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Example: proof by cases Example: proof by cases
rem x [J = [] rem x [J = []
rem x (y:ys) | x== = rem X yS rem x (y:ys) | x== = rem X ysS
| otherwise = y : rem X ys | otherwise = y : rem X ys
Lemma rem z (xs ++ ys) = rem z Xs ++ rem z ys Lemma rem z (xs ++ ys) = rem z xs ++ rem z ys

Proof by structural induction on xs
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Example: proof by cases

m&lemx [ = []

rem x (y:ys) | x==y
| otherwise

rem x ys
y : rem X ys

remx [1 = [] Induction step:
rem x (y:ys) | x== = rem X ys To show: rem z ((x:xs)++ys) = rem z (x:x8) ++ rem z ys
| otherwise = y : rem X ys Proof by cases:
Case z == x:
Lemma rem z (xs ++ ys) = rem z Xs ++ rem z ys
Proof by structural induction on xs
Base case:
= &% em x [1 = [] E&]em x [1 = []

rem x (y:ys) | x==
| otherwise

rem x ys
y : rem x ys

Induction step:
To show: rem z ((x:xs)++ys) = rem z (Xx:Xs) ++ rem z ys
Proof by cases
Case z == x:
rem z ((x:xs) ++ ys)

= rem z (Xs ++ ys) -- by def of ++ and rem

rem x (y:ys) | x==
| otherwise

Induction step:
To show: rem z ((x:xs)++ys)
Proof by cases
Case z == x:
rem z ((x:xs) ++ ys)
= rem z (xs ++ ys)
rem z XS ++ rem z ys

rem x ys
y : rem X ys

= rem z (X:Xs) ++ rem z ys

-- by def of ++ and rem
-- by IH




=& tem x [1 = []

rem x (y:ys) | x==y
| otherwise

Induction step:

rem

X ys
rem X ys

a&|lem x [ = []
rem x (y:ys) | x==y
| otherwise

Induction step:

rem x ys

y : rem X ys

To show: rem z ((x:xs)++ys) = rem z (X:Xs) ++ rem z ys To show: rem z ((x:xs)++ys) = rem z (x:xs) ++ rem z ys
Proof by cases: Proof by cases
Case z == x: Case z == x:
rem z ((x:xs) ++ ys) rem z ((x:xs) ++ ys)
= rem z (Xs ++ ys) -- by def of ++ and rem = rem z (xs ++ ys) -- by def of ++ and rem
= rem z Xs ++ rem z ys -— by IH = rem Z X8 ++ rem z ys -— by IH
rem z (x:xs) ++ rem z ys rem z (X:Xs) ++ rem z ys
= rem z Xs ++ rem Z ys —— by def of rem = rem Z X8 ++ rem z ys -- by def of rem
Case z /= x:
rem z ((x:xs) ++ ys)
=x : rem z (Xs ++ ys) -- by def of ++ and rem
H& em x [1 = [] m&jen x [ = []
rem x (y:ys) | x==y = rem X yS rem x (y:ys) | x==y = rem X ysS
| otherwise = y : rem x ys | otherwise = y : rem x ys
Induction step: Induction step:
To show: rem z ((x:xs)++ys) = rem z (Xx:Xs) ++ rem z ys To show: rem z ((x:xs)++ys) = rem z (x:xXs) ++ rem z ys
Proof by cases: Proof by cases
Case z == x: Case z == x:
rem z ((x:xs) ++ ys) rem z ((x:xs) ++ ys)
= rem z (Xs ++ ys) -- by def of ++ and rem = rem z (xs ++ ys) -- by def of ++ and rem
= rem z Xs ++ rem z ys -— by IH = rem Z X8 ++ rem z ys -— by IH
rem z (x:xs) ++ rem z ys rem z (X:Xs) ++ rem z ys
= rem z Xs ++ rem z ys —— by def of rem = rem zZ Xs ++ rem z ys -— by def of rem
Casez /= x: Case z /= x:
rem z ((x:xs) ++ ys) rem z ((x:xs) ++ ys)
=x : rem z (xs ++ ys) -- by def of ++ and rem =x : rem z (xs ++ ys) -- by def of ++ and rem
=x : (rem z Xs ++ rem z ys) -- by IH =x : (rem z xs ++ rem z ys) -- by IH
rem z (x:xs) ++ rem z ys
=x : (rem z xs ++ rem z ys) —— by def of rem and ++




