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Introduction

So far, we have not looked at the details of how Haskell
expressions are evaluated. The evaluation strategy is called

lazy evaluation (,,verzogerte Auswertung')

Advantages:
e Avoids unnecessary evaluations
e Terminates as often as possible
e Supports infinite lists

e Increases modularity

Therefore Haskell is called a lazy functional language.

Evaluating expressions




Evaluating expressions

Expressions are evaluated (reduced) by successively applying
definitions until no further reduction is possible.

Evaluating expressions

Expressions are evaluated (reduced) by successively applying
definitions until no further reduction is possible.

Example: Example:
sq :: Integer -> Integer sq :: Integer -> Integer
Sqn = n*n sqn = n*n
One evaluation:
sq(3+4)
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sq(3+4)




Evaluating expressions

Expressions are evaluated (reduced) by successively applying
definitions until no further reduction is possible.

Example:
sq :: Integer -> Integer
Ssqn = n*n

One evaluation:

sq(3+4) = sq7 = T *7 = 49

Another evaluation:

5q(3+4) = (3+4) * (3+4) = T x (3+4) = 7 x 7
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Example

Let n have value 0 initially.
Two evaluations:

n+ (n:=1)

Theorem
Any two terminating evaluations of the same Haskell expression
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Let n have value 0 initially.
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Reduction strategies

An expression may have many reducible subexpressions:

sq (3+4)

Evaluating expressions

Expressions are evaluated (reduced) by successively applying
definitions until no further reduction is possible.

Example:
sq :: Integer -> Integer
sqn = n*n

One evaluation:

sq(3+4) = sq7 = 7 x7T7 = 49

Another evaluation:

s5q(3+4) = (3+4) * (3+4) = 7 x (3+4) = T x 7
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An expression may have many reducible subexpressions:
sq (3+4)
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Innermost reduction Always reduce an innermost redex.
Corresponds to call by value:
Arguments are evaluated
before they are substituted into the function body
sq (3+4) = sq7 = 7 %7
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Reduction strategies

An expression may have many reducible subexpressions:
sq (3+4)

Terminology: redex = reducible expression

Two common reduction strategies:

Innermost reduction Always reduce an innermost redex.
Corresponds to call by value:
Arguments are evaluated
before they are substituted into the function body
sq (3+4) = s8q7 = 7 %7

Outermost reduction Always reduce an outermost redex.
Corresponds to call by name:
The unevaluated arguments
are substituted into the the function body
sq (3+44) = (3+4) x (3+4)

Comparison: termination

Definition:
loop = tail loop

Innermost reduction:

Comparison: termination

Definition:
loop = tail loop

Innermost reduction:
fst (1,lo0op) = fst(1l,tail loop)
fst(1,tail(tail loop))

Qutermost reduction:




Comparison: termination

Definition:
loop = tail loop

Innermost reduction:
fst (1,loop)

fst(1,tail loop)
fst(1,tail(tail loop))

Outermost reduction:

Comparison: termination

Definition:
loop = tail loop

Innermost reduction:
fst (1,loop)

fst(1,tail loop)
fst(1,tail(tail loop))

Qutermost reduction:

fst (1,lo0p) = 1 fst (1,lo0p) = 1
Theorem If expression e has a terminating reduction sequence,
then outermost reduction of e also terminates.
LIS LGS
Comparison: termination
) Why is this useful?
Definition: Y

loop = tail loop

Innermost reduction:
fst (1,loop)

fst(1,tail loop)
fst(1,tail(tail loop))

Outermost reduction:
fst (1,lo0op) = 1

Theorem If expression e has a terminating reduction sequence,
then outermost reduction of e also terminates.

Outermost reduction terminates as often as possible
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Why is this useful? Why is this useful?
Example Example
Can build your own control constructs: Can build your own control constructs:
switch :: Int -> a -> a -> a switch :: Int -> a -> a -> a
switch n x y
| n>0 = X
| otherwise = y
LIS LIS

Comparison: Number of steps
Why is this useful?

