Script generated by TTT

Title: Nipkow: Info2 (16.01.2015)
Date: Fri Jan 16 08:33:22 CET 2015
Duration: 85:20 min

Pages: 143

Introduction

So far, we have not looked at the details of how Haskell
expressions are evaluated. The evaluation strategy is called

lazy evaluation (,,verzogerte Auswertung')

12. Lazy evaluation

Introduction

So far, we have not looked at the details of how Haskell
expressions are evaluated.

Introduction

So far, we have not looked at the details of how Haskell
expressions are evaluated. The evaluation strategy is called

lazy evaluation (,,verzogerte Auswertung')

Advantages:
e Avoids unnecessary evaluations

e Terminates as often as possible

Introduction

So far, we have not looked at the details of how Haskell
expressions are evaluated. The evaluation strategy is called

lazy evaluation (, verzogerte Auswertung’)

Advantages:
e Avoids unnecessary evaluations
e Terminates as often as possible

e Supports infinite lists

Introduction

So far, we have not looked at the details of how Haskell
expressions are evaluated. The evaluation strategy is called

lazy evaluation (,,verzogerte Auswertung')

Advantages:
e Avoids unnecessary evaluations
e Terminates as often as possible
e Supports infinite lists

e Increases modularity

Therefore Haskell is called a lazy functional language.

Evaluating expressions

Evaluating expressions

Expressions are evaluated (reduced) by successively applying
definitions until no further reduction is possible.

Evaluating expressions

Expressions are evaluated (reduced) by successively applying
definitions until no further reduction is possible.

Example: Example:
sq :: Integer -> Integer sq :: Integer -> Integer
Sqn = n*n sqn = n*n
One evaluation:
sq(3+4)
CIEN |H)& |

Evaluating expressions

Expressions are evaluated (reduced) by successively applying
definitions until no further reduction is possible.

Example:
sq :: Integer -> Integer
sqn = n*n

One evaluation:

sq(3+44) = sq7 = 7 %7 = 49

Evaluating expressions

Expressions are evaluated (reduced) by successively applying
definitions until no further reduction is possible.

Example:
sq :: Integer -> Integer
sgn = n*n

One evaluation:

sq(3+4) = sq7 = 7 7 = 49

Another evaluation:

sq(3+4)

Evaluating expressions

Expressions are evaluated (reduced) by successively applying
definitions until no further reduction is possible.

Example:
sq :: Integer -> Integer
Ssqn = n*n

One evaluation:

sq(3+4) = sq7 = T *7 = 49

Another evaluation:

5q(3+4) = (3+4) * (3+4) = T x (3+4) = 7 x 7

Theorem
Any two terminating evaluations of the same Haskell expression
lead to the same final result.

Theorem
Any two terminating evaluations of the same Haskell expression
lead to the same final result.

This is not the case in languages with side effects:

Theorem
Any two terminating evaluations of the same Haskell expression
lead to the same final result.

This is not the case in languages with side effects:

Example

Let n have value 0 initially.

Two evaluations:

Theorem
Any two terminating evaluations of the same Haskell expression
lead to the same final result.

This is not the case in languages with side effects:

Example

Let n have value 0 initially.
Two evaluations:

n+ (n:=1)

Theorem
Any two terminating evaluations of the same Haskell expression
lead to the same final result.

This is not the case in languages with side effects:

Example

Let n have value 0 initially.

Two evaluations:

=
+
oy
=]
]
N
p—
]

0O+ (n:=1) = 0+1 =1

=
+
N
=]
I}
—
p—
I}
=]
—
I}
—
+
—
I}
[\

Reduction strategies

An expression may have many reducible subexpressions:

sq (3+4)

Evaluating expressions

Expressions are evaluated (reduced) by successively applying
definitions until no further reduction is possible.

Example:
sq :: Integer -> Integer
sqn = n*n

One evaluation:

sq(3+4) = sq7 = 7 x7T7 = 49

Another evaluation:

s5q(3+4) = (3+4) * (3+4) = 7 x (3+4) = T x 7

Reduction strategies

An expression may have many reducible subexpressions:
sq (3+4)

Terminology: redex = reducible expression

Two common reduction strategies:

Reduction strategies

An expression may have many reducible subexpressions:
sq (3+4)

Terminology: redex = reducible expression

Two common reduction strategies:

Innermost reduction Always reduce an innermost redex.
Corresponds to call by value:

Reduction strategies

An expression may have many reducible subexpressions:
sq (3+4)

Terminology: redex = reducible expression

Two common reduction strategies:

Innermost reduction Always reduce an innermost redex.
Corresponds to call by value:
Arguments are evaluated
before they are substituted into the function body
sq (3+4) = sq7 = 7 %7

Reduction strategies

An expression may have many reducible subexpressions:
sq (3+4)

Terminology: redex = reducible expression

Two common reduction strategies:

Innermost reduction Always reduce an innermost redex.
Corresponds to call by value:
Arguments are evaluated
before they are substituted into the function body
sq (3+4) = s8q7 = 7 %7

