Script generated by TTT

Title: Petter: Programmiersprachen (11.11.2015)
Date: Wed Nov 11 14:19:43 CET 2015
Duration: 89:52 min

Pages: 50

Deadlocks with Monitors [

Definition (Deadlock)

A deadlock is a situation in which two processes are waiting for the respective
other to finish, and thus neither ever does.

(The definition generalizes to a set of actions with a cyclic dependency.)

Consider this Java class: Sequence |leading to a deadlock:

class Foo { @ threads A and B execute a.bar()

public Foo other = null; and b.bar ()
public synchronized { @ a.var () acquires the monitor of a
- i () other{barOf ... || g4 yar(y acquires the monitor of b

@ A happens to execute

T
1

other.bar ()
@ A blocks on the monitor of b

@ B3 happens to execute
other .bar ()

and two instances:

Foo= new Foo();

Foo= new Foo();

a.other =|£l; b.other =E

// in parallel: @ -~ both block indefinitely
a.bar() b.bar();

Atomic Executions, Locks and Monitors Deadlocks 3446

Deadlocks with Monitors [

Definition (Deadlock)

A deadlock is a situation in which two processes are waiting for the respective
other to finish, and thus neither ever does.

(The definition generalizes to a set of actions with a cyclic dependency.)

Atomic Executions, Locks and Monitors. Deadlocks 34/46

Deadlocks with Monitors U

Definition (Deadlock)

A deadlock is a situation in which two processes are waiting for the respective
other to finish, and thus neither ever does.

(The definition generalizes to a set of actions with a cyclic dependency.)
Sequence leading to a deadlock:

class Foo { @ threads A and B execute a.bar()
public Foo other = null; and b.bar ()

public synchronized void bar() { @ a.bar() acquires the monitor of a
L if (#) other.bar(); ... ¢y 1.1() acquires the monitor of b

} @ A happens to execute
other.bar ()

@ A blocks on the monitor of b

@ B happens to execute
other.bar ()

@ -~ both block indefinitely
How can this situation be avoided?

Atomic Executions, Locks and Monitors Deadlocks 3446

Consider this Java class:

and two instances:

Foo a

new Foo();

Foo b = new Foo();
a.other = b; b.other = a;
// in parallel:

a.bar() || b.bar();

Treatment of Deadlocks T Treatment of Deadlocks T

Deadlocks occur if the following four conditions hold Deadlocks occur if the following four conditions hold
[Coffman et al.(1971)Coffman, Elphick, and Shoshani]: [Coffman et al.(1971)Coffman, Elphick, and Shoshani]:
@ | mutual exclusion] processes require exclusive access @ mutual exclusion: processes require exclusive access
Q| wait for. |a process holds resources while waiting for more @ wait for: a process holds resources while waiting for more
Q[no preemption:|resources cannot be taken away form processes @ no preemption: resources cannot be taken away form processes
Q| circular wait] waiting processes form a cycle @ circular wait. waiting processes form a cycle

The occurrence of deadlocks can be:
o for the lack of better approaches, can be reasonable if deadlocks
are rare
@ [defection:] check within OS for a cycle, requires ability to| preempt |
o design programs to be deadlock-free

@ awoidance: use additional information about a program that allows the OS
to schedule threads so that they do not deadlock

Atomic Executions, Locks and Monitors Deadlocks Deadlock Treatment 35/46 Atomic Executions, Locks and Monitors. Deadlocks Deadlock Treatment 35/46
Treatment of Deadlocks T Deadlock Prevention through Partial Order]|
Deadlocks occur if the following four conditions hold Observation: A cycle cannot occur if locks can be partially ordered.

[Coffman et al.(1971)Coffman, Elphick, and Shoshani]:
@ mutual exclusion: processes require exclusive access
@ wait for: a process holds resources while waiting for more
© no preemption: resources cannot be taken away form processes
© circular wait: waiting processes form a cycle
The occurrence of deadlocks can be:

@ Jignored: for the lack of better approaches, can be reasonable if deadlocks
are rare

@ detection: check within OS for a cycle, requires ability to preempt
© prevention: design programs to be deadlock-free

© awoidance: use additional information about a program that allows the OS
to schedule threads so that they do not deadlock

~ prevention is the only safe approach on standard operating systems
@ can be achieve using lock-free algorithms
@ but what about algorithms that require locking?