Example

. Innermost reduction:
Can build your own control constructs:

sq (83+4) = sq 7 = T %7 = 49
switch :: Int -> a -> a -> a
switch n x y
| n>0 = X
| otherwise = y
fac :: Int -> Int

fac n = switch n (n * fac(n-1)) 1




Comparison: Number of steps

Innermost reduction:
sq (3+4) = sq 7 = 7 7 = 49
Outermost reduction:

sq(3+4) = (3+4)*(3+4) = Tx(3+4) = 77 = 49

sq(3+4)
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sq(3+4) = e x e = e x e = 49 sq(3+4) = e x e = e x e = 49
o o o o
3+4 7 3+4 7
The expression 3+4 is only evaluated once! The expression 3+4 is only evaluated once!
Lazy evaluation := outermost reduction + sharing
&, S

The principles of lazy evaluation:

The principles of lazy evaluation:

e Arguments of functions are evaluated only
if needed to continue the evaluation of the function.
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The principles of lazy evaluation:

e Arguments of functions are evaluated only
if needed to continue the evaluation of the function.

e Arguments are not necessarily evaluated fully,
but only far enough to evaluate the function.
(Remember fst (1,1lo0p))

The principles of lazy evaluation:

e Arguments of functions are evaluated only
if needed to continue the evaluation of the function.

e Arguments are not necessarily evaluated fully,
but only far enough to evaluate the function.
(Remember fst (1,loop))

e Each argument is evaluated at most once (sharing!)
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Pattern matching
Example
f [Int] -> [Int] -> Int
f [] ys = 0
f (x:xs) [] = 0
f (x:xs) (y:ys) = x+y
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Pattern matching
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f :: [Int] -> [Int] -> Int
f [] ys = 0
f (x:xs) [] = 0
f (x:xs) (y:ys) = x+y

Lazy evaluation:
f [1..3] [7..9]
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Example
f [Int] -> [Int] -> Int
f [] ys = 0
f (x:xs) [] = 0
f (x:xs) (y:ys) = x+y

Lazy evaluation:
f [1..3] [7..9]

Pattern matching

—-— does f.1 match?

Example

f [Int] -> [Int] -> Int
f [] ys = 0

f (x:xs) [] = 0

f (x:xs) (y:ys) = x+y

Lazy evaluation:

£ [1..3] [7..9]
= £ 1 : [2..3]) [7..9]

Pattern matching

-- does f.1 match?

Example

f :: [Int] -> [Int] -> Int
f [] ys = 0

f (x:xs) [ = 0

f (x:xs) (y:ys) = x+y

Lazy evaluation:

£ [1..3] [7..9]
= f (1 : [2..3]) [7..9]

Pattern matching

—— does f.1 match?
-— does f£.2 match?
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Example
f :: [Int] -> [Int] -> Int
f [] ys = 0
f (x:xs) [] = 0
f (x:xs) (y:ys) = x+y

Lazy evaluation:

f [1..3] [7..9]

= f (1 : [2..3]) [7..9]

f (1 : [2..3]) (7 : [8..9])

Pattern matching

—-— does f.1 match?
-- does f.2 match?
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Pattern matching Pattern matching
Example Example
f [Int] -> [Int] -> Int f [Int] -> [Int] -> Int
T ys = 0 f [ ys = 0
f (x:xs) [] = 0 f (x:xs) [] = 0
f (x:xs) (y:ys) = x+y f (x:xs) (y:ys) = x+y
Lazy evaluation: Lazy evaluation:
f [1..3] [7..9] -- does f.1 match? f [1..3] [7..9] -- does f.1 match?
= f (1 : [2..3]) [7..9] —— does .2 match? = f (1 : [2..3]) [7..9] -- does f.2 match?
= f (1 : [2..3]) (7 : [8..9]) -- does f.3 match? = f (1 : [2..3]) (7 : [8..9]) -- does f.3 match?
= 147
= 8
LES EHES
Guards Guards
Example Example
fmnp |l m>n&&m>p = n fmnp | m>n&m>p = m
| n>mé&& n>p = n | n>m& n>p = n
| otherwise = p | otherwise = p

Lazy evaluation:
f (2+43) (4-1) (3+9)
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Guards Guards
Example Example
fmnp |l m>n&&m>p = n fmnp | m>n&m>p = m
| n > m&k n > p n | n>m& n>p = n
| otherwise = p | otherwise = p
Lazy evaluation: Lazy evaluation:
f (2+3) (4-1) (3+9) f (2+3) (4-1) (3+9)
7 2+3 >= 4-1 && 2+3 >= 349 7 2+3 >= 4-1 && 2+3 >= 349
? = b >= 3 && 5 >= 349
? = True && 5 >= 349
7?7 = b >= 349
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Guards Guards
Example Example
fmnp |l m>n&&m>p = n fmnp | m>n&m>p = m
| n > m&k n > p n | n>m& n>p = n
| otherwise = p | otherwise = p