Outermost reduction Always reduce an outermost redex.
Corresponds to call by name:

Reduction strategies

An expression may have many reducible subexpressions:
sq (3+4)
Terminology: redex = reducible expression

Two common reduction strategies:

Innermost reduction Always reduce an innermost redex.
Corresponds to call by value:
Arguments are evaluated
before they are substituted into the function body
sq (3+4) = sq7 = 7 %7

Qutermost reduction Always reduce an outermost redex.
Corresponds to call by name:
The unevaluated arguments
are substituted into the the function body

Reduction strategies

An expression may have many reducible subexpressions:
sq (3+4)

Terminology: redex = reducible expression

Two common reduction strategies:

Innermost reduction Always reduce an innermost redex.
Corresponds to call by value:
Arguments are evaluated
before they are substituted into the function body
sq (3+4) = s8q7 = 7 %7

Outermost reduction Always reduce an outermost redex.
Corresponds to call by name:
The unevaluated arguments
are substituted into the the function body
sq (3+44) = (3+4) x (3+4)

Comparison: termination

Definition:
loop = tail loop

Innermost reduction:

Comparison: termination

Definition:
loop = tail loop

Innermost reduction:
fst (1,lo0op) = fst(1l,tail loop)
fst(1,tail(tail loop))

Qutermost reduction:

Comparison: termination

Definition:
loop = tail loop

Innermost reduction:
fst (1,loop)

fst(1,tail loop)
fst(1,tail(tail loop))

Outermost reduction:

Comparison: termination

Definition:
loop = tail loop

Innermost reduction:
fst (1,loop)

fst(1,tail loop)
fst(1,tail(tail loop))

Qutermost reduction:

fst (1,lo0p) = 1 fst (1,lo0p) = 1
Theorem If expression e has a terminating reduction sequence,
then outermost reduction of e also terminates.
LIS LGS
Comparison: termination
) Why is this useful?
Definition: Y

loop = tail loop

Innermost reduction:
fst (1,loop)

fst(1,tail loop)
fst(1,tail(tail loop))

Outermost reduction:
fst (1,lo0op) = 1

Theorem If expression e has a terminating reduction sequence,
then outermost reduction of e also terminates.

Outermost reduction terminates as often as possible

C
(»
(m
(2

Why is this useful? Why is this useful?
Example Example
Can build your own control constructs: Can build your own control constructs:
switch :: Int -> a -> a -> a switch :: Int -> a -> a -> a
switch n x y
| n>0 = X
| otherwise = y
LIS LIS

Comparison: Number of steps
Why is this useful?

Example

. Innermost reduction:
Can build your own control constructs:

sq (83+4) = sq 7 = T %7 = 49
switch :: Int -> a -> a -> a
switch n x y
| n>0 = X
| otherwise = y
fac :: Int -> Int

fac n = switch n (n * fac(n-1)) 1

Comparison: Number of steps

Innermost reduction:
sq (3+4) = sq 7 = 7 7 = 49
Outermost reduction:

sq(3+4) = (3+4)*(3+4) = Tx(3+4) = 77 = 49

sq(3+4)

D O
sq(3+4) = e x e = e x e = 49 sq(3+4) = e x e = e x e = 49
o o o o
3+4 7 3+4 7
The expression 3+4 is only evaluated once! The expression 3+4 is only evaluated once!
Lazy evaluation := outermost reduction + sharing
&, S

The principles of lazy evaluation:

The principles of lazy evaluation:

e Arguments of functions are evaluated only
if needed to continue the evaluation of the function.

C
(#

The principles of lazy evaluation:

e Arguments of functions are evaluated only
if needed to continue the evaluation of the function.

e Arguments are not necessarily evaluated fully,
but only far enough to evaluate the function.
(Remember fst (1,1lo0p))

The principles of lazy evaluation:

e Arguments of functions are evaluated only
if needed to continue the evaluation of the function.

e Arguments are not necessarily evaluated fully,
but only far enough to evaluate the function.
(Remember fst (1,loop))

e Each argument is evaluated at most once (sharing!)

(=)@
Pattern matching
Example
f [Int] -> [Int] -> Int
f [] ys = 0
f (x:xs) [] = 0
f (x:xs) (y:ys) = x+y

=hEN
Pattern matching
Example
f :: [Int] -> [Int] -> Int
f [] ys = 0
f (x:xs) [] = 0
f (x:xs) (y:ys) = x+y

Lazy evaluation:
f [1..3] [7..9]

EES
Example
f [Int] -> [Int] -> Int
f [] ys = 0
f (x:xs) [] = 0
f (x:xs) (y:ys) = x+y

Lazy evaluation:
f [1..3] [7..9]

Pattern matching

—-— does f.1 match?

Example

f [Int] -> [Int] -> Int
f [] ys = 0

f (x:xs) [] = 0

f (x:xs) (y:ys) = x+y

Lazy evaluation:

£ [1..3] [7..9]
= £ 1 : [2..3]) [7..9]

Pattern matching

-- does f.1 match?