Definition (lock sets)

Lel L denote the set of locks. We call A(p) C L the lock set at p, that is, the set
of locks that may be in the “acquired” state at program point p.

Atomic Executions, Locks and Monitors Deadlocks Deadlock Treatment 35/46 Atomic Executions, Locks and Monitors Deadlocks Deadlock Prevention 36 /46

Deadlock Prevention through Partial Order [
Observation: A cycle cannot occur if locks can be partially ordered.

Definition (lock sets)

Let L denote the set of locks. We call A\(p) C L the lock set at p, that is, the set
of locks that may be in the “acquired” state at program point p.

\1“
//

Let o C X x X be a relation. Its transitive closure is o™ = |, o' where

We require the transitive closure o of a relation o

Definition (transitive closure)

O’O = a
0_1'+1

{{z1,23) | Tz2 € X . (71,22 € o' A (xq, 23 € cri}

Atomic Executions, Locks and Monitors Deadlocks Deadlock Prevention 36/46

Freedom of Deadlock [
The following holds for a program with mutexes and monitors:

Theorem (freedom of deadlock)
If there exists no a € L with a < a then the program is free of deadlocks. J

Atomic Executions, Locks and Monitors Deadlocks Deadlock Prevention 37746

Deadlock Prevention through Partial Order T
Observation: A cycle cannot occur if locks can be partially ordered.

Definition (lock sets)

Let L denote the set of locks. We cal C L the lock set at p, that is, the set
of locks that may be in the “acquired” state at program point p.

We require the transitive closure o of a relation o:

Definition (transitive closure)
Let o C X x X be a relation. Its transitive closure is o™ = UiEN o where

JO = a
ot = {{zy,23) | Jaxs € X . (x1,22) € 0F A (23, 23) € 0}

Each time a lock is acquired, we track the lock set at p:

Definition (lock order)

Define <« C L x L such tha<ﬁ| ifflﬂe (p)|and the statement at p is of the
form[wait (1)]ormonitor_enter (1)} D&fine the strict lock order <= <.

v

Atomic Executions, Locks and Monitors Deadlocks Deadlock Prevention 36 /46

Deadlock Prevention through Partial Order T[]
Observation: A cycle cannot occur if locks can be partially ordered.

Definition (lock sets)

Let L denote the set of locks. We call A(p) C L the lock set at p, that is, the set
of locks that may be in the “acquired” state at program point p.

We require the transitive closure o™ of a relation o:

Definition (transitive closure)
Let s C X x X be arelation. Its transitive closure is o = [, o* where

o’ = @
o't = {{xy,x3) | Fwo € X . (T4, 72) € 0 A (20, 23) € 0}

Each time a lock is acquired, we track the lock set at p:

Definition (lock order)

Define <« C L x L such that ! <" ifff{ €| A(p)|land the statement at p is of the
forn|| wait(1’) or monitor_enter (1)} Detfine the strict lock order <= <t

Atomic Executions, Locks and Monitors Deadlocks Deadlock Prevention 36 /46

Freedom of Deadlock U Deadlock Prevention through Partial Order][]

The following holds for a program with mutexes and monitors: Observation: A cycle cannot occur if locks can be partially ordered.
Theorem 'freedom of deadlock) Definition (lock sets)

of locks that may be in the “acquired” state at program point p.

