T O E o Em @ D <> ¢ + T 4 @ Tuel5:31 Tobias Nipkow Q =

_ 6.7 More library functions
Script generated by TTT

(.) :: (b->¢c) > (a->b) > (a~->c)
f.g = \x->1f (gx)

Title: Nipkow: Info2 (26.11.2013)

Date: Tue Nov 26 15:31:06 CET 2013

Duration: 88:21 min

Pages: 118

[EHES

6.8 Case study: Counting words

6.7 More library functions

() :: (b =>¢c) => (a =>Db) => (a -> ¢) Input: A string, e.g. "never say never again"

f.g = \x—>1f (gx) . . ,
Qutput: A string listing the words in alphabetical order, together

c | with their frequency,
xampie e.g. "again: 1\nnever: 2\nsay: 1i\n"

head2 = head . tail

LGS
6.8 Case study: Counting words

Input: A string, e.g. "never say never again"

Output: A string listing the words in alphabetical order, together
with their frequency,
e.g. "again: 1\nnever: 2\nsay: 1\n"

Function putStr yields

|H)& |
6.8 Case study: Counting words

Input: A string, e.g. "never say never again"

Output: A string listing the words in alphabetical order, together
with their frequency,
e.g. "again: 1\nnever: 2\nsay: 1i\n"

Function putStr yields

again: 1 again: 1
never: 2 never: 2
say: 1 say: 1
Design principle:
Solve problem in a sequence of small steps
transforming the input gradually into the output
(m)@) o

6.8 Case study: Counting words

Input: A string, e.g. "never say never again"

Qutput: A string listing the words in alphabetical order, together
with their frequency,
e.g. "again: 1\nnever: 2\nsay: 1\n"

Function putStr yields

again: 1
never: 2
say: 1

Design principle:
Solve problem in a sequence of small steps
transforming the input gradually into the output

Unix pipes!

Step 1: Break input into words

"never say never again"

|

["never", ”say“, unevern’ "again"]

LS LGS
Step 1: Break input into words Step 2: Sort words
"never say never again' ["never", "say", "never", "again"]
function l words ‘
[unevern, ”Say“, "never”, "again"] ["again", nnevern, nneveru, |lsay|r]
Predefined in Prelude
LIES EEN:

Step 3: Group equal words together

["again”, "never", "never", "say”]

|

[[”again”], [”never", "never"], [”Say"]]

Step 3: Group equal words together

[”again", "never", "never", "say"]

function ‘ group

[[”again”] s [nneveru , nnevern] s [n say“]]

Predefined in Data.List

LS LGS
Step 4: Count each group Step 4. Count each group
[[”again”] , ["never" s |rnevern] , [”S&y"]] [["again"] s [nneveru , nneveru] s [n Say“]]
l Jmap (\ws -> (head ws, length ws)
[("again", 1), ("never", 2), ("say", 1)] [("again", 1), ("never", 2), ("say", 1)]
LIES EEN:

Step 5: Format each group

[("again", 1), ("never", 2), ("say", 1)]

|

["again: 1", "never: 2", "say: 1"]

Step 5. Format each group

[("again", 1), ("never", 2), ("say", 1)]
l map (\(w,n) -> (w ++ ": " ++ show n)

["again: 1", "never: 2", "say: 1"]

Step 6: Combine the lines

["again: 1", "never: 2", "say: 1"]

|

"again: 1\nnever: 2\nsay: 1\n"

Step 6: Combine the lines

["again: 1", "never: 2", "say: 1"]
function ‘ unlines

"again: 1\nnever: 2\nsay: 1\n"

Predefined in Prelude

The solution

countWords :: String —-> String
countWords =

unlines

. map (\(w,n) -> w ++ ": " ++ show n)

. map (\ws -> (head ws, length ws))

. group

sort
. words

The solution

countWords :: String -> String
countWords =

unlines

. map (\(w,n) -> w ++ ": " ++ show n)