Proof by cases

Works just as well for if-then-else, for example

rem x [1 = []
rem x (y:ys) = 1if x == y then rem x ys
else y : rem x ys

Inefficiency of reverse

reverse [1,2,3]

Inefficiency of reverse

reverse [1,2,3]

= reverse [2,3] ++ [1]

(reverse [3] ++ [2]) ++ [1]
((reverse [] ++ [3]) ++ [2]) ++ [1]

Inefficiency of reverse

reverse [1,2,3]

= reverse [2,3] ++ [1]

(reverse [3] ++ [2]) ++ [1]
((reverse [] ++ [3]) ++ [2]) ++ [1]
(C0O ++ [31) ++ [2]) ++ [1]




reverse [1,2,3]

Inefficiency of reverse

= reverse [2,3] ++ [1]

= (reverse [3]
((reverse []
(01 ++ [3D)
([31 ++ [21)

[2]) ++ [1]

[31) ++ [2]) ++ [1]
[2]) ++ [1]

[1]

reverse [1,2,3]

= reverse [2,3] ++ [1]
= (reverse [3] ++ [2])
= ((reverse [] ++ [3])
= (00 ++ [3]) ++ [2])
= ([3] ++ [2]) ++ [1]
= (3 : ([1 ++ [2])) ++
= [3,2] ++ [1]

Inefficiency of reverse

++ [1]
++ [2]) ++ [1]
++ [1]

[1]

reverse [1,2,3]

= reverse [2,3] ++ [1]
= (reverse [3] ++ [2])
= ((reverse [] ++ [3])
= (([0 ++ [3]) ++ [2])
= ([3] ++ [2]) ++ [1]
= (3 : (01 ++ [2])) ++
= [3,2] ++ [1]

=3 : ([2] ++ [1])

=3 : (2:
= [3,2,1]

(01 ++ [11))

Inefficiency of reverse

++ [1]
++ [2]) ++ [1]
++ [1]

[1]

itrev :: [a] -> [a] ->

An improvement: itrev

[a]
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An improvement: itrev An improvement: itrev
itrev :: [a] -> [a] -> [a] itrev :: [a] -> [a] -> [a]
itrev [] xs = X8 itrev [] xs = Xs
itrev (x:xs) ys = itrev xs (x:ys)
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An improvement: itrev An improvement: itrev
itrev :: [a] -> [a] -> [a] itrev :: [a] -> [a] -> [a]
itrev [] xs = X8 itrev [] xs = Xs
itrev (x:xs) ys = itrev xs (x:ys) itrev (x:xs) ys = itrev xs (x:ys)
itrev [1,2,3] [] itrev [1,2,3] []

itrev [2,3] [1]
itrev [3] [2,1]
itrev [] [3,2,1]

itrev [2,3] [1]
itrev [3] [2,1]
itrev [] [3,2,1]
[3,2,1]
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Induction step fails:
To show: itrev (x:xs) [] = reverse xs
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Proof by structural induction on xs

Induction step fails:

Proof attempt

To show: itrev (x:xs) [] = reverse xs

itrev (x:xs) []
= itrev xs [x]

—— by def of itrev

Proof attempt

Lemma itrev xs [] = reverse xs
Proof by structural induction on xs

Induction step fails:

To show: itrev (x:xs) [] = reverse xs
itrev (x:xs) []

= itrev xs [x]
reverse (x:xs)
= reverse xs ++ [x] -- by def of reverse

-— by def of itrev




Proof attempt

Lemma itrev xs [] = reverse xs
Proof by structural induction on xs

Induction step fails:

To show: itrev (x:xs) [] = reverse xs
itrev (x:xs) []
= itrev xs [x]
reverse (x:xs)
= reverse xs ++ [x] -- by def of reverse