We require the transitive closure o of a relation o:

Definition (transitive closure)
Let o C X x X be a relation. Its transitive closure is o™ = UiEN o where

JO = a
ot = {{zy,23) | Jaxs € X . (x1,22) € 0F A (23, 23) € 0}

Each time a lock is acquired, we track the lock set at p:

Definition (lock order)

Define « C L x L such that! <" iff [€ A(p) and the statement at p is of the
form wait (1’) or monitor_enter(1’). Define the strict lock order <= <.

v

Atomic Executions, Locks and Monitors Deadlocks Deadlock Prevention 37/46 ‘Atomic Executions, Locks and Monitors Deadlocks Deadlock Prevention 36/46
Freedom of Deadlock T Deadlock Prevention through Partial Order]|
The following holds for a program with mutexes and monitors: Observation: A cycle cannot occur if locks can be partially ordered.
Theorem (freedom of deadlock) Definition (lock sets)
If there exists no a € L with a < «. then the program is free of deadlocks. J Let L denote the set of locks. We call A(p) € L the lock set at p, that is, the set

of locks that may be in the “acquired” state at program point p.

We require the transitive closure o™ of a relation o:

Definition (transitive closure)
Let s C X x X be arelation. Its transitive closure is o = [, o* where

o’ = @
o't = {{xy,x3) | Fwo € X . (T4, 72) € 0 A (20, 23) € 0}

Each time a lock is acquired, we track the lock set at p:

Definition (lock order)

Define <« C L x L such that! < !" iff [€ A(p) and the statement at p is of the
form wait (1’) ormonitor_enter(1’). Define the strict lock order <= <+.

Atomic Executions, Locks and Monitors Deadlocks Deadlock Prevention 37146 Atomic Executions, Locks and Monitors Deadlocks Deadlock Prevention 36 /46

o> ('"—-0(-\,,,._.,,
“2r ST
—~£, o
:ﬁﬁ
P

(-ﬁ
-
—_—

f\q
C\
-
—_
T

>
s
-

—
(—3
-
—

G> (_—'O (N -

de&{
Sadd L)

S\‘su‘t/{/a\
k:ﬁmeMO

de&{
Saddy L)

S\‘\«B\M//C{\
i haoue («{C)

Deadlock Prevention through Partial Order T]U]][]
Observation: A cycle cannot occur if locks can be partially ordered.

Definition (lock sets)

Let L denote the set of locks. We call A\(p) C L the lock set at p, that is, the set
of locks that may be in the “acquired” state at program point p.

We require the transitive closure o of a relation o:

Definition (transitive closure)
Let o C X x X be a relation. Its transitive closure is o™ = UiEN o where

JO = a
ot = {{zy,23) | Jaxs € X . (x1,22) € 0F A (23, 23) € 0}

Each time a lock is acquired, we track the lock set at p:

Definition (lock order)

Define « C L x L such that! <" iff [€ A(p) and the statement at p is of the
form wait (1’) or monitor_enter(1’). Define the strict lock order <= <.

v

Atomic Executions, Locks and Monitors Deadlocks Deadlock Prevention 36/46

Deadlock Prevention through Partial Order T[]
Observation: A cycle cannot occur if locks can be partially ordered.

Definition (lock sets)

Let L denote the set of locks. We call A(p) C L the lock set at p, that is, the set
of locks that may be in the “acquired” state at program point p.

We require the transitive closure o™ of a relation o:

Definition (transitive closure)
Let s C X x X be arelation. Its transitive closure is o = [, o* where

o’ = @
o't = {{xy,x3) | Fwo € X . (T4, 72) € 0 A (20, 23) € 0}

Each time a lock is acquired, we track the lock set at p:

Definition (lock order)

Define <« C L x L such that! < !" iff [€ A(p) and the statement at p is of the
form wait (1’) ormonitor_enter(1’). Define the strict lock order <= <+.

