Script generated by TTT

Title: Petter: Programmiersprachen (04.11.2015)
Date: Wed Nov 04 14:21:03 CET 2015
Duration: 79:34 min

Pages: 35

Limitations of Wait- and Lock-Free Algorithms]|

Wait-/Lock-Free algorithms are severely limited in terms of their computation:
@ restricted to the semantics of a single atomic operation
@ set of atomic operations is architecture specific, but often includes

» exchange of a memory cell with a register

» compare-and-swap of a register with a memory cell
» fetch-and-add on integers in memory

» modify-and-test on bits in memory

@ provided instructions usually allow only one memory operand
~= only very simple algorithms can be implemented, for instance

| binary semaphores|: a flag that can be acquired (set) if free (unset) and
released

| counting semaphores| : an integer that can be decreased if non-zero and
increased

mutex |: ensures mutual exclusion using a binary semaphore

monitor |: ensures mutual exclusion using a binary semaphore, allows
other threads to block until the next release of the resource

Atomic Executions, Locks and Monitors Lock-Free Algorithms 13/44

Limitations of Wait- and Lock-Free Algorithms T

Wait-/Lock-Free algorithms are severely limited in terms of their computation:
@ restricted to the semantics of a single atomic operation
@ set of atomic operations is architecture specific, but often includes
» exchange of a memory cell with a register
compare-and-swap of a register with a memory cell

fetch-and-add on integers in memory
modify-and-test on bits in memory

@ provided instructions usually allow only one memory operand

yyy

Atomic Executions, Locks and Monitors. Lock-Free Algorithms 13/44

Limitations of Wait- and Lock-Free Algorithms]|

Wait-/Lock-Free algorithms are severely limited in terms of their computation:
@ restricted to the semantics of a single atomic operation
@ set of atomic operations is architecture specific, but often includes

» exchange of a memory cell with a register

» compare-and-swap of a register with a memory cell
» fetch-and-add on integers in memory

» modify-and-test on bits in memory

@ provided instructions usually allow only one memory operand
~+ only very simple algorithms can be implemented, for instance

binary semaphores : a flag that can be acquired (set) if free (unset) and
released

counting semaphores : an integer that can be decreased if non-zero and
increased

mutex : ensures mutual exclusion using a binary semaphore

monitor : ensures mutual exclusion using a binary semaphore, allows
other threads to block until the next release of the resource

We will collectively refer to these data structures a
Atomic Executions, Locks and Monitors 13/44

) Semaphores and Mutexes T

A (counting) semaphore is an integer s with the following operations:

void wait() {

L, do {
void signal() { atomic {
atomic {\E‘=‘S“i~2i_} avail = s>0;

i avail] [553)
¥

}

A lock is a data structure that

@ protects a critical section: a piece of code that may produce incorrect
results when executed concurrently from several threads <

@ it ensures mutual exclusion: no two threads execute at once

@ block other threads as soon as one thread executes the critical section
@ can be acquired and released

@ may| deadliock the program

Atomic Executions, Locks and Monitors 15/44 Atomic Executions, Locks and Monitors 16 /44
Semaphores and Mutexes T Semaphores and Mutexes I
A (counting) semaphore is an integer s with the following operations: A (counting) semaphore is an integer s with the following operations:
void wait() { void wait() {
bool avail; bool avail;
do { do {
void signal() { atomic { void signal() { atomic {
atomic { s = s + 1; } avail = s>0; atomic { s = s + 1; } avail = s>0;
¥ if (avail) s--; ¥ if (avail) s--;
} }
} while ('avail); } while (lavail);
} }
A counting semaphore can track how many resources are still available. A counting semaphore can track how many resources are still available.
@ athread requiring a resource executes wait () @ athread requiring a resource executes wait ()
@ if a resource is still available, wait () returns @ if a resource is still available, wait () returns
@ once a thread finishes using a resource, it calls signal () ® once a thread finishes using a resource, it calls signal ()

Special case: initializing witgives a binary semaphore:
@ can be used to block and unblock a thread
@ can be used to protect a single resource
» in this case the data structure is also called mutex

