList [

add(int, Object) L‘;b‘ Llﬂ(‘l—" H 1/ < [S{‘J;ﬁ

Tremove(int)

clear()

ﬂ All the problems of
o QG(O((f}_(p? wodl) @ Duplication
{ / @ Fragility
® Lack of fine-grained control
are centered around the question

Stack

stackpointer: int

push(Object)
pushMany(Object...)
pop()

“How do | distribute functionality over a hierarchy”

N Inappropriate Hierarchies ~ functional (de-)composition

@ Implemented methods (acquireLock/releaseLock) to high

@ High up specified methods turn obsolete, but there is no statically safe
way to remove them &|Liskov Substitution Principle! |

Problems with Inheritance and Composability Decomposition Problems 6/27

Problems with Inheritance and Composability Decomposition Problems 9/27

The Idea Behind Traits

@ A lot of the problems originate from the coupling of implementation and
modelling

@ Interfaces seem to be hierarchical
@ Functionality seems to be modular

VAN Central idea

| Separaterbject creation|from| modelling hierarchies|and assembling
functionality.

~ r.lse interfaces to design hierarchical signature propagation
~ Jse fraits as modules for assembling functionality
o |Jse classes as frames for entities, which can create objects

Traits — Composition

An abstract class t is called trait iff V,,cpre(s) - t(n) ¢ N7 (i.e. without attributes)

Definition (Trait = 7) ’

The frait sum+ : T x T — T is the componentwise least upper bound:
by ifhy = Lvn¢pre(c)
by ifbe = LVvné¢pre(c)
by if by = ba

T otherwise

(1 +c2)(n) =by Ube = with b; = ¢;(n)

Trait-Expressions also comprise:

undef ifa=n

@ exclusion —: T x N+ T: ,
t(n) otherwise

(t—a)(n) = {

tn) ifn#a
@ aliasing [=]: T x N x N — T tla — bl(n) = (n) I n#a
tb) fn=a
Traits ¢ can be connected to classes ¢ by the asymmetric join:
t) n) = e(n) ifne plre(c)
t(n) otherwise

Usually, this connection is reserved for the last composition level.
12/27

i

A Formal Model for Traits 10/27

Classes and Methods - again

The building blocks for classes are
@ a countable set of method names A/
@ a countable set of method bodies B
Classes map names to elements from the flat /attice B (called bindings),
consisting of:
@ attribute offsets ¢ Nt
@ method bodies € B or classes € C
@ | (yet) undefined
@ T in conflict
and the partial order L C m C T foreach m € B

Definition (Abstract Class < ()
A partial function ¢ : N — B is called abstract class.

Definition (Interface and Class)
An abstract class c is called
interface iff ¥, cpra(cy - ¢(n) = L.
(concrete) class iff Vcpre(ey . L Ce(n) C T.

(with pre beeing the preimage)

Traits — Concepts

Trait composition principles
Flat ordering All traits have the same precedence under™x_
~ explicit disambiguation with aliasing and exclusion
Precedence Under asymmetric join 1. class methods take precedence
over trait methods
Flattening After asymmetric join L: Non-overridden trait methods have
the same semantics as class methods

11/27

\ Contflicts ...

arise if composed traits map methods with identical names to different bodies

Conflict treatment
v Methods can be aliased (—)
v Methods can be excluded (—)
V' Class methods override trait methods and sort out conflicts (L)

A Formal Model for Traits

13/27

Disambiguation

Traits vs. Mixins vs. Class-Inheritance
All different kinds of type expressions:
@ Definition of curried second order type operators + Linearization

Explicitly: Traits differ from Mixins
@ Traits are applied to a class in parallel, Mixins sequentially
@ Trait composition is unordered, avoiding linearization effects
@ Traits do not contain attributes, avoiding state conflicts
e With traits, glue code is concentrated in single classes

A Formal Model for Traits

Disambiguation

Traits vs. Mixins vs. Class-Inheritance
All different kinds of type expressions:
@ Definition of curried second order type operators + Linearization
@ Finegrained flat-ordered composition of modules
@ Definition of (local) partial order on precedence of types wrt. MRO