Atomic Executions, Locks and Monitors Deadlocks Deadlock Prevention 36 /46

{{ Freedom of Deadlock i
* The following holds for a program with mutexes and monitors:
wald (4 {

Theorem (freedom of deadlock)
If there exists no a € L with|a =4 a|then the program is free of deadlocks. J

bl Soddfy L)

)I\ S\‘su‘t/{/a\
/ il ﬁ(%ovc(«(é)
(

o> (""-—-CD (‘\,',._.ﬁ
vz
[
<
N

Atomic Executions, Locks and Monitors Deadlocks Deadlock Prevention 37/46

Freedom of Deadlock [Freedom of Deadlock T

The following holds for a program with mutexes and monitors: The following holds for a program with mutexes and monitors:

Theorem (freedom of deadlock) Theorem (freedom of deadlock)
If there exists no a € L with a < a then the program is free of deadlocks. J If there exists no a € L with a < a then the program is free of deadlocks. J

Suppose a program blocks on semaphores (mutexes) Lg and on monitors Ly, Suppose a program blocks on semaphores (mutexes) Lg and on monitors Ly

such that L = Ls U Lyy. suchthat L = Lg U Lyy.

Theorem (freedom of deadlock for monitors) Theorem (freedom of deadlock for monitors)

IfVa € Lg .andVa € Ly,beL.a<bAb=<a=a=bthen the program lfVa € Ls.a 4 aandVa € Ly,be L.a<bAb=<a= a=bthenthe program
is free or deadlocks. is free of deadlocks.

Note: the set L contains }'nstances ofa Iock.|
@ the set of lock instances can vary at runtime
@ if we statically want to ensure that deadlocks cannot occur:
» summarize every lock/monitor that may have several instances into one
» a summary lock/monitor a € L, represents several concrete ones

» thus, if @ < a then this might not be a self-cycle
~ require that a #4 a for all summarized monitors a € L

Deadlocks Deadlock Prevention 37/ 46

Atomic Executions, Locks and Monitors Deadlocks Deadlock Prevention 37146 Atomic Executions, Locks and Monitors

cuaixf&{
Sadd L)

S\‘su‘t/{/a\
v heon («(é)

Avoiding Deadlocks in Practice [T

How can we verify that a program contains no deadlocks?
@ identify mutex locks Lg and summarized monitor locks Ly, € Ly
@ identify non-summary monitor locks Ly, = Ly \ L3,
@ sort locks into ascending order according to lock sets |
@ [Check That no Cycles exist except for Sef-Cycles of non-summary moniors|

Atomic Executions, Locks and Monitors Deadlocks Deadlock Prevention 38/46

Freedom of Deadlock [

The following holds for a program with mutexes and monitors:

Theorem (freedom of deadlock)
If there exists no a € L with a < a then the program is free of deadlocks. J

Suppose a program blocks on semaphores (mutexes) Lg and on monitors L,
suchthat L = Lg U Ly,.

IfVa € Lg.a AaandVa € Ly, be L.a<bAb<a= a=D0bthen the program

Theorem (freedom of deadlock for monitors)
is free of deadlocks. J

Note: the set L contains }'nstances of a Iock.l
@ the set of lock instances can vary at runtime

o if we statically want to ensure that deadlocks cannot occur:
» summarize every lock/monitor that may have several instances into one
» a summary lock/monitor @ € L, represents several concrete ones
» thus, if @ < @ then this might not be a self-cycle
~ require thata £ a for all summarized monitors @ € Ly,

Atomic Executions, Locks and Monitors Deadlocks Deadlock Prevention 37/46

Avoiding Deadlocks in Practice I

How can we verify that a program contains no deadlocks?
@ identify mutex locks Lg and summarized monitor locks L3, C Ly
@ identify non-summary monitor locks L}, = Las \ L,
@ sort locks into ascending order according to lock sets
@ check that no cycles exist except for self-cycles of non-summary monitors

/\ What to do when lock order contains cycle?