Atomic Executions, Locks and Monitors Locked Atomic Executions 16/44 Atomic Executions, Locks and Monitors Locked Atomic Executions 16/44

Implementation of Semaphores T Implementation of Semaphores T

A semaphore does not have to wait busily: A semaphore does not have to wait busily:

void wait() {
bool avail;

void wait() {
bool avail;

do { do {
atomic atomic
void signal() { . { void signal() { . {
] avail = s>0; . avail = s>0;
atomic { s = s + 1; }) . atomic { s = s + 1; }) .
if (avail) s——; if (avail) s--;
d } d }

if (lavail) de_schedule(&s);
} while (lavail);

|if (lavail) de_schedule(&s);l
} while (lavail);

} ¥
Busy waiting is avoided by placing waiting threads into queue:

@ a thread failing to decrease s executes de_schedule()

@ de_schedule() enters the operating system and inserts the current
thread into a queue of threads that will be woken up when s becomes
non-zero, usually byl monitoring writes to &s |

@ once athread calls signal(), the first thread ¢ waiting on &s is extracted

@ the operating system lets ¢ return from its call to de_schedule ()

Atomic Executions, Locks and Monitors 17 /44 Atomic Executions, Locks and Monitors 17/44
Practical Implementation of Semaphores T Practical Implementation of Semaphores i
Certain optimisations are possible: Certain optimisations are possible:
void wait () { void wait() {
bool avail; bool avail;
do { do {
. . atomic { . . atomic {
void S}gnal() { avail = s50; void S}gnal() { avail = s>0;
atomic { s = s + 1;J)} i . atomic { s = s + 1; } i .
A if (avail) s——; if (avail) s--;
¥ } ' }
if (lavail) de_schedule if (lavail) de_schedule(&s);
} while (lavail); } while ('avail);
} T
In general, the implementation is more complicated In general, the implementation is more complicated
@ wait () may busy wait for a few iterations @ wait () may busy wait for a few iterations
» saves de-scheduling if the lock is released frequently » saves de-scheduling if the lock is released frequently
» better throughput for semaphores that are held for a short time » better throughput for ssmaphores that are held for a short time
@ signal() might have to inform the OS that s has been written @ signal () might have to inform the OS that s has been written

~= using a semaphore with a single thread reduces to if (s) s--; s++;
Atomic Executions, Locks and Monitors 18/44 Atomic Executions, Locks and Monitors 18/44

Making a Queue Thread-Safe T Mutexes T

Consider a double ended queue: One common use of semaphores is to guarantee mutual exclusion.
@ in this case, a binary semaphore is also called a mutex
@ add a||ock to the double-ended queue| data structure

double-ended queue

Teft . 10 20 o 90 right @ decide what needs protection and what not
sentinel; sentinel
double-ended queue: adding an element
voileushLeftDQueue* gl int {
(QNode *qgn = malloc(sizeof(QNode));”
gn->val = valﬂ
prepend node gn
(QNode* leftSentinel = q—>left;l/§
[Node* oldLeftNode = leftSentinel—>right;|
gm=3left = leftSentinel;
an=3right = oldLeftNode;
leftSentinel=3ight = qn;
oldLeftNode =2’ left = gn; —
T > : —
7
Atomic Executions, Locks and Monitors 19/44 Atomic Executions, Locks and Monitors 20/44
Mutexes T Implementing the Removal T
One common use of semaphores is to guarantee mutual exclusion. By using the same lock q->s, we can write a thread-safe PopRight:
@ in this case, a binary semaphore is also called a mutex double-ended queue: removal
@ add a lock to the double-ended queue data structure int PopRight (DQueue* q) {
@ decide what needs protection and what not Qledex" oldR ightlode;
(Node* leftSentinel = g->left;
double-ended queue: thread-safe version QNode* rightSentinel = g->right;
// wait to enter the critical section

void PushLeft(DQueue* q, int val) {

Node *qn = (QNode*) malloc(sizeof(QNode));
gn‘j)ialqz vai‘? ode*) malloc(sizeof (QNode)); [if (oldRightNode==leftSentinel) {|signal(q>s)} |return -1;]3 |

GNode* leftSentinel = q->lsft; (QNode* newRightNode = oldRightNode->left;