14/27

Explicitly: Traits differ from Mixins
@ Traits are applied to a class in parallel, Mixins sequentially
e Trait composition is unordered, avoiding linearization effects
@ Traits do not contain aftributes, avoiding state conflicts
@ With traits, glue code is concentrated in single classes

A Formal Model for Traits

14/27

Disambiguation

Traits vs. Mixins vs. Class-Inheritance

All different kinds of type expressions:
@ Definition of curried second order type operators + Linearization
@ Finegrained flat-ordered composition of modules

Explicitly: Traits differ from Mixins
@ Traits are applied to a class in parallel, Mixins sequentially
@ Trait composition is unordered, avoiding linearization effects
@ Traits do not contain attributes, avoiding state conflicts
@ With traits, glue code is concentrated in single classes

A Formal Model for Traits

Disambiguation

Traits vs. Mixins vs. Class-Inheritance
All different kinds of type expressions:
@ Definition of curried second order type operators + Linearization
@ Finegrained flat-ordered composition of modules
@ Definition of (local) partial order on precedence of types wrt. MRO
@ Combination of principles

14/27

Explicitly: Traits differ from Mixins
@ Traits are applied to a class in parallel, Mixins sequentially ‘/
@ Trait composition is unordered, avoiding linearization effects
@ Traits do nof contain attributes, avoiding state conflicts
@ With traits,Mis concentrated in single classes

A Formal Model for Traits

14/27

Traits in the Context of Modularity Problems T[]

Decomposition Problems

V" Duplicated Features ... can easily be factored out into unique traits.

V" Inappropriate Hierarchies — Trait composition for reusable code
concentrates inheritance on shaping interface relations.

/ Can we augment classical languages by traits?
Composition Problems

v Conflicting Features — Traits have no state, other conflicts resolved via
exclusion, aliasing or overriding.

v’ Lack of Control — During trait composition precedence is chosen
seperately for each feature.

v Dispersal of Glue Code ... deferred to and concentrated in the final class.
V' Fragile Hierarchies — Trait details are hideable due to missing hierarchy.

Sncompostion 18127 T TT— Erension athods16/27
Extension Methods (C#) T T ———

public int size = 160;
public bool hasKey() { return true;}

Central Idea: }
Uncouple method definitions from class bodies. J public interface
public interface|Locked {}
Purpose: public static class DoorExtensions {
@ retrospectively add methods to complex types public static bool canOpen{this Lockedl leftHand, Person p){
~ external definition return p.hasKey ()

}
public static bool canPass(this Short leftHand, Person p){
return p.size<160;

@ especially provide definitions of interface methods
~ poor man’s multiple inheritance!

Syntax: }}
@ Declare a static class with definitions of static methods public class ShortLockedDoor : Locked|Short {
@ Explicitely declare first parameter as receiver with modifier this public static void Main() {
© Import the carrier class into scope (if needed) bhortl‘“ke@ac"? d = nev ShortLockedDoor(); |
) o i . . Console.WriteLine(d.canOpen(new Person()));
© Call extension method in infix form with emphasis on the receiver }

}

Trails in practice Extension Methods 17127

Extension Methods 18/27

Extension Methods as Traits [Virtual Extension Methods (Java 8) T

Extension Methods ... but not traits Java 8 advances one step further: L
| transparently extend arbitrary @ Interface declarations empty, interface Door { abghad C(“?A‘o s d Door f
types externally thus kind of purposeless Lrslens el PR ol Ao A Lol Cm%@—
- - - - - boolean canPass(Person p); d
provide quick relief for @ Flattening not implemented }
plagued programmers @ Static scope only interface Locked {
default boolean canOpen(Person p) { return p.hasKey(); %
1
Static scope of extension methods causes unexpected errors: interface Short { o
public interface Locked { default boolean can™me(Person p) { retur 31ze<160 }
public bool canUpen(Person p); } e\(h.qtls bﬁ'fox
} public class ShortLockedDoor implements Short, Locked, Door {
public static class DoorExtensions { 1
public static bool canOpen(this Locked leftHand, Person p){)
return p.hasKey(); Implementation I\ Precedence
} ... consists in adding an interface Still, default methods do not
! phase to invokevirtual's name overwrite methods from abstract
resolution classes when composed