@ determining which locks may be acquired at each program point is
undecidable ~- lock sets are an approximation

@ an array of locks in Lg: lock in increasing array index sequence

@ if | € A(P) exists I’ < [is to be acquired ~- change program: release [,
acquire [’, then acquire [again ~ inefficient

@ if a lock set contains a summarized lock a and @ is to be acquired, we're
stuck

Atomic Executions, Locks and Monitors Deadlocks Deadlock Prevention 38/46

Avoiding Deadlocks in Practice

How can we verify that a program contains no deadlocks?

i Refining the Queue: Concurrent Access
Add a second lock s->t to allow concurrent removal/peeking:

double-ended queue: removal

@ identify mutex locks Ls and summarized monitor locks 3, C Ly

@ identify non-summary monitor locks L}, = Lys \ L3,
@ sort locks into ascending order according to lock sets

int PopRight (DQueue* gq) {
(QNode* oldRightNode;
wait(q->t); // wait to enter the critical section

@ check that no cycles exist except for self-cycles of non-summary monitors QNode* rightSentinel = g->right;

/N What to do when lock order contains cycle?

oldRightNode = rightSentinel->left;

if (oldRightNode==leftSentinel) { signal(q->t); return -1;

@ determining which locks may be acquired at each program point is QNode* newRightNode = oldRightNode->left;
undecidable ~- lock sets are an approximation int ¢ = newRightNode==leftSentinel;

@ an array of locks in Lg: lock in increasing array index sequence if () wait(g->s);

@ ifI € \(P) exists I’ <[is to be acquired ~ change program: release I, newRightNode->right = rightSentinel;

acquire I’, then acquire I again ~- inefficient

@ if a lock set contains a summarized lock @ and @ is to be acquired, we're

rightSentinel->lett = newRightNode;
if (c) signal(g->s);
signal(q->t); // signal that we’re done

stuck
)) int val = oldRightNode->val;
an example for the latter is the Foo class: two instances of the same class call free(oldRightNode) ;
each other return val;

Example: Deadlock freedom
Is the example deadlock free? Consider its skeleton:

double-ended queue: removal
void PopRight () {

T e o) e T
if ()
1f (c) [signal(q->9)];

[signal(g—>t);|
¥

Deadlock Prevention 38/46 Atomic Executions, Locks and Monitors. Deadlock Prevention

i Example: Deadlock freedom

Is the example deadlock free? Consider its skeleton:
double-ended queue: removal
vo:i.d {
v‘aa;it(q- ;
.ﬁ'(*) { signal(gq->t); return; }
if.(c) wait(q—{:];

if (c) signal(g->s);
signal(q->t);

.

}

39/46

i

i the lock set for s is empty

here, the lock set of s is {t}
<1 s and transitive closure is|t <8 |
~= the program cannot deadlock

Deadlock Prevention 40/46 Atomic Executions, Locks and Monitors Deadlock Prevention

40/ 46

Atomic Execution and Locks [T Atomic Execution and Locks T

Consider replacing the specific locks with atomic annotations: Consider replacing the specific locks with atomic annotations:
double-ended queue: removal double-ended queue: removal
void PopRight() { void PopRight() {
saitlgoany— AVsiC | {qgm@;
i:%' (#) { eimaaligo>td; return; } 6 T el ferde aeimy T
walt (g->s); QJ&W. 1 ? 1f (c) wait(g->s);
f o
% }

@ nested atomic blocks still describe one atomic execution
~ locks convey additional information over atomic
@ locks cannot easily be recovered from atomic declarations

Atomic Executions, Locks and Monitors 42 /46 Atomic Executions, Locks and Monitors 42 /46
Outlook [0 Outlook U]
Writing atomic annotations around sequences of statements is a convenient Writing atomic annotations around sequences of statements is a convenient
way of programming. way of programming.

Idea of mutexes: Implement atomic sections with locks:
@ a single lock could be used to protect all atomic blocks
@ more concurrency is possible by using several locks
» see the PushLeft, PopRight example

@ some statements might modify variables that are never read by other
threads -~ no lock required

@ statements in one atomic block might access variables in a different order
to another atomic block ~+ deadlock possible with locks implementation

@ creating too many locks can decrease the performance, especially when
required to release locks in A(I) when acquiring {

Atomic Executions, Locks and Monitors Locks Roundup 43/46 Atomic Executions, Locks and Monitors Locks Roundup 43 [46

