Script generated by TTT

Title: Petter: Programmiersprachen (28.10.2015) Example: The Dekker Algorithm pn SMP Systems

Date: Wed Oct 28 14:18:56 CET 2015
Duration: 96:17 min

Pages: 47

Memory Consistency The Dekker Algorithm 43 /54

Using Memory Barriers: the Dekker Algorithm U] Using Memory Barriers: the Dekker Algorithm ]|

Mutual exclusion of two processes with busy waiting. Mutual exclusion of two processes with busy waiting.
//flag[] is boolean array; and turn is an integer //flag[] is boolean array; and turn is an integer
flag[0] = false flag[0] = false
flag[l] = false flag[l] = false
turn =0 // or 1 turn =0 i r 1
PO: PO Pl:
flag[@] = true; flag[@] = true; flag@} = true;
while (flag == true) while (flag|l] == true) while (flag[0] == true)
if (turn .:@ { if (turn != 0) { if (turn != 1) {
flag[0] = false; flag[0] = false; flag[l] = false;
while (turn != 0) { while (turn != 0) { while (turn != 1) {
// busy wait // busy wait // busy wait
} } }
flag[0] = true; flag[0] = true; flag[l] = true;
} } }
// critical section // critical section // critical section
turn = 1; turn = 1; turn = 0;
flag[0] = false; flag[0] = false; flag[l] = false;
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The Idea Behind Dekker

Communication via three variables:
® flag[i]=true process P; wants to enter its critical section
@ turn=1i process P; has priority when both want to enter

The Idea Behind Dekker

Communication via three variables:
@ flag[i]=true process P; wants to enter its critical section
@ turn=i process P; has priority when both want to enter

PO: In process P;: PO: In process P;:
[flag[0] = true; | e if P,_; does not want to enter, flag[0] = true; @ if P,_; does not want to enter,
while (flagl[l] == true) proceed immediately to the critical while (flag[l] == true) proceed immediately to the critical
if (turn != 0) { section if (turn != 0) { section
flag[0] = false; flag[0] = false; ® ~ flag[i] is a lock and may be
while (turn != 0) ({ WLt dEmEm = implemented as such
// busy wait // busy wait

@ if P,_; also wants to enter, wait for

}
turn tobe setto i

flag[0] = true;

}

lag[0]

}

critical section | / critical section |
= 1; turn = 1;|

rlaglQ] = IaJ.se;|

}

turn
flag[0] = false;
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Memory Consistency

Using Memory Barriers: the Dekker Algorithm ]|

Mutual exclusion of two processes with busy waiting.

The Idea Behind Dekker

Communication via three variables:

. . . //flag[] is boolean array; and turn is an integer
@ turn=1i process P, has priority when both want to enter flag[l] = false
turn =0 // or 1
PO: In process P;:
flag[0] = true; @ if P,_; does not want to enter, PO: P1:
while (flag[l] == tru6)|? proceed immediately to the critical flag[0] = true; flag[1l] = true;
if (turn != 0) { section while (flag[l] == true) while (flag[0] == true)
= . . 1 | = 1 | =
fi?i'[m fa}feé ® ~ flag[i] is a lock and may be it fﬁiurno]. 702 i _ it fﬁiur?l]' 71; i _
ik (el S implemented as such argfllt] = Zelleey ag - ta-se;
// busy wait . . while (turn != 0) { while (turn != 1) {
) e if P,_; also wants to enter, wait for // busv wait S e s
flag[0] = true; turntobesetto i } }
3L @ while waiting for turn, reset flag[0] = true; flag[l] = true;
/ dritical section flag[i] to enable P,_; to progress } }
turn = 1; @ algorithm only works for two 0 " critical section
flag[0] = false; processes turn = 0;
flag[l] = false;