) o . newRightNode->right = rightSentinel;
! // wait to enter the critical section gh g _ g !

ightSentinel->left RightNode;
QNode* oldLeftNode = leftSentinel->right; rigatoentine 7 o7t ~ newnlgatrode;
Al — Dol |31gna1(q—>s); // signal that we’re done

: = ; T

qn->right = oldLeftNode; int val ’oldRJ.ghtNode val;
. . free(oldRightNode) ;

leftSentinel->right = qn; N 1

oldLeftNode —> left = gn; return val;

signal(lq—>s' // signal that we’re done

oldRightNode = rightSentinel->left;

}

Atomic Executions, Locks and Monitors Locked Atomic Executions 20/44 Atomic Executions, Locks and Monitors Locked Atomic Executions 21/44

Implementing the Removal [Monitors: An Automatic,/ Re-entrant Mutex T

By using the same lock q->s, we can write a thread-safe PopRight:
double-ended queue: removal Often, a data structure can be made thread-safe by

int PopRight (DQueue* q) { ° acqmr!ng a lock upon entelrlng a furlwtlon olf the data structure
QNode* oldRightNode; @ releasing the lock upon exit from this function

QNode* leftSentinel = g->left;
QNode* rightSentinel = gq->right;
wait(gq->s); // wait to enter the critical section
oldRightNode = rightSentinel->left;
if (oldRightNode==leftSentinel) { signal(q->s); return -1; }
QNode* newRightNode = oldRightNode->left;
newRightNode->right = rightSentinel;
rightSentinel->left = newRightNode;
signal(q->s); // signal that we’re done
int val = oldRightNode->val;
free(oldRightNode);
return val;
¥
@ error case complicates code -~ semaphores are easy fo get wrong
@ abstract common concept: take lock on entry, release on exit

Atomic Executions, Locks and Monitors Locked Atomic Executions 21/44 Atomic Executions, Locks and Monitors. Locked Atomic Executions 22/44

Monitors: An Automatic, Re-entrant Mutex [Implementation of a Basic Monitor T
A monitor contains a mutex s and the thread currently occupying it:

Often, a data structure can be made thread-safe by typedef struct monitor mon_t;

@ acquiring a lock upon entering a function of the data structure struct monitor { int tid; int count; };
@ releasing the lock upon exit from this function void monitor_init(mon_t* m) { memset(m, O, sizeof(mon_t)); }
Locking each procedure body that accesses a data structure: Define monitor_enter and monitor_leave:
@ is a re-occurring pattern, should be generalized @ ensure mutual exclusion of accesses to mon-t .
© becomes problematic in it blocks @ track how many times we called a monitored procedure recursively
@ if a thread t waits for a data structure to be filled: void monitor_enter(mon_t *m) { void (mon‘t) o
. . bool mine = false; atomic {
» ¢ will call e.g. PopRight and obtain -1 while ('mine) {
» t then has to call again, until an element is available atomic { 7 {
> A t is busy waiting and produces contention on the lock mine = thread_id()—m->tid; // wake up threads
if (mine) m->count++; else |m—>tid=0;
if (m->tid==0) { } '
mine = true; m->count=1; }
m->tid = thread_id(); }
}
1

if ('mine) de_schedule(&m->tid);}}
Atomic Executions, Locks and Monitors Locked Atomic Executions 22/44 Atomic Executions, Locks and Monitors Locked Atomic Executions 23/44

Rewriting the Queue using Monitors T Condition Variables T

Instead of the mutex, we can now use monitors to protect the queue: v Monitors simplify the construction of thread-safe resources.
.) Still: Efficiency problem when using resource to synchronize:
double-ended queue: monitor version e if a thread[fJwaits for a data structure to be filled:
void PushLeft(DQueue* q, int val) { » ¢ will call e.g.|PopRight and obtain -1
monitor_enter (g->m) ; » tthen has tnt is available

coa » MNitis busy waiting and produces contention on the lock
monitor_leave(q->m) ;