T Vi Evension eods 20127

Traits in practice Extension Methods 19/27

Traits as General Composition Mechanism T[]

!\ Central Idea
Separate class generation from hierarchy specification and functional
modelling
@ model hierarchical relations with interfaces So let’s do the Ianguage with real traits?!
© compose functionality with traits
© adapt functionality to interfaces and add state via glue code in classes

v

Simplified multiple Inheritance without adverse
effects

Trails in practice Virtual Extension Methods 21/ 27 | Tratsinpractice | Trails in Squeak 2227

Virtual Extension Methods (Java 8)

Java 8 advances one step further:
interface Door {

boolean canOpen(Person p);

boolean canPass(Person p);
¥
interface Locked {

default boolean canOpen(Person p) { return p.hasKey(); }
}
interface Short {

default boolean canPass(Person p) { return p.size<160; }
}
public class ShortLockedDoor implements Short, Locked, Door {Ei]
}

Implementation

... consists in adding an interface
phase to invokevirtual's name
resolution

& Precedence

Still, default methods do not
overwrite methods from abstract
classes when composed

Virtual Extension Methods 20/27

i

Smalltalk J

Squeak

Squeak is a smalltalk implementation, extended with a system for traits.

Syntax:

@ name: param and: param2
declares method name with paraml and param2

@ | ident1l ident2 |
declares Variables ident1 and ident?2

@ ident := expr
assignment

@ object name:content
sends message name With content {0 object (= call:
object .name (content))

line terminator
@ ~ expr
return statement

Traits in Squeak 2327

public class Person{
public int size = 160;
public bool hasKey() { return true;}
}
public interface Short {}
public interface Locked {}
public static class DoorExtensions {
public static bool CanDpenqthis Locked leftHand| Person p){
return p.hasKey();
}
public static bool canPass(this Short leftHand, Person p){
return p.size<160;
}
}

: Locked,Short {

public class ShortLockedDoor
public static void Main() {
ShortLockedDoor d = new ShortLockedDoor();
Console.WriteLine (d.canOpen(new Person()));
}
}

Extension Methods 18/27

i

Traits in Squeak

Trait named: #TRStream uses: TPositionableStream
on: aCollection
self collection: aCollection.
self setToStart.
next
- self atEnd
ifTrue: [nil]
ifFalse: [self collection at: self nextPosition].
Trait named: #TSynch uses: {}
acquireLock
self semaphore wait.
releaselLock
self semaphore signal.

Trait named: #TSyncRStream uses:|TSynch+(TRStream@({#readNext -> #next))
next

| read |
self acquirelock.
read := self readNext.

self releaselock.
read.

Traits in Squeak 24,27

Traits: So far so... [T Lessons learned T

v good Lessons Learned

@ Principles fully implemented @ Single inheritance, multiple Inheritance and Mixins leave room for

@ Concept has encouraged mainstream languages to adopt ideas improvement for modularity in real world situations

@ Traits offer fine-grained control of composition of functionality
/\ bad @ Native trait languages offer separation of composition of functionality from
ification of interf:
@ One very unconventional graphical IDE for Squeak, afaik spec:l ‘cation of interfaces L.
. . . . @ Practically no language offers full traits in a usable manner
@ ...and there is no separate compiler with command line mode!

S
Further reading... i

Traits in Squeak 26 /27

® Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schérli, Roel Wuyts,
and Andrew P. Black.
Traits: A mechanism for fine-grained reuse.
ACM Transactions on Programming Languages and Systems (TOPLAS),
2006.

@ Brian Goetz.
Interface evolution via virtual extension methods.
JSR 335: Lambda Expressions for the Java Programming Language,
2011.

¥ Anders Hejlsberg, Scott Wiltamuth, and Peter Golde.
C# Language Specification.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.
ISBN 0321154916.

¥ Nathanael Schirli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew P.
Black.

Traits: Composable units of behaviour.
European Conference on Object-Oriented Programming (ECOORP), 2003.

Further materials 2727