A Note on Dekker’s Algorithm T Concurrent Reduce+Map i

Dekker's algorithm has the three desirable properties: Create an n-place buffer for communication between processes P; and P,.
@ ensure mutual exclusion. at most one process executes the critical T acc = init ();

section Buffer<U> buf

buffer<T>(n); // some locked buffer
@ deadlock free: the process will never wait for each other
@ free of starvation: if a process wants to enter, it eventually will e Pg: . ‘ .
for (int i = 0; i<c; i++) { for (int i = 0; i<c; i++) {
applications for Dekker: implement a (map o reduce+map) operation <T,U> (acc,tmp) = f(acc,i); T tmp =|buf.get ();
concurrently buf.put (tmp) ; g(tmp, 1);
T acc = init(); } }
for (int i1 = 0; i<c; i++) {
<T,U> (acc,tmp) = -(acc, i) // read from inp[i]
by (tmp, 1)|; - // write to out[i]
}
@ accumulating a value by performing two operations £ and g in sequence
@ the calculation in £ of the ith iteration depends on iteration i — 1
@ non-trivial program to parallelize
@ idea: use two threads, one for £ and one for g
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Dekker’s Algorithm and Weakly-Ordered T Dekker’s Algorithm and Weakly-Ordered T
Problem: |Dekker’s algorithm requires sequentially consistency. | Problem: Dekker's algorithm requires sequentially consistency.
Idea: |insert memory barriers between all variables common to both threads.| Idea: insert memory barriers between all variables common to both threads.
PO:
flag[0] = true;
sfence () ; @ insert aload memory
while (lfence(), flag[l] == true) barrier Lfence () in front
i€ (llfence (), turn '= °|) 1 of every read from common
FTagl0] = rfalse; variables
sfence() ;
while {lfence(), turn != 0) {
// busy walt

1
flag[0] = true;
sfence() ;

turn = 1;
sfence () ;
flag[0] = false; sfencel();
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Dekker’s Algorithm and Weakly-Ordered

Problem: Dekker’s algorithm requires sequentially consistency.
ldea: insert memory barriers between all variables common to both threads.

PO:
flag[0] = true;

sfence () ; @ insert a load memory

i

barrier 1fence () in front

, flag[l] == true)
fence (), turn != 0) { of every read from commaon
flag[0] = false; variables
sfence () ; @ insert a write memory
while (lfence(), turn != 0) { barrier sfence() after
// busy wai writing a variable that is
} read in the other thread
flag[0] = true; @ the 1fence () of the first
iteration of each loop may
) . . be combined with the
' critical sectio preceding sfence () to an
turn =1 mfence ()
sfence() ;
flag[0] = false; sfence();
Memory Consistency

Discussion
Memory barriers reside at the lowest level of synchronization primitives.
Where are they useful?
@ when several processes implement an automaton and . ..
@ synchronization means coordinating transitions of these automata
@ when blocking should not de-schedule threads
@ often used in operating systems
Why might they not be appropriate?
@ difficult to get right, possibly inappropriate except for specific, proven
algorithms
@ often synchronization with locks is as fast and easier
@ too many fences are costly if storefinvalidate buffers are bottleneck
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Discussion
Memory barriers reside at the lowest level of synchronization primitives.
Where are they useful?

@ when several processes implement an automaton and . ..

@ synchronization means coordinating transitions of these automata

@ when blocking should not de-schedule threads

@ often used in operating systems

Why might they not be appropriate?

@ difficult to get right, possibly inappropriate except for specific, proven
algorithms

@ often synchronization with locks is as fast and easier

@ too many fences are costly if store/invalidate buffers are bottleneck

What do compilers do about barriers?

@ C/C++: it's up to the programmer, use volatile for all thread-common
variables to avoid optimizations which are only correct for sequential
programs

@ C++11: use of atomic variables will insert memory barriers

° .: the runtime system must guarantee this

Memory Consistency
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Summary T Future Many-Core Systems: NUMA i

Memory consistency models:

o stri . .
strict cohsllstencly Symmetric multi-processing (SMP) has |ts
o . . . .
sequential consistency @ a memory-intensive computation may cause contention on the bus

@ weak consisten o . . .
eak consistency @ the speed of the bus is limited since the electrical signal has to travel to

lllustrating consistency: all participants
@ happened-before relation @ point-to-point connections are faster than a bus, but do not provide
@ happened-before process diagrams possibility of forming consensus

Intricacy of cache coherence protocols:
@ the effect of store buffers
e the effect of invalidate buffers
@ the use of memory barriers
Use of barriers in synchronization algorithms:
@ Dekker’s algorithm
@ stream processing, avoidance of busy waiting
@ inserting fences
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Future Many-Core Systems: NUMA T Overhead of NUMA Systems I