Example

f :: [Int] -> [Int] -> Int
f [] ys = 0

f (x:xs) [= 0

f (x:xs) (y:ys) = x+y

Lazy evaluation:

£ [1..3] [7..9]
= f (1 : [2..3]) [7..9]

Pattern matching

—— does f.1 match?
-— does f£.2 match?

=1EY
Example
f :: [Int] -> [Int] -> Int
f [] ys = 0
f (x:xs) [] = 0
f (x:xs) (y:ys) = x+y

Lazy evaluation:

f [1..3] [7..9]

= f (1 : [2..3]) [7..9]

f (1 : [2..3]) (7 : [8..9])

Pattern matching

—-— does f.1 match?
-- does f.2 match?

C
(»
(m
(2

Pattern matching Pattern matching
Example Example
f [Int] -> [Int] -> Int f [Int] -> [Int] -> Int
T ys = 0 f [ys = 0
f (x:xs) [] = 0 f (x:xs) [] = 0
f (x:xs) (y:ys) = x+y f (x:xs) (y:ys) = x+y
Lazy evaluation: Lazy evaluation:
f [1..3] [7..9] -- does f.1 match? f [1..3] [7..9] -- does f.1 match?
= f (1 : [2..3]) [7..9] —— does .2 match? = f (1 : [2..3]) [7..9] -- does f.2 match?
= f (1 : [2..3]) (7 : [8..9]) -- does f.3 match? = f (1 : [2..3]) (7 : [8..9]) -- does f.3 match?
= 147
= 8
LES EHES
Guards Guards
Example Example
fmnp |l m>n&&m>p = n fmnp | m>n&m>p = m
| n>mé&& n>p = n | n>m& n>p = n
| otherwise = p | otherwise = p

Lazy evaluation:
f (2+43) (4-1) (3+9)

LGS |H)& |
Guards Guards
Example Example
fmnp |l m>n&&m>p = n fmnp | m>n&m>p = m
| n > m&k n > p n | n>m& n>p = n
| otherwise = p | otherwise = p
Lazy evaluation: Lazy evaluation:
f (2+3) (4-1) (3+9) f (2+3) (4-1) (3+9)
7 2+3 >= 4-1 && 2+3 >= 349 7 2+3 >= 4-1 && 2+3 >= 349
? = b >= 3 && 5 >= 349
? = True && 5 >= 349
7?7 = b >= 349
LGS |H)& |
Guards Guards
Example Example
fmnp |l m>n&&m>p = n fmnp | m>n&m>p = m
| n > m&k n > p n | n>m& n>p = n
| otherwise = p | otherwise = p

Lazy evaluation:
f (243) (4-1) (3+9)
? 243 >= 4-1 && 2+3 >= 349
= b > 3 && 5 >= 349
= True && 5 >= 3+9
5 >= 349
5 >= 12
False

EENS TS IEEN BEEES RFEN |

Lazy evaluation:
f (2+43) (4-1) (3+9)
7 243 >= 4-1 && 2+3 >= 349

7?7 = b >= 3 && 5 >= 349
? = True && 5 >= 349
? 5 >= 349

? 5 >= 12

? = False

7?7 3 >=5 && 3 >= 12

Lazy evaluation:
f (243) (4-1) (3+9)

7 243 >= 4-1 && 2+3 >= 349

= b5 >= 3 && 5 >= 349
= True && 5 >= 349
= 5 >= 349

5 >= 12

False

w

>= 5 && 3 >= 12
False && 3 >= 12
False

otherwise = True

N)) N) N)) N
1]

CHES CIEY
Guards Guards
Example Example
fmnp |l m>n&&m>p = n fmnp | m>n&m>p = m
| n>mé&& n>p = n | n>m& n>p = n
| otherwise = p | otherwise = p
Lazy evaluation: Lazy evaluation:
£ (2+3) (4-1) (3+9) £ (2+3) (4-1) (3+9)
7 243 >= 4-1 && 2+3 >= 349 ? 2+3 >= 4-1 && 2+3 >= 3+9
7 = 5> 3 && 5 >= 349 ? = b >= 3 && 5 >= 349
? = True && 5 >= 349 ? = True && 5 >= 349
7 = b >= 349 ? = 5K >= 349
? = b >= 12 ? = 5 >= 12
? = False ? = TFalse
? 3 >=5 & 3 >= 12 ? 3> 5 && 3 >= 12
? = False && 3 >= 12 ? = False && 3 >= 12
7 = False
? otherwise = True
CHES)&
Guards where
Example
fmnp | lm>né&&mnmn>p = m
| n>m&& n>p = n
| otherwise = p

Same principle: definitions in where clauses are only evaluated
when needed and only as much as needed.