—— by def of itrev

Problem: IH not applicable because too specialized: []

Generalization

Lemma itrev xs ys =

Generalization
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Generalization

Lemma itrev xs ys = reverse xs ++ ys
Proof by structural induction on xs

Induction step:
To show: itrev (x:xs) ys = reverse (X:Xs) ++ ys
itrev (x:xs) ys

= itrev xs (x:ys) -— by def of itrev




Generalization

Lemma itrev xs ys = reverse Xs ++ ys
Proof by structural induction on xs

Induction step:

To show: itrev (x:xs) ys = reverse (x:xs) ++ ys
itrev (x:xs) ys

itrev xs (x:ys)

reverse xs ++ (x:ys)

-— by def of itrev
-- by IH

Generalization

Lemma itrev xs ys = reverse xs ++ ys
Proof by structural induction on xs

Induction step:

To show: itrev (x:xs) ys = reverse (X:Xs) ++ ys
itrev (x:xs) ys

itrev xs (x:ys)

reverse xs ++ (x:ys)

reverse (x:Xs) ++ ys

-— by def of itrev
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Generalization

Lemma itrev xs ys = reverse Xs ++ ys
Proof by structural induction on xs

Induction step:
To show: itrev (x:xs) ys = reverse (x:xs) ++ ys
itrev (x:xs) ys
= itrev xs (x:ys)
reverse xs ++ (x:ys)
reverse (x:xs) ++ ys
= (reverse xs ++ [x]) ++ ys

-— by def of itrev
-- by IH

-- by def of reverse

Generalization

Lemma itrev xs ys = reverse xs ++ ys
Proof by structural induction on xs

Induction step:
To show: itrev (x:xs) ys = reverse (X:Xs) ++ ys
itrev (x:xs) ys
= itrev xs (x:ys)
reverse xs ++ (x:ys)
reverse (x:Xs) ++ ys
= (reverse xs ++ [x]) ++ ys
= reverse xs ++ ([x] ++ ys)
reverse xs ++ (x:ys)

-— by def of itrev
-- by IH

-— by def of reverse
-— by Lemma app-assoc
-— by def of ++




Generalization

Lemma itrev xs ys = reverse Xs ++ ys

Proof by structural induction on xs

Induction step:

To show: itrev (x:xs) ys = reverse (x:xs) ++ ys
itrev (x:xs) ys

itrev xs (x:ys)

-— by def of itrev

= reverse xs ++ (x:ys) -- by IH

reverse (x:xs) ++ ys

= (reverse xs ++ [x]) ++ ys -- by def of reverse
= reverse xs ++ ([x] ++ ys) -- by Lemma app_assoc
= reverse xs ++ (x:ys) -- by def of ++

Note: IH is used with x:ys instead of ys

When using the IH, variables may be replaced by arbitrary
expressions, only the induction variable must stay fixed.

When using the IH, variables may be replaced by arbitrary
expressions, only the induction variable must stay fixed.

Justification: all variables are implicitly V-quantified,
except for the induction variable.

Generalization

Lemma itrev xs ys = reverse xs ++ ys
Proof by structural induction on xs

Induction step:
To show: itrev (x:xs) ys = reverse (X:Xs) ++ ys
itrev (x:xs) ys

= itrev xs (x:ys) -— by def of itrev

= reverse xs ++ (x:ys) -- by IH

reverse (x:Xs) ++ ys

= (reverse xs ++ [x]) ++ ys -- by def of reverse
= reverse xs ++ ([x] ++ ys) -- by Lemma app_assoc
= reverse xs ++ (x:ys) -— by def of ++

Note: IH is used with x:ys instead of ys




When using the IH, variables may be replaced by arbitrary
expressions, only the induction variable must stay fixed.