Communication overhead in a NUMA system.
@ Processors in a NUMA system

Symmetric multi-processing (SMP) has its limits: . may be fully or partially
@ a memory-intensive computation may cause contentiononthebus ~ @§ R =y connected.
@ the speed of the bus is limited since the electrical signal has to travel to ot @ The directory of who stores an
all participants \ \ address is partitioned amongst
@ point-to-point connections are faster than a bus, but do not provide - ] -~ v D processors.
possibility of forming consensus Mg § | P [ o | 1w A cache miss that cannot be satisfied
~ use a bus locally, use point-to-paint links globally: NUMA Vf\ : % "ﬂ by the 'OC“;‘:: memory atA:
@ non-uniform memory access partitions the memory amongst CPUs e L T e ¢ ’;rzzgs:j ;?eg\:\?:;g;e&gejitr;%tory
@ a directory states which CPU holds a memory region et * hing o B tells the processor C who holds
@ Intel'sf MESIF fo reduce communication overhead ‘ITon‘,aw( “ ﬁ the content
o Interprocess commun[catiqn between Qache-ControIIers (ccNUMAY): - ® C sends data (or status) to A and
onchip on Opteron or in chipset on Itanium :t i > pmewer  cends acknowledge to B

@ B completes transmission by an
acknowledge to A

source: [Int09]
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Communication via memory barriers has only specific applications:
@ coordinating state transitions between threads
Programming Languages o for systems that require minimal overhead (and no de-scheduling)
Often certain pieces of memory may only be modified by one thread at once.
@ can use barriers to implement automata that ensure mutual exclusion
@ -~ generalize the re-occurring concept of enforcing mutual exclusion

Concurrency: Atomic Executions, Locks and Monitors

M1 0L,0%, OF7

Dr. Michael Petter
Winter term 2015
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Why Memory Barriers are not Enough T Atomic Executions T

Communication via memory barriers has only specific applications: A concurrent program |:onsists of several threadsllhat share common
@ coordinating state transitions between threads resources:
@ for systems that require minimal overhead (and no de-scheduling) ® resources are often pieces of memory, but may be an I/O entity

» afile can be modified through a shared handle

@ for each resource an invariant must be retained
» ahead and tail pointer must define a linked list

@ an invariant may span several resources
@ during an update, an invariant may be broken

Often certain pieces of memaory may only be modified by one thread at once.
@ can use barriers to implement automata that ensure mutual exclusion
@ -~ generalize the re-occurring concept of enforcing mutual exclusion
Need a mechanism to update these pieces of memory as a single atomic

execution:
. ~ several resources must be updated together to ensure the invariant
@ several values of the objects are , ,
a=1,b=1 used to compute new value @ which particular resources need to be updated may depend on the
: o . rrent program

A 34’ @ certain information from the thread current program state
a s flows into this computation
b ‘. @ certain information flows from the

computation to the thread

Atomic Executions i Overview T

A concurrent program consists of several threads that share common We will address the established ways of managing synchronization.

resources: @ present techniques are available on most platforms
@ resources are often pieces of memary, but may be an I/O entity @ likely to be found in most existing (concurrent) software
» afile can be modified through a shared handle @ techniques provide solutions to solve common concurrency tasks
@ for each resource an invariant must be retained @ techniques are the source of common concurrency problems
» a head and tail pointer must define a linked list
@ an invariant may span several resources Presented technigues applicable to|C, C++ (pthread), Java, C# and other
@ during an update, an invariant may be broken imperative languages.

~~ several resources must be updated together to ensure the invariant

@ which particular resources need to be updated may depend on the
current program state

Ideally, we would want to mark a sequence of operations that update shared
resources for atomic execution [Harris et al.(2010)Harris, Larus, and Rajwar].
This would ensure that the invariant never seems to be broken.
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Overview

We will address the established ways of managing synchronization.
@ present techniques are available on most platforms
@ likely to be found in most existing (concurrent) software
@ technigues provide solutions to solve common concurrency tasks
@ technigques are the source of common concurrency problems

Presented techniques applicable to C, C++ (pthread), Java, G# and other
imperative languages.

Learning Outcomes
@ Principle of[Atomic Executions|
© Wait-Free Algorithms based on Atomic Operations
© Locks: Mutex, Semaphore, and Monitor
@ Deadlocks: Concept and Prevention

Atomic Executions, Locks and Monitors 4/44

Atomic Execution: Varieties

Definition (Atomic Execution)
A computation forms an aftomic execution if its effect can only be observed as
a single fransformation on the memory.