EES =1EY
Lambda Lambda
Haskell never reduces inside a lambda Haskell never reduces inside a lambda
Example: \x -> False && x cannot be reduced
EES =1EY
Lambda Lambda
Haskell never reduces inside a lambda Haskell never reduces inside a lambda
Example: \x —> False && x cannot be reduced Example: \x -> False && x cannot be reduced
Reasons: Reasons:

e Functions are black boxes

e Functions are black boxes

e All you can do with a function is apply it

Lambda

Haskell never reduces inside a lambda

Example: \x —> False && x cannot be reduced
Reasons:

e Functions are black boxes
e All you can do with a function is apply it

Example:
(\x —-> False && x) True = False && True = False

Built-in functions

Arithmetic operators and other built-in functions
evaluate their arguments first

Example

3 % 5 jis a redex

Built-in functions

Arithmetic operators and other built-in functions
evaluate their arguments first

Example

3 * 5 jis a redex
0 * head (...) isnot a redex

Predefined functions from Prelude

They behave like their Haskell definition:

(&&) :: Bool -> Bool -> Bool
True & y =y
False && y False

oo o

Slogan Slogan
Lazy evaluation evaluates an expression only when needed Lazy evaluation evaluates an expression only when needed

and only as much as needed. and only as much as needed.
("Call by need")
oo o
Minimum of a list
min = head . inSort

12.1 Applications of lazy evaluation

inSort (x:xs) =

ins :: Ord a => a -> [a] —>

ins x [J = [x]

ins x (y:ys) | x <=y =
| otherwise =

— inSort [6,1,7,5]
= ins 6 (ins 1 (ins

7

ins x (inSort xs)

[al

X:y:ys
y : ins x ys

(ins 5 [1)))

DS E &
Minimum of a list Minimum of a list
min = head . inSort min = head . inSort
inSort :: Ord a => [a] -> [a] inSort :: Ord a => [a] -> [a]
inSort [] = [] inSort [] = []
inSort (x:xs) = ins x (inSort xs) inSort (x:xs) = ins x (inSort xs)
ins :: Ord a => a -> [a] -> [a]
ins x [1 = [x]
ins x (y:ys) | x <=y = X :y :ys
| otherwise = y : ins X ys
DS E &
Minimum of a list
min [6,1,7,5] = head(inSort [6,1,7,5])
min = head . inSort
inSort :: Ord a => [a] -> [a]
inSort [] = [

min [6,1,7,5] = head(inSort [6,1,7,5])

head(ins 6 (ins 1 (ins 7 (ins 5 [1))))

min [6,1,7,5] = head(inSort [6,1,7,5])

head(ins 6 (ins 1 (ins 7 (ins 5 [1))))
head(ins 6 (ins 1 (ins 7 (5 : [1))))

min [6,1,7,5] = head(inSort [6,1,7,5])

head(ins 6 (ins 1 (ins 7 (ins 5 [1))))
head(ins 6 (ins 1 (ins 7 (56 : [1))))

min [6,1,7,5] = head(inSort [6,1,7,5])

head(ins 6 (ins 1 (ins 7 (ins 5 [1))))
head(ins 6 (ins 1 (ins 7 (5 : [1))))

head(ins 6 (ins 1 (5 : ins 7 []1)))

Minimum of a list

min [6,1,7,5] = head(inSort [6,1,7,5])
= head(ins 6 (ins 1 (ins 7 (ins 5 [1))))
= head(ins 6 (ins 1 (ins 7 (5 : [1)))) min = head . inSort
= head(ins 6 (ins 1 (5 : ins 7 [1)))
inSort :: Ord a => [a] -> [a]
inSort [] = [
inSort (x:xs) = ins x (inSort xs)
ins :: Ord a => a -> [a] -> [a]
ins x [1 = [x]
ins x (y:ys) | x <=y = X :y :ys
| otherwise = y : ins X ys

=Y &
min [6,1,7,5] = head(inSort [6,1,7,5]) min [6,1,7,5] = head(inSort [6,1,7,5])
= head(ins 6 (ins 1 (ins 7 (ins 5 [1)))) = head(ins 6 (ins 1 (ins 7 (ins 5 [1))))
= head(ins 6 (ins 1 (dns 7 (5 : [1)))) = head(ins 6 (ins 1 (dns 7 (5 : [1))))
= head(ins 6 (ins 1 (5 : ins 7 []))) = head(ins 6 (ins 1 (5 : ins 7 []1)))
= head(ins 6 (1 : 5 : ins 7 [])) = head(ins 6 (1 : 5 : ins 7 []1))

= head(1 : ins 6 (5 : ins 7 []1)))

head(ins 6 (ins 1 (ins 7 (ins 5 []1))))
head(ins 6 (ins 1 (ins 7 (5 : [1))))
head(ins 6 (ins 1 (5 : ins 7 [])))
head(ins 6 (1 : 5 : ins 7 []))

head (1 :

1

ins 6 (5 : ins 7 [1)))