}

void ForAll(DQueues* void* data, void (*callback) (void*,int)){
monitor_enter (q->m) ;

for (QNode* gn = g->left->right; gn!=q->right; gn=gn->right)
*callback) (data, gn->val);
| monitor_leave (g->m) |

¥

Recursive calls possible:
@ the function passed to ForAll can invoke PushLeft
@ example: ForAll(q,q,&PushLeft) duplicates entries
@ using monitor instead of mutex ensures that recursive call does not block

Atomic Executions, Locks and Monitors 24 /44 Atomic Executions, Locks and Monitors 25/44
Condition Variables [0 Condition Variables i
v Monitors simplify the construction of thread-safe resources. v Monitors simplify the construction of thread-safe resources.
Still: Efficiency problem when using resource to synchronize: Still: Efficiency problem when using resource to synchronize:
e if a thread t waits for a data structure to be filled: o if a thread ¢ waits for a data structure to be filled:

» t will call e.g. PopRight and obtain -1 » t will call e.g. PopRight and obtain -1

» t then has to call again, until an element is available » t then has to call again, until an element is available

- & t is busy waiting and produces contention on the lock > & t is busy waiting and produces contention on the lock
Idea: create g condition variablelon which to block while waiting: Idea: create a condition variable on which to block while waiting:

struct monitor { int tid; int count; }; struct monitor { int tid; int count; int cond; };

Define these two functions:
@ wait for the condition to become true
» called while being inside the monitor
» temporarily releases the monitor and blocks
» when signalled, re-acquires the monitor and returns
© signal waiting threads that they may be able to proceed
» one/all waiting threads that called wait will be woken up, two possibilities:
|signal-and-urgent-wait |: the signalling thread suspends and continues once
the signalled thread has released the monitor
|sfgna!—and—continue |the signalling thread continues, any signalled thread
enters when the monitor becomes available

Atomic Executions, Locks and Monitors Locked Atomic Executions 25/44 Atomic Executions, Locks and Monitors Locked Atomic Executions 25/44

Signal-And-Urgent-Wait Semantics [Signal-And-Continue Semantics T

Requires one queues for each condition ¢ and a suspended queue s: Here, the signal function is usually called notify.
@ a thread who tries to enter a

3 monitor is added to queue e if @ acall to wait on condition « adds
R the monitor is occupied thread to the queue a.q
@ acall to wait on condition @ a call to notify for a adds one
adds thread to the queue a.gq thread from a.q to e (unless a.q is
o @ acallto signal for « adds ; empty)
p~ thread to queue s (suspended) bg - o if a thread leaves, it wakes up one
a. wait a . e
1\ @ one thread form the a queue is aq thread waiting on ¢
| signalled woken up wait a
g 2] 35 @ signal onais ano-opifa.gis fi
b.q " waitb empty L ith notify
, \ wal
=== _signalled @ if a thread leaves, it wakes up W
T8 one thread waiting on s f = "
I 1% e if s is empty, it wakes up one '3
thread from e L r A
source: http://en.wikipedia.org/wiki/Monitor_(synchronization)
source: http://en.wikipedia.org/wiki/Monitor_(synchronization)
Atomic Executions, Locks and Monitors 26/44 ‘Atomic Executions, Locks and Monitors 27/44
Signal-And-Continue Semantics T Implementing Condition Variables i
Here, the signal function is usually called notity. We implement the simpler signal-and-continue semantics:

@ a notified thread is simply woken up and |:ompetes for the monitor|

@
>
-
(1]
=

@ a call to wait on condition « adds
= thread to the queue a.gq void cond_wait(mon_t #m) {

’

notified @ acall to notify for a adds one assert(m->tid==thread_id());
1 otifieg thread from a.q to e (unless a.q is fint old_count = m->count;|
TS empty) m_?zid = O;J) <
. . wal m-~->Ccon M
b.q | r @ if a thread leaves, it wakes up one —, .
a.q thread waiting on e oo R oSS
3 do {/ void cond_notify(mon_t #*m) {
wait a ~ signalled threads compete for the atomic { // wake up other threads
i monitor next_to_enter = m->tid==0; signal (m->cond) ;
| b notify @ assuming FIFO ordering on e, if (hext_to_enter] {
i threads who tried to enter m->tid = thread_id();
f _ between wait and notify will run m->count = old_count;
% first
| o i + if wali
T need additional queue s if waiting P Zdule (gm->tid);

threads should have priority } whilé (Inext_to_entery:}

source: http://en.wikipedia. org/wiki/Monitor_(synchronization)