. map (\ws -> (head ws, length ws))

. group

. sort

. words

Merging maps

Can we merge two consecutive maps?

map f . map g =

Merging maps

Can we merge two consecutive maps?

map f . map g = map (f.g)

The optimized solution

countWords :: String -> String
countWords =

unlines
. map (\ws -> head ws ++ ":
. group
sort
. words

" ++ show(length ws))

Proving map f
First we prove (why?)

map g = map (f.g)

map f (map g xs) = map (f.g) xs

Proving map £ . map g = map (f.g)

First we prove (why?)
map f (map g xs) = map (f.g) xs

by induction on xs:
e Base case:
map f (map g [1) = []
map (f.g) [1 = []
e Induction step:
map f (map g (x:xs))

=f (g x) : map f (map g xs)

=f (g x) : map (f.g) xs -- by IH
map (f.g) (x:xs)

=f (g x) : map (f.g) xs

LS|

Proving map f . map g = map (f.g)

First we prove (why?)
map f (map g xs) = map (f.g) xs

by induction on xs:
e Base case:
map f (map g [1) = [I
map (f.g) [1 = []
¢ Induction step:
map f (map g (x:xs))

=f (g x) : map f (map g xs)
=f (g x) : map (f.g) xs -- by IH
map (f.g) (x:xs)
=f (g x) : map (f.g) xs
— (map f . map g) xs = map £ (map g xs) = map (f.g) xs

Proving map £ . map g = map (f.g)

First we prove (why?)
map f (map g xs) = map (f.g) xs

by induction on xs:
e Base case:
map f (map g [1) = []
map (f.g) [1 = []
e Induction step:
map f (map g (x:xs))

=f (g x) : map £ (map g xs)
=f (g x) : map (f.g) xs -- by IH
map (f.g) (x:xs)
=f (g x) : map (f.g) xs
—> (map f . map g) xs = map f (map g xs) = map (f.g) xs

—> (map f . map g) = map (f.g) by extensionality

7. Type Classes

Remember: type classes enable overloading

Remember: type classes enable overloading

Example

elem ::
elem x = any (== x)

Remember: type classes enable overloading

Example
elem :: a -> [a] -> Bool
elem x = any (== x)

Remember: type classes enable overloading

Example
elem :: Eq a => a -> [a] -> Bool
elem x = any (== x)

where Eq is the class of all types with ==

EN

o me
In general: In general:
Type classes are collections of types Type classes are collections of types
that implement some fixed set of functions that implement some fixed set of functions
Haskell type classes are analogous to Java interfaces:
a set of function names with their types
o me

In general:

Type classes are collections of types
that implement some fixed set of functions

Haskell type classes are analogous to Java interfaces:

a set of function names with their types

Example

class Eq a where
(==) :: a -> a -> Bool

In general:

Type classes are collections of types
that implement some fixed set of functions

Haskell type classes are analogous to Java interfaces:
a set of function names with their types

Example
class Eq a where
(==) :: a -> a -> Bool
Note: the type of (==) outside the class context is
Eq a => a -> a -> Bool

The general form of a class declaration:

class C a where
f1 :: T1

fn :: Tn

The general form of a class declaration:

class C a where
f1 :: T1

fn :: Tn

where the Ti may involve the type variable a

A type T is an instance of a class C
if T supports all the functions of C.

Instance

Instance

A type T is an instance of a class C
if T supports all the functions of C.
Then we write C T.

Example
Type Int is an instance of class Eq, i.e., Eq Int

Instance Instance
A type T is an instance of a class C A type T is an instance of a class C
if T supports all the functions of C. if T supports all the functions of C.
Then we write C T.
Example
Type Int is an instance of class Eq, i.e., Eq Int
Therefore elem :: Int -> [Int] -> Bool
LGS LGS
Instance

In general:

Type classes are collections of types
that implement some fixed set of functions

A type T is an instance of a class C
if T supports all the functions of C.
Then we write C T.