Lazy evaluation:
f (243) (4-1) (3+9)
? 243 >= 4-1 && 2+3 >= 349
= b > 3 && 5 >= 349
= True && 5 >= 3+9
5 >= 349
5 >= 12
False
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Lazy evaluation:
f (2+43) (4-1) (3+9)
7 243 >= 4-1 && 2+3 >= 349

7?7 = b >= 3 && 5 >= 349
? = True && 5 >= 349
? 5 >= 349

? 5 >= 12

? = False

7?7 3 >=5 && 3 >= 12




Lazy evaluation:
f (243) (4-1) (3+9)

7 243 >= 4-1 && 2+3 >= 349

= b5 >= 3 && 5 >= 349
= True && 5 >= 349
= 5 >= 349

5 >= 12

False

w

>= 5 && 3 >= 12
False && 3 >= 12
False

otherwise = True

N ) ) N ) N ) ) N
1]
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Guards Guards
Example Example
fmnp |l m>n&&m>p = n fmnp | m>n&m>p = m
| n>mé&& n>p = n | n>m& n>p = n
| otherwise = p | otherwise = p
Lazy evaluation: Lazy evaluation:
£ (2+3) (4-1) (3+9) £ (2+3) (4-1) (3+9)
7 243 >= 4-1 && 2+3 >= 349 ?  2+3 >= 4-1 && 2+3 >= 3+9
7 = 5> 3 && 5 >= 349 ? = b >= 3 && 5 >= 349
? = True && 5 >= 349 ? = True && 5 >= 349
7 = b >= 349 ? = 5K >= 349
? = b >= 12 ? = 5 >= 12
? = False ? = TFalse
? 3 >=5 & 3 >= 12 ? 3> 5 && 3 >= 12
? = False && 3 >= 12 ? = False && 3 >= 12
7 = False
? otherwise = True
CHES )&
Guards where
Example
fmnp | lm>né&&mnmn>p = m
| n>m&& n>p = n
| otherwise = p

Same principle: definitions in where clauses are only evaluated
when needed and only as much as needed.
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Example: \x -> False && x cannot be reduced
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Example: \x —> False && x cannot be reduced Example: \x -> False && x cannot be reduced
Reasons: Reasons:

e Functions are black boxes

e Functions are black boxes

e All you can do with a function is apply it




Lambda

Haskell never reduces inside a lambda

Example: \x —> False && x cannot be reduced
Reasons:

e Functions are black boxes
e All you can do with a function is apply it

Example:
(\x —-> False && x) True = False && True = False

Built-in functions

Arithmetic operators and other built-in functions
evaluate their arguments first

Example

3 % 5 jis a redex

Built-in functions

Arithmetic operators and other built-in functions
evaluate their arguments first

Example

3 * 5 jis a redex
0 * head (...) isnot a redex

Predefined functions from Prelude

They behave like their Haskell definition:

(&&) :: Bool -> Bool -> Bool
True & y =y
False && y False
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Slogan Slogan
Lazy evaluation evaluates an expression only when needed Lazy evaluation evaluates an expression only when needed

and only as much as needed. and only as much as needed.
( "Call by need")
oo o
Minimum of a list
min = head . inSort

12.1 Applications of lazy evaluation




inSort (x:xs) =

ins :: Ord a => a -> [a] —>

ins x [J = [x]

ins x (y:ys) | x <=y =
| otherwise =

— inSort [6,1,7,5]
= ins 6 (ins 1 (ins

7

ins x (inSort xs)

[al

X:y:ys
y : ins x ys

(ins 5 [1)))