Concurrency across Languages [

In most systems programming languages (C,C++) we have
@ the ability to use atomic operations
~> Wwe can implement wait-free algorithms

Atomic Executions, Locks and Monitors Locks Roundup 44/ 46

Concurrency across Languages [

In most systems programming languages (C.C++) we have
@ the ability to use atomic operations
~+ we can implement wait-free algorithms
In Java, C# and other higher-level languages
@ provide monitors and possibly other concepts
@ often simplify the programming but incur the same problems

[language [[barriers | Wwait-/lock-free|[semaphore | mutex | monitor |
C,C++ v v v v (a)
Java,C#] (b) (c) v v

(a) some pthread implementations allow a reentrant attribute

(b) newer API extensions (| java.util.concurrent.atomic.*fand
|System.Threading. Interlocked|resp.)

(c) simulate semaphores using an object with two synchronized
methods

Atomic Executions, Locks and Monitors Locks Roundup 44/ 46

Concurrency across Languages T

In most systems programming languages (C,C++) we have
@ the ability to use atomic operations
~+ We can implement wait-free algorithms
In Java, C# and other higher-level languages
@ provide monitors and possibly other concepts
@ often simplify the programming but incur the same problems

Atomic Executions, Locks and Monitors. 44/ 46
Summary i

Classification of concurrency algorithms:
o |wait-free, lock-free, locked |
@ next on the a enda:|transactiona| |
|Wait-free algorithrgL;I
@ never block, always succeed, never deadlock, no starvation
@ Very limited in what they can do |
| Lock-free algorithms: |
@ [never block] nay fail| hever deadlock, nay starve
@ invariant may only span a few bytes |8 on Intel) |
| Locking algorithms: |
@ canguard arbitrary code |
@ can use several locks to enable more fine grained concurrency
o may|deadiock |
@ semaphores are not re-entrant, monitors are
~+ use algorithm that is best fit

Atomic Executions, Locks and Menitors Locks Roundup 45/ 46

2locks.pdf — Programming Languages
File Edit View Go Bookmarks Help

References (a)v] (4 [@serom) | [<]> Q| [10550%

References QT

2locks.pdf — Programming Languages

Mativation
~ Wait-Free Atomic ... 6
Wait-Free Synch... 10
Lock-Free Algorith... 11 ® E. G. Cofiman, M. Elphick, and A. Shoshani
Locked Atomic Ex... 14 iﬁ:gaﬁxﬁl_ (2
* Deadlocks 33 ISSN 0380-0300

Deadlock Treat. 35 W T. Harris, J. Larus, and R. Rajwar.
Transactional memary, 2nd edition.

& E G COffman; M ElphICks and A ShOShanl Deadlock Preve... 36 Synthesis Lectures on Computer Architecture, 5(
System deadlocks.

Locks Roundup 41

ACM Comput. Surv., 3(2):67-78, June 1971.
|QQN N2RN_N2ANN

TECHNISCHE UNIVERSITAT ~ MUNGHEN m Abstraction and Concurrency m

PT Y
§§§§ FAKULTAT FUR INFORMATIK Two fundamental concepts to build larger software are:

abstraction : an object storing certain data and providing certain
functionality may be used without reference to its internals

composition : several objects can be combined to a new object without

Programming Languages

interference
Concurrency: Transactions
Dr. Michael Petter
Winter term 2015
1/34 Concurrency: Transactions 2/34

Concurrency: Transactions

Abstraction and Concurrency)

Two fundamental concepts to build larger software are:
abstraction : an object storing certain data and providing certain
functionality may be used without reference to its internals
composition : several objects can be combined to a new object without
interference
Both, abstraction and composition are closely related, since the ability to
compose depends on the ability to abstract from details.
Consider an example:
@ a linked list data structure exposes a fixed set of operations to modify the
list structure, such asI PushLeftlandm
@ a[set objectmay internally use the list object and expose a set of
operations, including PushLeft
The[Insert]operations uses the ForA11|operation to check if the element
already exists and uses if not.