Example
Type Int is an instance of class Eq, i.e., Eq Int

Therefore elem :: Int -> [Int] -> Bool

Warning Terminology clash:
Type Ti is an instance of type T2

Instance

A type T is an instance of a class C
if T supports all the functions of C.
Then we write C T.

Example
Type Int is an instance of class Eq, i.e., Eq Int
Therefore elem :: Int -> [Int] -> Bool

Warning Terminology clash:

Type Ti is an instance of type T»

if Ty is the result of replacing type variables in Ta.
For example (Bool,Int) is an instance of (a,b).

instance

The instance statement makes a type an instance of a class.

instance

The instance statement makes a type an instance of a class.

Example

instance Eq Bool where
True == True = True
False == False = True

False

instance

The instance statement makes a type an instance of a class.

Example
instance Eq Bool where
True == True = True
False == False = True
== = False

Instances can be constrained:

Example
instance Eq a => Eq [a] where

0 == [] = True

(x:x8) == (y:ys) X ==y && Xs == ys
False

Instances can be constrained:

Example
instance Eq a => Eq [a] where

1 == [] = True

(x:x8) == (y:ys) X ==y && xs == ys
False

Possibly with multiple constraints:

Example

> Eq (a,b) where
x1 == x2 && y1 == y2

instance (Eq a, Eq b)
(x1,y1) == (x2,y2)

The general form of the instance statement:

instance (context) => C T where
definitions

Instances can be constrained:

Example
instance Eq a => Eq [a] where

] == [] = True

(x:xs) == (y:ys) X ==y && Xs == ys
False

Possibly with multiple constraints:

Example

> Eq (a,b) where
x1 == x2 && y1 == y2

instance (Eq a, Eq b)
(x1,y1) == (x2,y2)

The general form of the instance statement:

instance (context) => C T where

The general form of the instance statement:

instance (context) => C T where

definitions definitions
T is a type
context is a list of assumptions C; T;
definitions are definitions of the functions of class C
EES =1EY
Subclasses Subclasses
Example Example

class Eq a => Ord a where
(<=), (<) a -> a -> Bool

class Eq a => Ord a where
(<=), () a -> a -> Bool

Class Ord inherits all the operations of class Eq

C
»

Subclasses

Example

class Eq a => Ord a where
(<=), () :: a -> a -> Bool

Class 0rd inherits all the operations of class Eq

Because Bool is already an instance of Eq,
we can now make it an instance of Ord

Subclasses

Example

class Eq a => Ord a where
(<=), (<) :: a -> a -> Bool

Class Ord inherits all the operations of class Eq

Because Bool is already an instance of Eq,
we can now make it an instance of Ord:

instance Ord Boocl where
bl <= b2 = not bl || b2
bl < b2 = bl <= b2 && not(bl == b2)

C
»

From the Prelude: Eq, Ord, Show

class Eq a where
(==), (/=) :: a -> a -> Bool

From the Prelude: Eq, Ord, Show

class Eq a where
(==), (/=) :: a -> a -> Bool
—-— default definition:

x /=y = not(x==y)

From the Prelude: Eq, Ord, Show

class Eq a where
(==), (/=) :: a -> a —> Bool
—— default definition:
x /=y = not(x==y)

class Eq a => Ord a where
(<=), (), (>=), (») :: a -> a -> Bool

From the Prelude: Eq, Ord, Show

class Eq a where
(==), (/=) :: a -> a -> Bool
—— default definition:
x /=y = not(x==y)

class Eq a => Ord a where
(<=), (), >=), (») :: a -> a -=> Bool
-— default definitions:

X<y = x<=y&& x /=y
x>y y < x
X >=y y <= X

From the Prelude: Eq, Ord, Show

class Eq a where
(==), (/=) :: a -> a —> Bool
—— default definition:
x /=y = not(x==y)

class Eq a => Ord a where
(<=), (), (>=), () :: a -> a -> Bool
—— default definitions:

X<y = x<=y&&x /=y
x>y = y<X
X >= y = y <= X

class Show a where
show :: a -> String

8. Algebraic data Types

So far: no really new types,

So far: no really new types,
just compositions of existing types

Example: type String = [Char]

Now: data defines new types

So far: no really new types,
just compositions of existing types

Example: type String = [Char]

Now: data defines new types

Introduction by example: From enumerated types

8.1 data by example

From the Prelude:

data Bool = False | True

not :: Bool -> Bool
not False = True
not True = False

(&&) :: Bool -> Bool -> Bool
False && q = False
True && q = gq

From the Prelude:

data Bool = False | True

not :: Bool -> Bool
not False = True
not True = False

(&&) :: Bool -> Bool -> Bool
False && gq = False
True && q q

(Il) :: Bool -> Bool -> Bool
False || q =gq
True || q True

=@ o
Bool Bool
From the Prelude: From the Prelude:
data Bool = False | True data Bool = False | True
not :: Bool -> Bool
not False = True
not True = False
=@ o
Bool Bool

instance Eq Bool where

True == True = True
False == False = True
== = False

instance Show Bool where
show True = "True"
show False = '"False"

instance Eq Bool where

True == True = True
False == False = True
== = False

instance Show Bool where
show True = "True"
show False = "False"

Better: let Haskell write the code for you:

data Bool = False | True
deriving (Eq, Show)

NS LIS
deriving deriving
instance Eq Bool where
True == True = True
False == False = True
_ == _ = False
NS LIS
deriving deriving

deriving

instance Eq Bool where

True == True = True
False == False = True
== = False

instance Show Bool where
show True = "True"
show False = '"False"

Better: let Haskell write the code for you:

data Bool = False | True
deriving (Eq, Show)

deriving supports many more classes: Ord, Read, ...

Warning

Do not forget to make your data types instances of Show

(m]@)

Warning

Do not forget to make your data types instances of Show

Otherwise Haskell cannot even print values of your type

Warning

QuickCheck does not automatically work for data types

Warning

Do not forget to make your data types instances of Show

Otherwise Haskell cannot even print values of your type

Warning

QuickCheck does not automatically work for data types

You have to write your own test data generator.

C
g

Season Season
data Season = Spring | Summer | Autumn | Winter data Season = Spring | Summer | Autumn | Winter
deriving (Eq, Show) deriving (Eq, Show)
next :: Season -> Season

next Spring = Summer
next Summer = Autumn

next Autumn = Winter
next Winter = Spring
LIS LIS
Shape Shape
type Radius = Float type Radius = Float
type Width = Float type Width = Float
type Height = Float type Height = Float

data Shape = Circle Radius | Rect Width Height
deriving (Eq, Show)

C
(#

Shape
type Radius = Float
type Width = Float
type Height = Float

data Shape = Circle Radius | Rect Width Height
deriving (Eq, Show)

Some values of type Shape: Circle 1.0

type Radius = Float
type Width = Float
type Height = Float

Shape

data Shape = Circle Radius | Rect Width Height
deriving (Eq, Show)

Some values of type Shape:

Circle 1.0
Rect 0.9 1.1

()&
Shape
type Radius = Float
type Width = Float
type Height = Float

data Shape = Circle Radius | Rect Width Height
deriving (Eq, Show)

Some values of type Shape: Circle 1.0
Rect 0.9 1.1
Circle (-2.0)

type Radius = Float
type Width Float
type Height = Float

Shape

data Shape = Circle Radius | Rect Width Height
deriving (Eq, Show)

Some values of type Shape:

area :: Shape -> Float

Circle 1.0
Rect 0.9 1.1
Circle (-2.0)