Atomic Executions, Locks and Monitors Locked Atomic Executions 27/44 Atomic Executions, Locks and Monitors Locked Atomic Executions 28 /44

A Note on Notify)

With signal-and-continue semantics, two notify functions exist:

@ notify: wakes up exactly one thread waiting on condition variable
@ notifyAll: wakes up all threads waiting on a condition variable

Atomic Executions, Locks and Monitors 29 /44
A Note on Notify U

With signal-and-continue semantics, two notify functions exist:

@ notify: wakes up exactly one thread waiting on condition variable
© notifyAll: wakes up all threads waiting on a condition variable

N\ an implementation often becomes easier if notify means notify some
~+ programmer should assume that thread is not the only one woken up
What about the priority of notified threads?

@ a notified thread is likely to block immediately on &m->tid

@ -~ notified threads compete for the monitor with other threads

@ if OS implements|FIFO|order: notified threads will run affer threads that
tried to enter since wait was called

@ giving priority to waiting threads requires more |:0mp|ex implementation

(queue data structure for signaled threads)

Atomic Executions, Locks and Monitors Locked Atomic Executions 29/44

A Note on Notify T

With signal-and-continue semantics, two notify functions exist:

@ notify: wakes up exactly one thread waiting on condition variable
@ notifyAll: wakes up all threads waiting on a condition variable

/N an implementation often becomes easier if notify means notify some

~» programmer should assume that thread is not the only one woken up

Atomic Executions, Locks and Monitors. Locked Atomic Executions 29/44

Implementing PopRight with Monitors T
We use the monitor g->m and the condition variable g->c. PopRight:

double-ended queue: removal

int PopRight (DQueue* g, int val) {

(Node* oldRightNode;

|monitor_enter(g->m) | // wait to enter the critical section
[L: QNodex rightSentinel = g->right; |

oldRightNode = rightSentinel->left;

if (pldRightNode==leftSentinel} {|cond_wait(q—>c)1|goto L;|}

(Node* newRightNode = oldRightNode->left;

newRightNode->right = rightSentinel;

rightSentingel->left = newRightNode;

[monitor_leave(q->m);| // signal that we’re done

int val = oldRightNode->val;

free(oldRightNode) ;

return val;

}

Atomic Executions, Locks and Monitors Locked Atomic Executions 30/44

Monitor versus Semaphores [Monitor versus Semaphores T

A monitor can be implemented using semaphores: A monitor can be implemented using semaphores:
@ protect each queue with a mutex @ protect each queue with a mutex
@ use a binary semaphore to block threads that are waiting @ use a binary semaphore to block threads that are waiting

A semaphore can be implemented using a monitor:
@ protect the semaphore variable s with a monitor
@ implement wait by calling cond_wait if s =0

Atomic Executions, Locks and Monitors Locked Atomic Executions 31/44 Atomic Executions, Locks and Monitors Locked Atomic Executions 31/44

Deadlocks with Monitors U

Definition (Deadlock)

A deadlock is a situation in which two processes are waiting for the respective
other to finish, and thus neither ever does.

Monitors with a Single Condition Variable T

Monitors with a single condition variable are built into Java and C#:

class

public

synchronized|void £0) {2

DOy O

Jajua

p—
notified +

| | Sym(ml -2«({0 (The definition generalizes to a set of actions with a cyclic dependency.)
is equivalent to

e class C {

public void £()

q monitor_enter();
" wait body of f
") |monit0r_leave();|
1}

with Object containing:

private int mon_var;

_ anes

private int mon_count;
private int cond_var;

protected void monitor_enter();
protected void monitor_leave();

Atomic Executions, Locks and Monitors Locked Atomic Executions 32/44

SOUrce: http://en.wikipedia.org/wiki/Monitor_(synchronization)

Atomic Executions, Locks and Monitors Locked Atomic Executions 33/44