Induction on the length of a list

gsort :: Ord a => [a] -> [a]

Induction on the length of a list

gsort :: Ord a => [a] -> [a]
gsort [] = [
gsort (x:xs) = gsort below ++ [x] ++ gsort above
where below = [y | y <= xs8, y <= x]
above [z | y<-xs, x < Z]

Induction on the length of a list

gsort :: Ord a => [a] -> [a]
gsort [] = []
gsort (x:xs) gsort below ++ [x] ++ gsort above
where below = [y | y <= xs, y <= x]
above = [z | y <- xs, x < Z]

Lemma gsort xs is sorted




Induction on the length of a list

gsort :: Ord a => [a] -> [a]
gsort [] = [
gsort (x:xs) = gsort below ++ [x] ++ gsort above
where below = [y | y <= xs8, y <= x]
above = [z | y <= xs, x < Z]

Lemma gsort xs is sorted

Proof by induction on the length of the argument of gsort.

Induction on the length of a list

gsort :: Ord a => [a] -> [a]
gsort [] = []
gsort (x:xs) gsort below ++ [x] ++ gsort above
where below = [y | y <= xs, y <= x]
above = [z | y <- xs, x < Z]

Lemma gsort xs is sorted
Proof by induction on the length of the argument of gsort.

Induction step: In the call gsort (x:xs) we have length below
<= length xs < length(x:xs)

Induction on the length of a list

gsort :: Ord a => [a] -> [a]
gsort [] = [
gsort (x:xs) = gsort below ++ [x] ++ gsort above
where below = [y | y <= xs8, y <= x]
above = [z | y <= xs, x < Z]

Lemma gsort xs is sorted
Proof by induction on the length of the argument of gsort.

Induction step: In the call gsort (x:xs) we have length below
<= length xs < length(x:xs) (also for above).

Induction on the length of a list

gsort :: Ord a => [a] -> [a]
gsort [] = []
gsort (x:xs) = gsort below ++ [x] ++ gsort above
where below = [y | y <= xs, y <= x]
above = [z | y <- xs, x < Z]

Lemma gsort xs is sorted
Proof by induction on the length of the argument of gsort.

Induction step: In the call gsort (x:xs) we have length below
<= length xs < length(x:xs) (also for above).
Therefore gsort below and gsort above are sorted by IH.




Induction on the length of a list

gsort :: Ord a => [a] -> [a]
gsort [] = [
gsort (x:xs) = gsort below ++ [x] ++ gsort above
where below = [y | y <= xs8, y <= x]
above [z | y<-xs, x < Z]

Lemma gsort xs is sorted
Proof by induction on the length of the argument of gsort.

Induction step: In the call gsort (x:xs) we have length below
<= length xs < length(x:xs) (also for above).

Therefore gsort below and gsort above are sorted by IH.
By construction below contains only elements (<=x).

Induction on the length of a list

gsort :: Ord a => [a] -> [a]
gsort [] = []
gsort (x:xs) gsort below ++ [x] ++ gsort above
where below = [y | y <= xs, y <= x]
above = [z | y <- xs, x < Z]

Lemma gsort xs is sorted
Proof by induction on the length of the argument of gsort.

Induction step: In the call gsort (x:xs) we have length below
<= length xs < length(x:xs) (also for above).

Therefore gsort below and gsort above are sorted by IH.
By construction below contains only elements (<=x).

Therefore gsort below contains only elements (<=x)

Induction on the length of a list

gsort :: Ord a => [a] -> [a]
gsort [] = [
gsort (x:xs) = gsort below ++ [x] ++ gsort above
where below = [y | y <= xs8, y <= x]
above = [z | y <= xs, x < Z]

Lemma gsort xs is sorted
Proof by induction on the length of the argument of gsort.

Induction step: In the call gsort (x:xs) we have length below
<= length xs < length(x:xs) (also for above).

Therefore gsort below and gsort above are sorted by IH.
By construction below contains only elements (<=x).

Therefore gsort below contains only elements (<=x) (proof!).

Induction on the length of a list

gsort :: Ord a => [a] -> [a]
gsort [] = []
gsort (x:xs) = gsort below ++ [x] ++ gsort above
where below = [y | y <= xs, y <= x]
above = [z | y <- xs, x < Z]

Lemma gsort xs is sorted
Proof by induction on the length of the argument of gsort.