NS LS|
Shape Shape
type Radius = Float type Radius = Float
type Width = Float type Width = Float
type Height = Float type Height = Float
data Shape = Circle Radius | Rect Width Height data Shape = Circle Radius | Rect Width Height
deriving (Eq, Show) deriving (Eq, Show)
Some values of type Shape: Circle 1.0 Some values of type Shape: Circle 1.0
Rect 0.9 1.1 Rect 0.9 1.1
Circle (-2.0) Circle (-2.0)
area :: Shape -> Float area :: Shape -> Float
area (Circle r) = pi * r"2 area (Circle r) pi * r°2
area (Rect wh) = w=x*xh
NS LS|

Maybe

From the Prelude:

data Maybe a = Nothing | Just a
deriving (Eq, Show)

type Radius
type Width
type Height

data Shape =

Some values of type Shape:

area ::

Shape

Float
Float
Float

Circle Radius | Rect Width Height
deriving (Eq, Show)

Circle 1.0
Rect 0.9 1.1
Circle (-2.0)

Shape -> Float
area (Circle r) =
area (Rect w h) =

pi * r°2
wo*x h

Just True ::

(=& mj&
Maybe Maybe
From the Prelude: From the Prelude:
data Maybe a = Nothing | Just a data Maybe a = Nothing | Just a
deriving (Eq, Show) deriving (Eq, Show)
Some values of type Maybe: Nothing ::
(m]@) |
Maybe Maybe
From the Prelude: From the Prelude:
data Maybe a = Nothing | Just a data Maybe a = Nothing | Just a
deriving (Eq, Show) deriving (Eq, Show)
Some values of type Maybe: Nothing :: Maybe a Some values of type Maybe: Nothing :: Maybe a

C
(#

From the Prelude:

data Maybe a =

Some values of type Maybe:

Nothing | Just a
deriving (Eq, Show)

Just True ::

Maybe

Maybe a
Maybe Bool

E

From the Prelude:

Nothing | Just a
deriving (Eq, Show)

data Maybe a

Some values of type Maybe:
Just True ::

Maybe

Maybe a
Maybe Bool
Maybe String

C
(#

From the Prelude:

data Maybe a =

Some values of type Maybe:

Nothing | Just a
deriving (Eq, Show)

Just True ::

Maybe

Maybe a
Maybe Bool
Maybe String

E

From the Prelude:

Nothing | Just a
deriving (Eq, Show)

data Maybe a

Some values of type Maybe:
Just True ::

Maybe

Maybe a
Maybe Bool
Maybe String

:: Eq a=>a -> [(a,b)] -> Maybe b

C
g

Maybe
From the Prelude:
data Maybe a = Nothing | Just a
deriving (Eq, Show)
Some values of type Maybe: Nothing :: Maybe a
Just True :: Maybe Bool
Just "7" Maybe String

lookup :: Eq a => a -> [(a,b)] -> Maybe b

lookup key []

E

Maybe
From the Prelude:
data Maybe a = Nothing | Just a
deriving (Eq, Show)
Some values of type Maybe: Nothing :: Maybe a
Just True :: Maybe Bool
Just "?" Maybe String

lookup :: Eq a => a -> [(a,b)] -> Maybe b
lookup key [= Nothing
lookup key ((x,y):xys)

C
g

Maybe
From the Prelude:
data Maybe a = Nothing | Just a
deriving (Eq, Show)
Some values of type Maybe: Nothing :: Maybe a
Just True :: Maybe Bool
Just "7" Maybe String

lookup :: Eq a => a —> [(a,b)] -> Maybe b
lookup key [1 = Nothing
lookup key ((x,y):xys)

| key == x =

E

Maybe
From the Prelude:
data Maybe a = Nothing | Just a
deriving (Eq, Show)
Some values of type Maybe: Nothing :: Maybe a
Just True :: Maybe Bool
Just "?" Maybe String

lookup :: Eq a => a -> [(a,b)] -> Maybe b
lookup key [= Nothing
lookup key ((x,y):xys)

| key == x = Just y

Natural numbers:

data Nat = Zero | Suc Nat
deriving (Eq, Show)

Some values of type Nat: Zero

Natural numbers:

data Nat = Zero | Suc Nat
deriving (Eq, Show)