Lazy evaluation needs only linear time
although inSort is quadratic

because the sorted list is never constructed completely

()& &
min [6,1,7,5] = head(inSort [6,1,7,5]) min [6,1,7,5] = head(inSort [6,1,7,5])
= head(ins 6 (ins 1 (ins 7 (ins 5 [1)))) = head(ins 6 (ins 1 (ins 7 (ins 5 [1))))
= head(ins 6 (ins 1 (ins 7 (5 : [1)))) = head(ins 6 (ins 1 (ins 7 (5 : [1))))
head(ins 6 (ins 1 (5 : ins 7 []1))) = head(ins 6 (ins 1 (5 : ins 7 []1)))
head(ins 6 (1 : 5 : ins 7 [])) head(ins 6 (1 : 5 : ins 7 []))
= head(1 : ins 6 (5 : ins 7 [1))) = head(l1 : ins 6 (5 : ins 7 [1)))
= 1 = 1
Lazy evaluation needs only linear time
()& &
min [6,1,7,5] = head(inSort [6,1,7,5]) min [6,1,7,5] = head(inSort [6,1,7,5])

= head(ins 6 (ins 1 (ins 7 (ins 5 [1))))
= head(ins 6 (ins 1 (ins 7 (5 : [1))))
= head(ins 6 (ins 1 (5 : ins 7 []1)))

= head(ins 6 (1 : 5 : ins 7 []1))

= head(1 : ins 6 (5 : ins 7 []1)))

= 1

Lazy evaluation needs only linear time
although inSort is quadratic
because the sorted list is never constructed completely

Warning: this depends on the exact algorithm and does not work
so nicely with all sorting functions!

Maximum of a list Maximum of a list

max = last . inSort max = last . inSort

Complexity?

Takeuchi Function Takeuchi Function

t :: Int -> Int -> Int -> Int t :: Int -> Int -> Int -> Int
txyzl|lx<=y =y txyz | x<=y =y
| otherwise =t (¢t (x-1) y z) | otherwise = t (t (x-1) y z)
(t (y-1) z x) (t (y-1) z x)
(t (z-1) = y) (t (z-1) x y)
In C:
int t(int x, int y, int z) {
if (x <= y)
return y;
else

return t(t(x-1, vy, z), t(y-1, z, x), t(z-1, x, y));

Terminal Shell Edit View Window Help S @D <> =4 @ Fioe3z Q = 8 Terminal Shell Edit View Window Help @D <> =4 @ Fi09:34 Q =

E Q‘ k « slides.pdf : E @3} k wl slides.pdf
—H-vlﬁjr | AR ZeE & | (2010 of 2145) B | [= Tools | Fill &Sign | Comment LSJH]‘S fl Code. bash 2 66333

il‘hﬂmwh o Form.hs SkewHeap.hs cp-V minimax.hs up
\E' (13 800 [] Code — bash — 80x24 s.hs
_ Egmmnmmume %EE%&E&;&%ﬁﬂéHxT‘ 9 _ Huffman-test.hs Tree.hs edit. lhs minimax2.hs wG
< r— FOO VL U SR grction et.hs _
Programming: pprparsers s Setbylreens | calens s ths Huffman.hs V1.hs even_odd. hs pingPong.hs
e | e S fam BN Parser.hs V2.hs ggt. hs prines. hs
P Lists poete Wl @il e Pictures.hs Va.hs hangman. hs search.hs
IF Proofs 122:Code nipkow$ t 10 10 5
[F Higher-Order 122:Code nipkows 10
Ei:::“glg;es 122:Code nipkow$ t 11 10 5
[P Algebraic a2 11
(i 1415 — bash 122:Code nipkow$ t 12 10 5
texlive/2013/texmf-dist/fonts/typel/public/amsfg 12

exlive/2013/texnf-dist/fonts/typel/public/amsfor
xlive/2813/texmf-dist/fonts/typel/public/amsfonts,
live/2013/texnf-dist/fonts/typel/public/ams fonts/cmfemss17. pfb=</usr/local/texl
ive/2013/texnf-dist/fonts/typel/public/amsfonts/cm/emssB. pfb></usr/local/texliv

e/2013/texn-dist/fonts/typel/public/ansonts/cm/cmssbx18. pibs</usr/ local/texli
ve/2013/texnt-dist/fonts/typel/public/ansfonts/cn/cnssil®. pibo</usr/local/texll |
ve/2013/texnf-dist/fonts/typel/public/ansfonts /cn/cmssil2, pibs</usr/local/texli Complexity — bash — 135x37 ¥
ve/2813/texnt-dist/fonts/typel/public/ansfonts/cn/cnssiB. pfba</usr/local/texliv £
e/2013/texn-dist/fonts/typel/public/ansonts/cm/cmsy18. pibs</us r/ local/texlive

/2013/texnt-dist/fonts/typel/public/ansfonts/cn/cnsyT . pfbe</usr/local/texlive/2

#13/texnf-dist/fonts/typel/public/amsfonts/cm/cnsyB. pfb></usr/ local/texlive/201

3/texnf-dist/fonts/typel/public/amsfonts/cm/cnsyd. pib=</usr/local/tex ive/2013/

texnf-dist/fonts/typel/public/ansfonts/cn/cmtt18. pfb></usr/ local/texlive/2813/t

exnf-dist/fonts/typel/public/amsfonts/em/cntt12. pibo</usr/local/texlive/2813/te

u122:Code nipkow$ t 13 10 5
122:Code nipkow$ t 14 10 5

#122:Code nipkow$ t 15 10 5

xmf-dist/fonts/typel/public/ansfonts/cn/cmttB. pfb></usr/ local/texlive/2013/ texn
f-dist/fonts/typel/public/ansfonts/synbols/msanld. pib=</usr/local/tex ive/2013/
texnf-dist/fonts/typel/public/ansfonts/symbols/msbull. pib>

Qutput written on slides.pd? (2145 pages, 2585724 bytes).