DS E &
Minimum of a list Minimum of a list
min = head . inSort min = head . inSort
inSort :: Ord a => [a] -> [a] inSort :: Ord a => [a] -> [a]
inSort [] = [] inSort [] = []
inSort (x:xs) = ins x (inSort xs) inSort (x:xs) = ins x (inSort xs)
ins :: Ord a => a -> [a] -> [a]
ins x [1 = [x]
ins x (y:ys) | x <=y = X :y :ys
| otherwise = y : ins X ys
DS E &
Minimum of a list
min [6,1,7,5] = head(inSort [6,1,7,5])
min = head . inSort
inSort :: Ord a => [a] -> [a]
inSort [] = [




min [6,1,7,5] = head(inSort [6,1,7,5])

head(ins 6 (ins 1 (ins 7 (ins 5 [1))))

min [6,1,7,5] = head(inSort [6,1,7,5])

head(ins 6 (ins 1 (ins 7 (ins 5 [1))))
head(ins 6 (ins 1 (ins 7 (5 : [1))))

min [6,1,7,5] = head(inSort [6,1,7,5])

head(ins 6 (ins 1 (ins 7 (ins 5 [1))))
head(ins 6 (ins 1 (ins 7 (56 : [1))))

min [6,1,7,5] = head(inSort [6,1,7,5])

head(ins 6 (ins 1 (ins 7 (ins 5 [1))))
head(ins 6 (ins 1 (ins 7 (5 : [1))))

head(ins 6 (ins 1 (5 : ins 7 []1)))




Minimum of a list

min [6,1,7,5] = head(inSort [6,1,7,5])
= head(ins 6 (ins 1 (ins 7 (ins 5 [1))))
= head(ins 6 (ins 1 (ins 7 (5 : [1)))) min = head . inSort
= head(ins 6 (ins 1 (5 : ins 7 [1)))
inSort :: Ord a => [a] -> [a]
inSort [] = [
inSort (x:xs) = ins x (inSort xs)
ins :: Ord a => a -> [a] -> [a]
ins x [1 = [x]
ins x (y:ys) | x <=y = X :y :ys
| otherwise = y : ins X ys

=Y &
min [6,1,7,5] = head(inSort [6,1,7,5]) min [6,1,7,5] = head(inSort [6,1,7,5])
= head(ins 6 (ins 1 (ins 7 (ins 5 [1)))) = head(ins 6 (ins 1 (ins 7 (ins 5 [1))))
= head(ins 6 (ins 1 (dns 7 (5 : [1)))) = head(ins 6 (ins 1 (dns 7 (5 : [1))))
= head(ins 6 (ins 1 (5 : ins 7 []))) = head(ins 6 (ins 1 (5 : ins 7 []1)))
= head(ins 6 (1 : 5 : ins 7 [])) = head(ins 6 (1 : 5 : ins 7 []1))

= head(1 : ins 6 (5 : ins 7 []1)))




head(ins 6 (ins 1 (ins 7 (ins 5 []1))))
head(ins 6 (ins 1 (ins 7 (5 : [1))))
head(ins 6 (ins 1 (5 : ins 7 [])))
head(ins 6 (1 : 5 : ins 7 []))

head (1 :

1

ins 6 (5 : ins 7 [1)))

Lazy evaluation needs only linear time
although inSort is quadratic

because the sorted list is never constructed completely

()& &
min [6,1,7,5] = head(inSort [6,1,7,5]) min [6,1,7,5] = head(inSort [6,1,7,5])
= head(ins 6 (ins 1 (ins 7 (ins 5 [1)))) = head(ins 6 (ins 1 (ins 7 (ins 5 [1))))
= head(ins 6 (ins 1 (ins 7 (5 : [1)))) = head(ins 6 (ins 1 (ins 7 (5 : [1))))
head(ins 6 (ins 1 (5 : ins 7 []1))) = head(ins 6 (ins 1 (5 : ins 7 []1)))
head(ins 6 (1 : 5 : ins 7 [])) head(ins 6 (1 : 5 : ins 7 []))
= head(1 : ins 6 (5 : ins 7 [1))) = head(l1 : ins 6 (5 : ins 7 [1)))
= 1 = 1
Lazy evaluation needs only linear time
()& &
min [6,1,7,5] = head(inSort [6,1,7,5]) min [6,1,7,5] = head(inSort [6,1,7,5])

= head(ins 6 (ins 1 (ins 7 (ins 5 [1))))
= head(ins 6 (ins 1 (ins 7 (5 : [1))))
= head(ins 6 (ins 1 (5 : ins 7 []1)))

= head(ins 6 (1 : 5 : ins 7 []1))

= head(1 : ins 6 (5 : ins 7 []1)))

= 1

Lazy evaluation needs only linear time
although inSort is quadratic
because the sorted list is never constructed completely

Warning: this depends on the exact algorithm and does not work
so nicely with all sorting functions!