Several classes of atomic executions exist:
|Wait-Free I: an atomic execution always succeeds and never blocks
Lock-Free : an atomic execution may fail but never blocks
Locked : an atomic execution always succeeds but may block the thread

Transaction|: an atomic execution may fail (and may implement recovery)

T

Atomic Execution: Varieties

Definition (Atomic Execution)
A computation forms an atomic execution if its effect can only be observed as
a single transformation on the memory.

Atomic Execution: Varieties

Definition (Atomic Execution)
A computation forms an atomic execution if its effect can only be observed as
a single transformation on the memory.

Several classes of atomic executions exist:
Wait-Free : an atomic execution always succeeds and never blocks

Lock-Free : an atomic execution may fail but never blocks
Locked : an atomic execution always succeeds but may block the thread

Transaction : an atomic execution may fail (and may implement recovery)

These classes differ in
amount of data they can access during an atomic execution

expressivity of operations they allow
granularity of objects in memory they require

Atomic Executions, Locks and Monitors 5/44




Wait-Free Updates T

Which operations on a CPU are atomic executions? (j and tmp are registers)

Program 3
Program 2
Program 1 L int tmp = i;
i+ 3= i=j;
i = i+k; .
J = tmp;
Wait-Free Atomic Executions
Atomic Executions, Locks and Monitors 6/44 Atomic Executions, Locks and Monitors Ti44
Wait-Free Updates i Wait-Free Updates T
Which operations on a CPU are atomic executions? (j and tmp are registers) Which operations on a CPU are atomic executions? (j and tmp are registers)
Program 2 Program 3 Program 2 Program 3
Program 1 L int tmp = i; Program 1 L int tmp = i;
i+ g i=3; i+ 1T i=j;
i = i+k; . i = i+k; .
] = tmp; j = tmp;
Answer: Answer:
@ none by default (even without store and invalidate buffers,why?) @ none by default (even without store and invalidate buffers,why?)
@ but all of them can be atomic executions @ but all of them can be atomic executions

The programs can be atomic executions:

@ i must bein memory (e.g. declared as volatile)
@ |dea: Jock the cache/bus for an adress for the duration of an instruction;
on x86:
» Program 1 can be implemented using a lock inc [addr_i] instruction
» Program 2 can be implemented using mov eax,k;
lock xadd [addr_i],eax; mov reg_j,eax
» Program 3 can be implemented using locklxchg [addr_i],reg-j
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Wait-Free Updates

Which operations on a CPU are atomic executions? (j and tmp are registers)

Program 3
Program 2
Program 1 L int tmp = i;
it+; 3= i=3;
i = i+k; .
] = tmp;
Answer:

@ none by default (even without store and invalidate buffers,why?)
@ but all of them can be atomic executions
The programs can be atomic executions:
@ i must be in memory (e.g. declared as volatile)
@ |dea: lock the cache/bus for an adress for the duration of an instruction;
on x86:
» Program 1 can be implemented using a 1ock inc [addr_i] instruction
» Program 2 can be implemented using mov eax,k;
lock xadd [addr_i] ,eax; mov reg_j,eax
» Program 3 can be implemented using lock xchg [addr_ i],reg_j

/N Without lock, the load and store generated by i++ may be interleaved
with a store from another processor.
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Wait-Free Bumper-Pointer Allocation
Garbage collectors often use a bumper pointer to allocated memory:

Bumper Pointer Allocation

char heap[2720];
char* firstFree = &heap([0];

char* alloc(int size) {

char* start = firstFree;
firstFree = firstFree + size;
if (start+size>sizeof(heap)) garbage_collect();
return start;

}

@ firstFree points to the first unused byte
@ each allocation reserves the next size bytes in heap
Thread-safe implementation:

@ the alloc function can be used from multiple threads when implemented
using a lock xadd [ firstFree],eax instruction

@ -~ requires inline assembler

Atomic Executions, Locks and Monitors Wait-Free Atomic Executions 8/44
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Wait-Free Bumper-Pointer Allocation

Garbage collectors often use a bumper pointer to allocated memory:

Bumper Pointer Allocation

char heap[2720];
char* firstFree = &heap[0];

char*x alloc(int|size)| {

char* [start| = firstFree;
firstFree =|firstFree +|size;
if (start+size>sizeof (heap)) garbage_collect();
return start;

}

T

® firstFree points to the first unused byte
@ each allocation reserves the next size bytes in heap