Transcript written on slides.log.

lapnipkowld:Slides nipkows mv slides.pdf .. ol
lapnipkowld:Slides nipkows cd .. = £
lapnipkowld: 1415 nipkows open slides.pdf

lapnipkowld: 1415 nipkows []

122:Code nipkow$ t 16 10 5

122:Code nipkow$ t 16 10 5

® Terminal Shell Edit View Window Help @ @D <> F = 4 @ Fri0935 Q = #® Adobe Reader File Edit View Window Help @M D <>y 8 T4 @ Fi09:35 Q i=

E Q‘ " | slides.pdf E @3} I || slides.pdf :
uu l emiCode = PO “%J'H_ ‘ ERENE AR) (2010 of 2145) | ‘] = Tools | Fill &Sign | Comment

122:Code nipkow$ t 11 10 5 L1 sookemaris M

11 @- ®
122:Code nipkow$ t 12 10 5 . [F organisatorische
12 & > Takeuchi Function

i)
122:Code nipkow$ t 13 10 5 brogrammin:
13 The ldea t Int -> Int -> Int -> Int

. [P Basic Haskell B - - -
122:Code nipkow$ t 14 1@ 5 P Lists txyzlx<=y =y
14 IF Proofs | otherwise =t (t (x-1) y z)
122:Code nipk0W$ t 15 10 5 [FHighe_r-Order (t (y-1) z x)
15 Functions (t (z-1) x y)

[T Type Classes

122:Code nipkow$ t 16 10 5 [P Algebraic
16 =1=data Types In C:
. : i

#122:Code nipkow$ t 100 10 5 T oretiles and int t(int x, int y, int z) {
u ~C . Abstract Data if (x <= y)

122:Code nlpkOW$ t 18 10 5 JBes return y;

18 P E:hse Study: Two else ’

. cient

%32:(:0(18 nipkow$ t 19 1@ 5 [Fﬂgmith:ns return t(t(x-1, y, z), t(y-1, z, x), t(z-1, x, y));

3 zy evaluation }

122:Code nipkow$ t 20 10 5

+

+

Terminal Shell Edit View Window Help Sl @D <> =4 @ Fioe3s Q = 8 Terminal Shell Edit View Window Help S @D <> f = 4 @ Fi09:36 Q

|H) g | = ci'éd:iﬂtdi 66x23 \H | g J o éé;‘e‘dis;;:cl 66x23
10 18
122:Code nipkow$ t 11 10 5 122:Code nipkow$ t 19 10 5
11 19
122:Code nipkow$ t 12 10 5 122:Code nipkow$ t 20 10 5
12 20
122:Code nipkow$ t 13 10 5 122:Code nipkow$ t 21 10 5
13 ~C
122:Code nipkow$ t 14 10 5 122:Code nipkow$ ghci
14 GHCi, version 7.6.3: http://www.haskell.org/ghc/ :7? for help
122:Code nipkow$ t 15 18 5 Loading package ghc-prim ... linking ... done.
15 Loading package integer-gmp ... linking ... done.
|122:Code nipkow$ t 16 1@ 5 |Loading package base ... linking ... done.
16 |Prelude> t 21 10 5
;122:C0de nipkow$ t 100 10 5 ;
E‘C E<interactive>:2:1: Not in scope: “t'
6122:Code nipkow$ t 18 1@ 5 «#Prelude> :1 t.hs
w18 % [1 of 1] Compiling Main (t.hs, interpreted)
7122:Code nipkow$ t 19 10 5 40k, modules loaded: Main.
719 #nxMain> t 21 10 5
=122:Code nipkow$ t 20 1@ 5 w2l
%20 %*Main> t 100 10 5
m122:Code nipkow$ t 21 10 5 ™ 100
q okMain>
LES LGS
Takeuchi Function
t :: Int -> Int -> Int -> Int
txyzl|lx<=y =y
| otherwise = t (t (x-1) y z)
(t (y-1) z x)
(t (z-1) x y) 12.2 Infinite lists
In C:
int t(int x, int y, int z) {
if (x <= y)
return y;
else

return t(t(x-1, y, z), t(y-1, z, x), t(z-1, %, y));
}

Try t 15 10 0 — Haskell beats C!