Induction step: In the call gsort (x:xs) we have length below
<= length xs < length(x:xs) (also for above).

Therefore gsort below and gsort above are sorted by IH.
By construction below contains only elements (<=x).

Therefore gsort below contains only elements (<=x) (proof!).
Analogously for above and (x<).




Induction on the length of a list

gsort :: Ord a => [a] -> [a]
gsort [] = [
gsort (x:xs) = gsort below ++ [x] ++ gsort above

where below = [y | y <= xs8, y <= x]
above [z | y<-xs, x < Z]

Lemma gsort xs is sorted
Proof by induction on the length of the argument of gsort.

Induction step: In the call gsort (x:xs) we have length below
<= length xs < length(x:xs) (also for above).

Therefore gsort below and gsort above are sorted by IH.
By construction below contains only elements (<=x).

Therefore gsort below contains only elements (<=x) (proof!).
Analogously for above and (x<).

Therefore gsort (x:xs) is sorted.

Is that all?

Is that all? Or should we prove something else about sorting?

How about this sorting function?

(]

superquicksort _

Is that all? Or should we prove something else about sorting?

How about this sorting function?

superquicksort _ = []

Every element should occur as often in the output as in the input!
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Simplifying assumption, implicit so far:

No undefined values
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5.2 Definedness
Simplifying assumption, implicit so far:

No undefined values

Two kinds of undefinedness:
head [] raises exception

f x=f x+ 1 doesnotterminate

Undefinedness can be handled, too.
But it complicates life

IS
What is the problem?

Many familiar laws no longer hold unconditionally:

X-x=0

(=)@
What is the problem?

Many familiar laws no longer hold unconditionally:
x-x=0
is true only if x is a defined value.

Two examples:
e Not true: head [] - head [] = 0

IS
What is the problem?

Many familiar laws no longer hold unconditionally:

x-x=0
is true only if x is a defined value.

Two examples:
e Not true: head [] - head []1 = 0
e From the nonterminating definition

fx=fx+1
we could conclude that 0 = 1.
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Termination Termination
Termination of a function means termination for all inputs. Termination of a function means termination for all inputs.
Restriction:
The proof methods in this chapter assume that all recursive
definitions under consideration terminate.
LGS LGS
Termination How to prove termination
Example
reverse [] = []
reverse (x:xs) = reverse xs ++ [x]
Termination of a function means termination for all inputs.
Restriction:

The proof methods in this chapter assume that all recursive
definitions under consideration terminate.

Most Haskell functions we have seen so far terminate.




How to prove termination

Example

reverse []1 = []

reverse (x:xs) = reverse xs ++ [x]

terminates because ++ terminates and with each recursive call of
reverse, the length of the argument becomes smaller.
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reverse, the length of the argument becomes smaller.
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e and for every recursivecall £ r int: mp > m r.
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Example
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reverse (x:xs) = reverse xs ++ [x]

terminates because ++ terminates and with each recursive call of
reverse, the length of the argument becomes smaller.

A function f :: T1 -> T terminates
if there is a measure function m :: T1 —> N such that

o for every defining equation f p = t
e and for every recursivecall £ r int: mp > m r.

Note:
o All primitive recursive functions terminate.
e m can be defined in Haskell or mathematics.

How to prove termination

Example

reverse [] = []
reverse (x:xs) = reverse xs ++ [x]

terminates because ++ terminates and with each recursive call of
reverse, the length of the argument becomes smaller.

A function £ :: T1 -> T terminates
if there is a measure function m :: T1 -> N such that

e for every defining equation £ p = t
e and for every recursivecall f r int: mp > m r.

Note:
e All primitive recursive functions terminate.
e m can be defined in Haskell or mathematics.

e The conditions above can be refined to take special Haskell
features into account, eg sequential pattern matching.