Maximum of a list Maximum of a list

max = last . inSort max = last . inSort

Complexity?

Takeuchi Function Takeuchi Function

t :: Int -> Int -> Int -> Int t :: Int -> Int -> Int -> Int
txyzl|lx<=y =y txyz | x<=y =y
| otherwise =t (¢t (x-1) y z) | otherwise = t (t (x-1) y z)
(t (y-1) z x) (t (y-1) z x)
(t (z-1) = y) (t (z-1) x y)
In C:
int t(int x, int y, int z) {
if (x <= y)
return y;
else

return t(t(x-1, vy, z), t(y-1, z, x), t(z-1, x, y));
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# Terminal Shell Edit View Window Help Sl @D <> =4 @ Fioe3s Q = 8 Terminal Shell Edit View Window Help S @D <> f = 4 @ Fi09:36 Q

|H) g | = ci'éd:iﬂtdi 66x23 \H | g J o éé;‘e‘dis;;:cl 66x23
10 18
122:Code nipkow$ t 11 10 5 122:Code nipkow$ t 19 10 5
11 19
122:Code nipkow$ t 12 10 5 122:Code nipkow$ t 20 10 5
12 20
122:Code nipkow$ t 13 10 5 122:Code nipkow$ t 21 10 5
13 ~C
122:Code nipkow$ t 14 10 5 122:Code nipkow$ ghci
14 GHCi, version 7.6.3: http://www.haskell.org/ghc/ :7? for help
122:Code nipkow$ t 15 18 5 Loading package ghc-prim ... linking ... done.
15 Loading package integer-gmp ... linking ... done.
|122:Code nipkow$ t 16 1@ 5 |Loading package base ... linking ... done.
16  |Prelude> t 21 10 5
;122:C0de nipkow$ t 100 10 5 ;
E‘C E<interactive>:2:1: Not in scope: “t'
6122:Code nipkow$ t 18 1@ 5 «#Prelude> :1 t.hs
w18 % [1 of 1] Compiling Main ( t.hs, interpreted )
7122:Code nipkow$ t 19 10 5 40k, modules loaded: Main.
719 #nxMain> t 21 10 5
=122:Code nipkow$ t 20 1@ 5 w2l
%20 %*Main> t 100 10 5
m122:Code nipkow$ t 21 10 5 ™ 100
q okMain>
LES LGS
Takeuchi Function
t :: Int -> Int -> Int -> Int
txyzl|lx<=y =y
| otherwise = t (t (x-1) y z)
(t (y-1) z x)
(t (z-1) x y) 12.2 Infinite lists
In C:
int t(int x, int y, int z) {
if (x <= y)
return y;
else

return t(t(x-1, y, z), t(y-1, z, x), t(z-1, %, y));
}

Try t 15 10 0 — Haskell beats C!




DS | &
Example Example
A recursive definition A recursive definition
ones :: [Int] ones :: [Int]
ones = 1 : ones ones = 1 : ones
that defines an infinite list of 1s:
ones = 1 : ones = 1 : 1 : ones =
What GHCi has to say about it:
> ones
(+,1,1,1,1,4,1,1,14,1,1,1,14,1,14,1,1,14,1,1,1,14,1,1,1,1,1,1,1
Haskell lists can be finite or infinite
DS E &
Example

A recursive definition

ones :: [Int]
ones = 1 : ones

that defines an infinite list of 1s:
ones = 1 : ones = 1 :1 : ones =
What GHCi has to say about it:

> ones
t,1,1,1,1,1,1,4,4,4,4,4,4,4,4,1,4,1,1,14,1,1,1,1,1,1,1,1,1

Haskell lists can be finite or infinite

Printing an infinite list does not terminate

But Haskell can compute with infinite lists, thanks to lazy
evaluation:

> head ones
1

Remember:

Lazy evaluation evaluates an expression only as much as needed




But Haskell can compute with infinite lists, thanks to lazy
evaluation:

> head ones
1

Remember:

Lazy evaluation evaluates an expression only as much as needed

But Haskell can compute with infinite lists, thanks to lazy
evaluation:

> head ones
1

Remember:

Lazy evaluation evaluates an expression only as much as needed

Outermost reduction: head ones = head (1 : ones) = 1 QOutermost reduction: head ones = head (1 : ones) = 1
Innermost reduction: head ones
= head (1 : ones)
= head (1 : 1 : ones)
(m)[®] (m](& ]

Haskell lists are never actually infinite but only potentially infinite

Haskell lists are never actually infinite but only potentially infinite

Lazy evaluation computes as much of the infinite list as needed

This is how partially evaluated lists are represented internally:




Why (potentially) infinite lists?