DS | &
Example Example
A recursive definition A recursive definition
ones :: [Int] ones :: [Int]
ones = 1 : ones ones = 1 : ones
that defines an infinite list of 1s:
ones = 1 : ones = 1 : 1 : ones =
What GHCi has to say about it:
> ones
(+,1,1,1,1,4,1,1,14,1,1,1,14,1,14,1,1,14,1,1,1,14,1,1,1,1,1,1,1
Haskell lists can be finite or infinite
DS E &
Example

A recursive definition

ones :: [Int]
ones = 1 : ones

that defines an infinite list of 1s:
ones = 1 : ones = 1 :1 : ones =
What GHCi has to say about it:

> ones
t,1,1,1,1,1,1,4,4,4,4,4,4,4,4,1,4,1,1,14,1,1,1,1,1,1,1,1,1

Haskell lists can be finite or infinite

Printing an infinite list does not terminate

But Haskell can compute with infinite lists, thanks to lazy
evaluation:

> head ones
1

Remember:

Lazy evaluation evaluates an expression only as much as needed

But Haskell can compute with infinite lists, thanks to lazy
evaluation:

> head ones
1

Remember:

Lazy evaluation evaluates an expression only as much as needed

But Haskell can compute with infinite lists, thanks to lazy
evaluation:

> head ones
1

Remember:

Lazy evaluation evaluates an expression only as much as needed

Outermost reduction: head ones = head (1 : ones) = 1 QOutermost reduction: head ones = head (1 : ones) = 1
Innermost reduction: head ones
= head (1 : ones)
= head (1 : 1 : ones)
(m)[®] (m](&]

Haskell lists are never actually infinite but only potentially infinite

Haskell lists are never actually infinite but only potentially infinite

Lazy evaluation computes as much of the infinite list as needed

This is how partially evaluated lists are represented internally:

Why (potentially) infinite lists?

Haskell lists are never actually infinite but only potentially infinite

Lazy evaluation computes as much of the infinite list as needed
e They come for free with lazy evaluation
This is how partially evaluated lists are represented internally:

1 : 2 : 3 : |code pointer to compute rest

Why (potentially) infinite lists? Example: The sieve of |Eratosthenes

e They come for free with lazy evaluation

e They increase modularity:
list producer does not need to know
how much of the list the consumer wants

Example: The sieve of

©® Create the list 2, 3, 4, ...

Eratosthenes

® Output the first value p in the list as a prime.

® Delete all multiples of p from the list

Example: The sieve of

@ Create the list 2, 3, 4, ...

® Output the first value p in the list as a
® Delete all multiples of p from the list
@ Goto step 2

Eratosthenes

prime.

Example: The sieve of

©® Create the list 2, 3, 4, ...

Eratosthenes

® Output the first value p in the list as a prime.

® Delete all multiples of p from the list
® Goto step 2

35 7 9 11
2

LS|

In Haskell:
primes :: [Int]
primes = sieve [2..]

LS|

In Haskell: In Haskell
primes :: [Int] primes :: [Int]
primes = sieve [2..] primes = sieve [2..]
sieve :: [Int] -> [Int] sieve :: [Int] -> [Int]
sieve (p:xs) = p : sieve [x | x <= xs, X ‘mod‘ p /= 0]

Lazy evaluation:

primes = sieve [2..] = sieve (2:[3..1)
1%, | =ES!
In Haskell: In Haskell
primes :: [Int] primes :: [Int]
primes = sieve [2..] primes = sieve [2..]
sieve :: [Int] -> [Int] sieve :: [Int] -> [Int]
sieve (p:xs) = p : sieve [x | x <- xs, ¥ ‘mod® p /= 0] sieve (p:xs) = p : sieve [x | x <= xs, X ‘mod‘ p /= 0]
Lazy evaluation: Lazy evaluation:
primes = sieve [2..] = sieve (2:[3..1) primes = sieve [2..] = sieve (2:[3..1)
= 2 : sieve [x | x <- [3..], X ‘mod® 2 /= 0] = 2 : sieve [x | x <- [3..], ¥ ‘mod® 2 /= 0]

= 2 : sieve [x | x <- 3:[4..], x ‘mod‘ 2 /= 0]

DS
In Haskell
primes :: [Int]
primes = sieve [2..]
sieve :: [Int] -> [Int]
sieve (p:xs) = p : sieve [x | x <- xs, ¥ ‘mod® p /= 0]

Lazy evaluation:

E

In Haskell

primes :: [Int]

primes = sieve [2..]

sieve :: [Int] -> [Int]

sieve (p:xs) = p : sieve [x | x <= xs, X ‘mod‘ p /= 0]