More generally: £ :: T1 —> -> Tn -> T terminates

if there is a measure function m :: T1 —> -> Tn -> N
such that
o for every defining equation £ p1 ... pn =t

More generally: £ :: T1 —> -> Tn —> T terminates

if there is a measure function m :: T1 -> -> Tn > N
such that

o for every defining equation £ p1 ... pn =t

e and for every recursive call £ r1 ... rn int:

mpl ... pn>mrzrl ... rno.




More generally: £ :: T1 —> -> Tn -> T terminates

if there is a measure function m :: T1 -> > Tn > N
such that

o for every defining equation f pi pn = t

e and for every recursive call £ ri1 ron in t:

mpl ... pn>mrl ... rn

Of course, all other functions that are called by £ must also
terminate.

Infinite values
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Haskell allows infinite values, in particular infinite lists.
Example: [1, 1, 1, ...]

Infinite objects must be constructed by recursion:

ones = 1 : ones
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Because we restrict to terminating definitions in this chapter,
infinite values cannot arise.
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Haskell allows infinite values, in particular infinite lists.
Example: [1, 1, 1, ...]

Infinite objects must be constructed by recursion:
ones = 1 : ones

Because we restrict to terminating definitions in this chapter,
infinite values cannot arise.

Note:

e By termination of functions we really mean termination on
finite values.

e For example reverse terminates only on finite lists.

Infinite values

Haskell allows infinite values, in particular infinite lists.
Example: [1, 1, 1, ...]

Infinite objects must be constructed by recursion:
ones = 1 : ones

Because we restrict to terminating definitions in this chapter,
infinite values cannot arise.

Note:

e By termination of functions we really mean termination on
finite values.

e For example reverse terminates only on finite lists.

This is fine because we can only construct finite values anyway.

How can infinite values be useful?
Because of “lazy evaluation”.

Exceptions

If we use arithmetic equations like x — x = 0 unconditionally,
we can “lose” exceptions:

head xs - head xs = 0
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If we use arithmetic equations like x - x = 0 unconditionally,
we can “lose” exceptions:

head xs - head xs = 0
is only true if xs /= []

In such cases, we can prove equations el = e2 that are only
partially correct:

Exceptions

If we use arithmetic equations like x - x = 0 unconditionally,
we can “lose” exceptions:

head xs - head xs = 0
is only true if xs /= []

In such cases, we can prove equations el = e2 that are only
partially correct:

If e1 and e2 do not produce a runtime exception
then they evaluate to the same value.

Summary

e In this chapter everything must terminate

Summary

e In this chapter everything must terminate

e This avoids undefined and infinite values




Summary

e In this chapter everything must terminate
e This avoids undefined and infinite values

e This simplifies proofs

6. Higher-Order Functions

1% Recall [Pic is short for Picture]

alterH :: Pic -> Pic -> Int -> Pic
alterH picl pic2 1 = picil
alterH picl pic2 n = beside picl (alterH pic2 picl (n-1))

alterV :: Pic -> Pic -> Int -> Pic
alterV picl pic2 1 = picil
alterV picl pic2 n = above picl (alterV pic2 picl (n-1))

E] % Recall [Pic is short for Picture]

alterH :: Pic -> Pic -> Int -> Pic
alterH picl pic2 1 = picl
alterH picl pic2 n = beside picl (alterH pic2 picl (n-1))

alterV :: Pic -> Pic -> Int -> Pic
alterV picl pic2 1 = picl
alterV picl pic2 n = above picl (alterV pic2 picil (n-1))

Very similar.
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alterH :: Pic ->
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n
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1 =
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Pic
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picil
beside picl (alterH pic2 picl (n-1))

-> Int -> Pic
picil
above picl (alterV pic2 picl (n-1))

Very similar. Can we avoid duplication?