Haskell lists are never actually infinite but only potentially infinite

Lazy evaluation computes as much of the infinite list as needed
e They come for free with lazy evaluation
This is how partially evaluated lists are represented internally:

1 : 2 : 3 : |code pointer to compute rest

Why (potentially) infinite lists? Example: The sieve of |Eratosthenes

e They come for free with lazy evaluation

e They increase modularity:
list producer does not need to know
how much of the list the consumer wants




Example: The sieve of

©® Create the list 2, 3, 4, ...

Eratosthenes

® Output the first value p in the list as a prime.

® Delete all multiples of p from the list

Example: The sieve of

@ Create the list 2, 3, 4, ...

® Output the first value p in the list as a
® Delete all multiples of p from the list
@ Goto step 2

Eratosthenes

prime.

Example: The sieve of

©® Create the list 2, 3, 4, ...

Eratosthenes

® Output the first value p in the list as a prime.

® Delete all multiples of p from the list
® Goto step 2

35 7 9 11
2

LS|

In Haskell:
primes :: [Int]
primes = sieve [2..]
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In Haskell: In Haskell
primes :: [Int] primes :: [Int]
primes = sieve [2..] primes = sieve [2..]
sieve :: [Int] -> [Int] sieve :: [Int] -> [Int]
sieve (p:xs) = p : sieve [x | x <= xs, X ‘mod‘ p /= 0]

Lazy evaluation:

primes = sieve [2..] = sieve (2:[3..1)
1%, | =ES!
In Haskell: In Haskell
primes :: [Int] primes :: [Int]
primes = sieve [2..] primes = sieve [2..]
sieve :: [Int] -> [Int] sieve :: [Int] -> [Int]
sieve (p:xs) = p : sieve [x | x <- xs, ¥ ‘mod® p /= 0] sieve (p:xs) = p : sieve [x | x <= xs, X ‘mod‘ p /= 0]
Lazy evaluation: Lazy evaluation:
primes = sieve [2..] = sieve (2:[3..1) primes = sieve [2..] = sieve (2:[3..1)
= 2 : sieve [x | x <- [3..], X ‘mod® 2 /= 0] = 2 : sieve [x | x <- [3..], ¥ ‘mod® 2 /= 0]

= 2 : sieve [x | x <- 3:[4..], x ‘mod‘ 2 /= 0]
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In Haskell
primes :: [Int]
primes = sieve [2..]
sieve :: [Int] -> [Int]
sieve (p:xs) = p : sieve [x | x <- xs, ¥ ‘mod® p /= 0]

Lazy evaluation:

E

In Haskell

primes :: [Int]

primes = sieve [2..]

sieve :: [Int] -> [Int]

sieve (p:xs) = p : sieve [x | x <= xs, X ‘mod‘ p /= 0]

Lazy evaluation:

primes = sieve [2..] = sieve (2:[3..1) primes = sieve [2..] = sieve (2:[3..1)
= 2 : sieve [x | x <- [3..], X ‘mod® 2 /= 0] = 2 : sieve [x | x <- [3..], ¥ ‘mod® 2 /= 0]
= 2 : sieve [x | x <= 3:[4..], x ‘mod® 2 /= 0] = 2 : sieve [x | x <- 3:[4..], x ‘mod® 2 /= 0]
= 2 : sieve (3 : [x | x <= [4..], x ‘mod‘ 2 /= 0]) = 2 : sieve (3 : [x | x <- [4..], x ‘mod‘ 2 /= 0])
= 2 : 3 : sieve [x | x <- [xlx <- [4..], X ‘mod® 2 /= 0]
X ‘mod¢ 3 /= 0]
DS | &
In Haskell: I\/Iodularity!
primes :: [Int]
rimes = sieve [2..] . .
P The first 10 primes:
sieve :: [Int] -> [Int] > take 10 primes
sieve (p:xs) = p : sieve [x | x <- xs, ¥ ‘mod® p /= 0] [2,3,5,7,11,13,17,19,23,29]