Some values of type Nat: Zero
Suc Zero

Suc (Suc Zero)

(m]@) (m]«]
Maybe Nat
Natural numbers:
From the Prelude: data Nat = Zero | Suc Nat
data Maybe a = Nothing | Just a deriving (Eq, Show)
deriving (Eq, Show)
Some values of type Maybe: Nothing :: Maybe a
Just True :: Maybe Bool
Just "?" :: Maybe String
lookup :: Eq a => a -> [(a,b)] -> Maybe b
lookup key [1 = Nothing
lookup key ((x,y):xys)
| key == x = Just y
| otherwise = lookup key xys
(=& &
Nat Nat

Natural numbers:

data Nat = Zero | Suc Nat
deriving (Eq, Show)

Some values of type Nat: Zero
Suc Zero
Suc (Suc Zero)

add :: Nat -> Nat -> Nat
add Zeron = n
add (Suc m) n = Suc (add m n)

Natural numbers:

data Nat = Zero | Suc Nat
deriving (Eq, Show)

Some values of type Nat: Zero

Suc Zero
Suc (Suc Zero)

add :: Nat -> Nat -> Nat

add Zeron =
add (Suc m) n

n
= Suc (add m n)

mul :: Nat -> Nat -> Nat

mul Zeron =
mul (Suc m) n

Zero
= add n (mul m n)

LSS EEY
Nat Nat
Natural numbers: Natural numbers:
data Nat = Zero | Suc Nat data Nat = Zero | Suc Nat
deriving (Eq, Show) deriving (Eq, Show)
Some values of type Nat: Zero Some values of type Nat: Zero
Suc Zero Suc Zero
Suc (Suc Zero) Suc (Suc Zero)
add :: Nat -> Nat -> Nat add :: Nat -> Nat -> Nat
add Zeron = n
add (Suc m) n =
(m]@) (m]«]
Nat Nat

Lists Nat

From the Prelude: Natural numbers:

data [a] = [1 | () a [a] data Nat = Zer? ! Suc Nat
deriving (Eq, Show)

Some values of type Nat: Zero
Suc Zero
Suc (Suc Zero)

add :: Nat -> Nat -> Nat
add Zeron = n
add (Suc m) n = Suc (add m n)

mul :: Nat -> Nat -> Nat

mul Zero n = Zero
mul (Sucm) n = add n (mul m n)
=hEN
Lists Lists
From the Prelude: From the Prelude:
data [a] = [1 | (:) a [a] data [a] = [1 | (:) a [a]

deriving Eq
The result of deriving Eq

instance Eq a => Eq [a] where

(] == [] = True

(x:xs) (y:ys) = x ==y && xs == ys
False

From the Prelude:

data [a] = [1 | (%)
deriving
The result of deriving
instance Eq a => Eg
(] == []
(x:x8) == (y:ys)

Defined explicitly:

a [a]
Eq

Eq:

[a] where

= True

= X ==7 && Xxs == ys
False

instance Show a => Show [a] where

show xs =

"[" ++ concat cs ++ "]"
where cs = Data.

List.intersperse ", " (map show xs)

()& &
Lists Lists
From the Prelude: From the Prelude:
data [a] = [1 | (:) a [a] data [a] = [1 | (:) a [a]
deriving Eq deriving Eq
The result of deriving Eq: The result of deriving Eq:
instance Eq a => Eq [a] where instance Eq a => Eq [a] where
] == [] = True (] == [] = True
(x:x8) == (y:ys) = x ==y & Xs == ys (x:xs8) == (y:ys) = x ==y && Xs == ys
N == _ = False _ == _ = False
Defined explicitly: Defined explicitly:
instance Show a => Show [a] where instance Show a => Show [a] where
show xs = "[" ++ concat cs ++ "]" show xs = "[" ++ concat cs ++ "]"
where cs = Data.lList.intersperse ", " (map show xs)
@)=
Lists