H/ % Recall [Pic is short for Picture]

alterH :: Pic >
alterH picl pic2
alterH picl pic2

alterV :: Pic —>
alterV picl pic2 1
alterV picl pic2

=]

Pic
1 =
n:

Pic

-> Int -> Pic

pic1l

beside picl (alterH pic2 picl (n-1))
-> Int -> Pic

pic1l

above picl (alterV pic2 picl (n-1))

Very similar. Can we avoid duplication?

alt f picl pic2 1
alt f picl pic2 n

picil
f picl (alt f pic2 picl (n-1))

E% Recall [Pic is short for Picture]

alterH :: Pic ->
alterH picl pic2
alterH picl pic2

H ~

alterV :: Pic —>
alterV picl pic2 1
alterV picl pic2 n

Pic

-> Int -> Pic
picil
beside picl (alterH pic2 picl (n-1))

-> Int -> Pic
picil
above picl (alterV pic2 picl (n-1))

Very similar. Can we avoid duplication?

alt £ picl pic2 1
alt f picl pic2 n

alterH picl pic2 n

alterV picl pic2 n

picil
f picl (alt f pic2 picl (n-1))

alt beside picl pic2 n

alt above picl pic2 n

Higher-order functions
Functions that take functions as arguments




Higher-order functions:
Functions that take functions as arguments

o> (Lol > L) > L.

H/ % Recall [Pic is short for Picture]

alterH :: Pic -> Pic -> Int -> Pic
alterH picl pic2 1 = picl
alterH picl pic2 n = beside picl (alterH pic2 picl (n-1))

alterV :: Pic -> Pic -> Int -> Pic
alterV picl pic2 1 = picl
alterV picl pic2 n = above picl (alterV pic2 picil (n-1))

Very similar. Can we avoid duplication?

alt :: (Pic -> Pic -> Pic) -> Pic -> Pic -> Int -> Pic
alt f picl pic2 1 = picl
alt f picl pic2 n = f picl (alt f pic2 picl (n-1))

alterH picl pic2 n = alt beside picl pic2 n

alterV picl pic2 n = alt above picl pic2Z n

Higher-order functions:
Functions that take functions as arguments

o> (Lol > L) > L.

Higher-order functions:
Functions that take functions as arguments

> (Lo > L)) > L

Higher-order functions capture patterns of computation




1% Recall [Pic is short for Picture]

alterH :: Pic -> Pic -> Int -> Pic
alterH picl pic2 1 = picil
alterH picl pic2 n = beside picl (alterH pic2 picl (n-1))

alterV :: Pic -> Pic -> Int -> Pic
alterV picl pic2 1 = picil
alterV picl pic2 n = above picl (alterV pic2 picl (n-1))

Very similar. Can we avoid duplication?

alt :: (Pic -> Pic -> Pic) -> Pic -> Pic -> Int -> Pic
alt f picl pic2 1 = picl
alt f picl pic2 n = f picl (alt f pic2 picl (n-1))

alterH picl pic2 n = alt beside picl pic2 n

alterV picl pic2 n = alt above picl pic2 n

(S

6.1 Applying functions to all elements of a list: map
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6.1 Applying functions to all elements of a list: map

Example

map even [1, 2, 3]
= [False, True, False]

6.1 Applying functions to all elements of a list: map

Example

map even [1, 2, 3]
= [False, True, False]

map toLower "R2-D2"
= "r2-42"
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6.1 Applying functions to all elements of a list: map 6.1 Applying functions to all elements of a list: map
Example Example

map even [1, 2, 3] map even [1, 2, 3]

= [False, True, False] = [False, True, Falsel

map toLower "R2-D2" map toLower "R2-D2"

= "yo—_42" = "r2-42"

map reverse ["abc", "123"] map reverse ["abc", "123"]

- ["cba”, ||321n] = ["cba”, ||321|r:|

What is the type of map?

map ::

6.1 Applying functions to all elements of a list: map - map: The mother of all higher—order functions

Example

map even [1, 2, 3]

= [False, True, False] Predefined in Prelude.

map toLower "R2-D2"
= "r2-d2"

map reverse ["abc", "123"]

= l:"cball, Il321||:|

What is the type of map?

map :: (a -> b) -> [a] -> [b]




map: |he mother of all higher-order functions map: | he mother of all higher-order functions
Predefined in Prelude. Predefined in Prelude.
Two possible definitions: Two possible definitions:
map f xs = [f x| x <- xs] map f xs = [f x| x <= xs ]
map £ [] = []

map f (x:xs) fx : map f xs

Evaluating map | Evaluating map

map £ [] = [] map f [] = [l
map f (x:xs) x : map f xs map f (x:xs) = f x : map f xs