Lazy evaluation:

primes
: sieve [x | x <= [3..], x ‘mod‘ 2 /= 0]
2 : sieve [x | x <- 3:[4..],
2

2 : 3 : sieve [x | x <= [xl|x <= [4..],

2

= sieve [2..] = sieve (2:[3..1)

x ‘mod¢ 2 /= 0]

X ‘mod‘ 2 /= 0])

X ‘mod®¢ 2 /= 0]

sieve (3 : [x | x <- [4..]1,

X ‘mod® 3 /= 0]

The primes between 100 and 150:




Modularity!

The first 10 primes:

> take 10 primes

[2,3,5,7,11,13,17,19,23,29]

The primes between 100 and 150:

> takeWhile (<150) (dropWhile (<100) primes)

Modularity!

The first 10 primes:

> take 10 primes
[2,3,5,7,11,13,17,19,23,29]
The primes between 100 and 150:

> takeWhile (<150) (dropWhile (<100) primes)
[101,103,107,109,113,127,131,137,139,149]

All twin primes:

Modularity!

The first 10 primes:

> take 10 primes
[2,3,5,7,11,13,17,19,23,29]
The primes between 100 and 150:

> takeWhile (<150) (dropWhile (<100) primes)
[101,103,107,109,113,127,131,137,139,149]

All twin primes:

> [(P,q) | (qu) <- ’ P+222q]

Modularity!

The first 10 primes:

> take 10 primes
(2,3,5,7,11,13,17,19,23,29]

The primes between 100 and 150:

> takeWhile (<150) (dropWhile (<100) primes)
[101,103,107,109,113,127,131,137,139,149]

All twin primes:

> [(p,q) | (p,q) <- zip primes (tail primes), p+2==q]
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Example: when computing take 5 primes

Sharing!

Sharing!

There is only one copy of primes

Every time part of primes needs to be evaluated
Example: when computing take 5 primes
primes is (invisibly!) updated to remember the evaluated part

Example: primes = 2 : 3 : 5 : 7 : 11 : sieve




Sharing!

There is only one copy of primes

Every time part of primes needs to be evaluated
Example: when computing take 5 primes

primes is (invisibly!) updated to remember the evaluated part

Example: primes = 2 : 3 : 5 : 7 : 11 : sieve ...

The next uses of primes are faster:

Example: now primes !! 2 needs only 3 steps

Nothing special, just the automatic result of sharing

Idea:

The list of Fibonacci numbers

0112 ..

The list of Fibonacci numbers

|dea: 0112..
+ 011..
= 0123..

From Prelude: zipWith

Idea:
+

The list of Fibonacci numbers

0112 ..
011..
0123 ..

From Prelude: zipWith

Example:

zipWith £ [al, a2, ...] [b1, b2, ...]




The list of Fibonacci numbers

|dea: 0112..
+ 011..
= 0123 ..

From Prelude: zipWith
Example: =zipWith f [al, a2, ...] [bl, b2, ...]
= [f a1l b1, f a2 b2, ...]

fibs :: [Integer]
fibs = 0 :

The list of Fibonacci numbers

Idea: 0112 ..
+ 011 ..
= 0123 ..

From Prelude: zipWith
Example: zipWith f [al, a2, ...] [b1l, b2, ...]
= [f a1l b1, f a2 b2, ...]

fibs :: [Integer]
fibs = 0 : 1 : zipWith (+) fibs

The list of Fibonacci numbers

|dea: 0112..
+ 011..
= 0123..

From Prelude: zipWith
Example: =zipWith f [al, a2, ...] [bl, b2, ...]
= [f a1l b1, f a2 b2, ...]

fibs :: [Integer]
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

The list of Fibonacci numbers

Idea: 0112 ..
+ 011..
= 0123 ..

From Prelude: zipWith
Example: zipWith f [al, a2, ...] [b1l, b2, ...]
= [f a1l b1, f a2 b2, ...]

fibs :: [Integer]
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

How about

fibs =0 : 1 : [x+y | x <- fibs, y <- tail fibs]