Lazy evaluation:

primes = sieve [2..] = sieve (2:[3..1) primes = sieve [2..] = sieve (2:[3..1)
= 2 : sieve [x | x <- [3..], X ‘mod® 2 /= 0] = 2 : sieve [x | x <- [3..], ¥ ‘mod® 2 /= 0]
= 2 : sieve [x | x <= 3:[4..], x ‘mod® 2 /= 0] = 2 : sieve [x | x <- 3:[4..], x ‘mod® 2 /= 0]
= 2 : sieve (3 : [x | x <= [4..], x ‘mod‘ 2 /= 0]) = 2 : sieve (3 : [x | x <- [4..], x ‘mod‘ 2 /= 0])
= 2 : 3 : sieve [x | x <- [xlx <- [4..], X ‘mod® 2 /= 0]
X ‘mod¢ 3 /= 0]
DS | &
In Haskell: I\/Iodularity!
primes :: [Int]
rimes = sieve [2..] . .
P The first 10 primes:
sieve :: [Int] -> [Int] > take 10 primes
sieve (p:xs) = p : sieve [x | x <- xs, ¥ ‘mod® p /= 0] [2,3,5,7,11,13,17,19,23,29]

Lazy evaluation:

primes
: sieve [x | x <= [3..], x ‘mod‘ 2 /= 0]
2 : sieve [x | x <- 3:[4..],
2

2 : 3 : sieve [x | x <= [xl|x <= [4..],

2

= sieve [2..] = sieve (2:[3..1)

x ‘mod¢ 2 /= 0]

X ‘mod‘ 2 /= 0])

X ‘mod®¢ 2 /= 0]

sieve (3 : [x | x <- [4..]1,

X ‘mod® 3 /= 0]

The primes between 100 and 150:

Modularity!

The first 10 primes:

> take 10 primes

[2,3,5,7,11,13,17,19,23,29]

The primes between 100 and 150:

> takeWhile (<150) (dropWhile (<100) primes)

Modularity!

The first 10 primes:

> take 10 primes
[2,3,5,7,11,13,17,19,23,29]
The primes between 100 and 150:

> takeWhile (<150) (dropWhile (<100) primes)
[101,103,107,109,113,127,131,137,139,149]

All twin primes:

Modularity!

The first 10 primes:

> take 10 primes
[2,3,5,7,11,13,17,19,23,29]
The primes between 100 and 150:

> takeWhile (<150) (dropWhile (<100) primes)
[101,103,107,109,113,127,131,137,139,149]

All twin primes:

> [(P,q) | (qu) <- ’ P+222q]

Modularity!

The first 10 primes:

> take 10 primes
(2,3,5,7,11,13,17,19,23,29]

The primes between 100 and 150:

> takeWhile (<150) (dropWhile (<100) primes)
[101,103,107,109,113,127,131,137,139,149]

All twin primes:

> [(p,q) | (p,q) <- zip primes (tail primes), p+2==q]

C
g

There is only one copy of primes

Sharing!

Sharing!

There is only one copy of primes

Every time part of primes needs to be evaluated

C
g

There is only one copy of primes

Every time part of primes needs to be evaluated

Example: when computing take 5 primes

Sharing!

Sharing!

There is only one copy of primes

Every time part of primes needs to be evaluated
Example: when computing take 5 primes
primes is (invisibly!) updated to remember the evaluated part

Example: primes = 2 : 3 : 5 : 7 : 11 : sieve

Sharing!

There is only one copy of primes

Every time part of primes needs to be evaluated
Example: when computing take 5 primes

primes is (invisibly!) updated to remember the evaluated part

Example: primes = 2 : 3 : 5 : 7 : 11 : sieve ...

The next uses of primes are faster:

Example: now primes !! 2 needs only 3 steps

Nothing special, just the automatic result of sharing

Idea:

The list of Fibonacci numbers

0112 ..

The list of Fibonacci numbers

|dea: 0112..
+ 011..
= 0123..

From Prelude: zipWith

Idea:
+

The list of Fibonacci numbers

0112 ..
011..
0123 ..

From Prelude: zipWith

Example:

zipWith £ [al, a2, ...] [b1, b2, ...]

The list of Fibonacci numbers

|dea: 0112..
+ 011..
= 0123 ..

From Prelude: zipWith
Example: =zipWith f [al, a2, ...] [bl, b2, ...]
= [f a1l b1, f a2 b2, ...]

fibs :: [Integer]
fibs = 0 :

The list of Fibonacci numbers

Idea: 0112 ..
+ 011 ..
= 0123 ..

From Prelude: zipWith
Example: zipWith f [al, a2, ...] [b1l, b2, ...]
= [f a1l b1, f a2 b2, ...]

fibs :: [Integer]
fibs = 0 : 1 : zipWith (+) fibs

The list of Fibonacci numbers

|dea: 0112..
+ 011..
= 0123..

From Prelude: zipWith
Example: =zipWith f [al, a2, ...] [bl, b2, ...]
= [f a1l b1, f a2 b2, ...]

fibs :: [Integer]
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

The list of Fibonacci numbers

Idea: 0112 ..
+ 011..
= 0123 ..

From Prelude: zipWith
Example: zipWith f [al, a2, ...] [b1l, b2, ...]
= [f a1l b1, f a2 b2, ...]

fibs :: [Integer]
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

How about

fibs =0 : 1 : [x+y | x <- fibs, y <- tail fibs]