]
'—h

map sqr [1, -2]




Evaluating map

Il
M
L

map £ []
map f (x:xs)

1]
h

X : map f xs

map sqr [1, -2]
=map sqr (1 : -2 : [1)

Evaluating map

|
M
—

map f []
map f (x:xs)

1l
Hh

x : map f xs

map sqr [1, -2]
=map sqr (1 : -2 : [1)
=sqr 1 : map sqr (-2 : [1)

Evaluating map

Il
M
L

map £ []
map f (x:xs)

]
'—h

X : map f xs

map sqr [1, -2]

map sqr (1 : -2 : [1)

sqr 1 : map sqr (-2 : [1)

Some properties of map

length (map f xs) =




Some properties of map

length (map f xs) = length xs

length (map f xs) =

map f (xs ++ ys) =

Some properties of map

length xs

Some properties of map

length (map f xs) = length xs

map f (xs ++ ys) = map f xs ++ map f ys

length (map f xs) =

Some properties of map

length xs




=

[
!

Some properties of map

length (map f xs) = length xs

map f (xs ++ ys) = map f xs ++ map f ys

Some properties of map

length (map f xs) = length xs
map f (xs ++ ys) = map f xs ++ map f ys

map f (reverse xs) =

=

[
!

Some properties of map

length (map f xs) = length xs
map f (xs ++ ys) = map f xs ++ map f ys
map f (reverse xs) = reverse (map f xs)

Proofs by induction

QuickCheck and function variables

QuickCheck does not work automatically
for properties of function variables




m]) =[]
QuickCheck and function variables QuickCheck and function variables
QuickCheck does not work automatically QuickCheck does not work automatically
for properties of function variables for properties of function variables
It needs to know how to generate and print functions. It needs to know how to generate and print functions.
Cheap alternative: replace function variable by specific function(s)
m]) =[]

Some properties of map

length (map f xs) = length xs
map f (xs ++ ys) = map f xs ++ map f ys
map f (reverse xs) = reverse (map f xs)

Proofs by induction

QuickCheck and function variables

QuickCheck does not work automatically
for properties of function variables

It needs to know how to generate and print functions.

Cheap alternative: replace function variable by specific function(s)

Example
prop_map_even :: [Int] -> [Int] -> Bool

prop_map_even xs ys =
map even (xs ++ ys) = map even Xs ++ map even ys
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6.2 Filtering a list: filter

Example

filter even [1, 2, 3]
= [2]

6.2 Filtering a list: filter

Example

filter even [1, 2, 3]
= [2]

filter isAlpha "R2-D2"
= "RD"
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6.2 Filtering a list: filter

Example

filter even [1, 2, 3]
= [2]

filter isAlpha "R2-D2"
= "RD"

filter null [[], [1,2],
= [0, 01

(1]




6.2 Filtering a list: filter

Example

filter even [1, 2, 3]
= [2]

filter isAlpha "R2-D2"
= "RD"

filter null [[J, [1,2], [1]
= [[1, 111

What is the type of filter?

filter :: (a -> Bool) -> ->

6.2 Filtering a list: filter

Example

filter even [1, 2, 3]
= [2]

filter isAlpha "R2-D2"
= "RD"

filter null [[], [1,2], [11]
= [[1, [1]

What is the type of filter?

filter ::

(a -> Bool) -> [a] -> [a]

filter

Predefined in Prelude.
Two possible definitions:

filter pxs = [x | x <= xs, p x ]

Predefined in Prelude.
Two possible definitions:

filter

filter pxs = [x | x <= xs, p x]
filter p [] = [
filter p (x:xs) | p x = x : filter p xs

| otherwise

filter p xs




Some properties of filter

filter p (xs ++ ys) = filter p xs ++ filter p ys

filter p (reverse xs) = reverse (filter p xs)

Proofs by induction