Atomic Executions, Locks and Monitors. ‘Wait-Free Atomic Executions

Marking Statements as Atomic

Rather than writing assembler: use made-up keyword atomic:

Program 2 Program 3
Program 1 ) atomic {
; atomic { , .
atomic { 2 4. int tmp = i;
i+ J = i= s
i = itk; .
b } j = tmp;
}

8/4a
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Marking Statements as Atomic

Rather than writing assembler: use made-up keyword atomic:

[T Wait-Free Synchronization T

Wait-Free algorithms are limited to a single instruction:

ETSaTSE Program 3 ° |no control flow possiblej no behavioral change depending on data
Program 1 ic atomic { @ often, there are instructions that execute an operation conditionally
atomic { at;m:ci. int tmp = i;
) it i = i+k; 1 - fcj; Program 4 Program 5 Program 6

= m ;
} } J P atomic { atomic { atomic {
r = b; r-b; [2-
. . . b = 0; b = 1; if i[=

The statements in an atomic block execute as atomic execution: 1 ) } * [ ]

t K g t = c; K = .; . = t
B a‘omlc{ mp =1i; i = 3; j mp.}_

Operations update a memory cell and return the previous value.

@ the first two operations can be seen as setting a flagb to v € {0,1} if b
not already contains v

» this operation is calleq modify-and-test
@ the third case generalizes this to arbitrary values
» this operation is called |compare—and—swap

@ atomic only translatable when a corresponding atomic CPU instruction
exist

@ the notion of requesting atomic execution is a general concept
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Wait-Free Synchronization [

Wait-Free algorithms are limited to a single instruction:
@ no control flow possible, no behavioral change depending on data
@ often, there are instructions that execute an operation conditionally

‘Atomic Executions, Locks and Monitors
Lock-Free Algorithms T

Wait-Free Synchronization 10/ 44

If a wait-free implementation is not possible, a lock-free implementation might
still be viable.

Program 4 Program 5 Program 6
atomic { atomic { atomic {
r = b; r = b; r = |(k==i)l
b = 0; b = ilg if (©)|i = j;
} } }

Operations update a memory cell and return the previous value.
@ the first two operations can be seen as settingaflagbto v € {0,1} ifb
fot already contains v|
» this operation is called modify-and-test
@ the third case generalizes this to arbitrary values
» this operation is called compare-and-swap

~+ use as building blocks for Ialgorithms that can fail
Atomic Executions, Locks and Monitors

Wait-Free Synchronization 10/44
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Lock-Free Algorithms [

If a wait-free implementation is not possible, a lock-free implementation might
still be viable.
Common usage pattern for compare and swap:

@ read the initial value in i into|k (using memory barriers) |
@ calculate a new value =M

© update i to j if i =  still holds

@ go to first step if i # k meanwhile
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Lock-Free Algorithms [

If a wait-free implementation is not possible, a /ock-free implementation might
still be viable.
Common usage pattern for compare and swap:

@ read the initial value in i into & (using memory barriers)
© calculate a new value j = f(k)
© update i to j if i = k still holds
@ go to first step if i # k meanwhile
/N note: i = k must imply that no thread has updated i
~+ general recipe for lock-free algorithms
@ given a compare-and-swap operation for n bytes
@ try to group variables for which an invariant must hold into » bytes
@ read these bytes atomically
@ calculate a new value
@ perform a compare-and-swap operation on these n bytes
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Lock-Free Algorithms T

If a wait-free implementation is not possible, a lock-free implementation might
still be viable.
Common usage pattern for compare and swap:

@ read the initial value in i into & (using memory barriers)
© calculate a new value j = f(k)
© update i to j if i = k still holds
@ go to first step if i # k meanwhile
/N note: i = k must imply that no thread has updated i
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Lock-Free Algorithms T

If a wait-free implementation is not possible, a lock-free implementation might
still be viable.
Common usage pattern for compare and swap:

@ read the initial value in 7 into & (using memory barriers)
@ calculate a new value j = f(k)
© update i to j if i = k still holds
@ go to first step if i # k& meanwhile
/N note: i = k must imply that no thread has updated i
~+ general recipe for lock-free algorithms
@ given a compare-and-swap operation for n bytes
@ try to group variables for which an invariant must hold into n bytes
@ read these bytes atomically
@ calculate a new value
@ perform a compare-and-swap operation on these n bytes
~+ calculating new value must be repeatable
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