Concurrency: Transactions

Abstraction and Concurrency T

Two fundamental concepts to build larger software are:

abstraction |: an object storing certain data and providing certain
functionality may be used without reference to its internals
composition |: several objects can be combined to a new object without

interference
Both, abstraction and composition are closely related, since the ability to
compose depends on the ability to abstract from details.
Consider an example:
@ a linked list data structure exposes a fixed set of operations to modify the
list structure, such as PushLeft and ForAll
@ a set object may internally use the list object and expose a set of
operations, including PushLeft
The Insert operations uses the ForAll operation to check if the element
already exists and uses PushLeft if not.
Wrapping the linked list in a mutex does not help to make the set thread-safe.
~+ wrap the two calls in Insert in a mutex
@ but other list operations can still be called ~~ use the same mutex
~+ unlike sequential algorithms, thread-safe algorithms cannot always be
composed to give new thread-safe algorithms

Concurrency: Transactions

Abstraction and Concurrency T

Two fundamental concepts to build larger software are:
abstraction : an object storing certain data and providing certain
functionality may be used without reference to its internals
composition : several objects can be combined to a new object without
interference
Both, abstraction and composition are closely related, since the ability to
compose depends on the ability to abstract from details.
Consider an example:
@ a linked list data structure exposes a fixed set of operations to modify the
list structure, such as PushLeft and ForAll
@ a set object may internally use the list object and expose a set of
operations, including PushLeft
The Insert operations uses the ForAll operation to check if the element
already exists and uses PushLeft if not.
Wrapping the linked list in a mutex does not help to make the sefthread-safe.
~ wrap the two calls in Insert in a mutex
@ but other list operations can still be called ~ use the same mutex

Concurrency: Transactions

2100
Transactional Memory [2] U

Idea: automatically convert atomic blocks into code that ensures atomic
execution of the statements.

atomic {
// code
if (cond) retiry;
atomic 1

// more codle

¥
// code

Concurrency: Transactions

Transactional Memory [2] [T Managing Conflicts T

ldea: automatically convert atomic blocks into code that ensures atomic

execution of the statements. Definition (Conflicts)

A conflict occurs when accessing the same piece of data, a conflict is

at{/";lc ; detected when the TM system observes this, it is resolved when the TM
coae . . 1 g
system takes action (by delaying or aborting a transaction).

it (cond) y (by delaying g)

atomic { Design choices for transactional memory implementations:

// more code @ optimistic vs. pessimistic concurrency control:

Y » pessimistic: detection/resolution when the conflict is about to occur

// code * resolution here is usually delaying one transaction
} * can be implemented using iocks:

Execute code as transaction: » optimistic. detection and resolution happen after a conflict occurs
- - * resolution here must be aborting one transaction
@ pxecute the code of an atomic block | * need to repeat aborted transaction: [livelock problem

@ nested atomic blocks act like a single atomic block |
@ check that it runs without conflicts due to accesses from another thread
@ |if another thread interferes through conflicting updates:

» Lindo the computation done so far_|
» [re-start the transaction |

@ provide a retry keyword similar to thelwait lof monitors
Concurrency: Transactions 3/34 Concurrency: Transactions 434

Managing Conflicts [T

Definition (Conflicts)

A conflict occurs when accessing the same piece of data, a conflict is
detected when the TM system observes this, it is resolved when the TM
system takes action (by delaying or aborting a transaction).

Design choices for transactional memory implementations:
@ optimistic vs. pessimistic concurrency control:
» pessimistic: detection/resolution when the conflict is about to occur

* resolution here is usually delaying one transaction
* can be implemented using /ocks: deadlock problem

» opiimistic: detection and resolution happen after a conflict occurs
* resolution here must be aborting one transaction
* need to repeat aborted transaction: livelock problem
@ eager vs. lazy version management. how read and written data are
managed during the transaction

» [eager] writes modify the memory and an is necessary if the

transaction aborts

- vytrt!tes are stored in a redo-logland modifications are done on
committing

Concurrency: Transactions Transaction Semantics 4,34

