Script generated by TTT

Title: Seidl: Functional Programming and
Verification (18.01.2019)

Date: Fri Jan 18 08:29:47 CET 2019
Duration: 90:37 min

Pages: 7

Discussion

e The lemma tells us that in every context, all occurrences of the
expression e1 can be replaced by the expression ¢; — whenever e,
and e, represent the same values.

e The lemma can be proven by induction on the depth of the
required derivations (which we omit).

e The exchange of expressions proven equal, allows us to design a

or proving the equivalence of expressions ...

339

Rule for pattern matching

eo =[]
matchegwith [|->e1 | ... | pu->en
€[) terminates ey = el
match egwit < e 1/x ey /x|

345

Structured values

(e1,...,ex) = (e}, ..., €)

Functions

e1[v/x1] = e2[v/x5] forall o

fun x1 -> e1 = fun xo -> e

— extensional equality

336

Analogously we proceed for assertion (2) ...

n=20 Then:

We deduce:

app x (app y 2)

x =[]

= app [] |Eapp y 2)

= match [] withq [] -

= |aPP Yy =z
= app |(match L] with L] >y | ...} z

= app (app x y) z

350

app v z || h::t -> ...

Then| x = h::t | where t

We deduce:

app x (app y z) = app (h::t) (app y 2)

has length n — 1.

= match h::t with [] ->

| h::t —>|h s

app t (app y z) |

. (app y 2)

(ak? T AR e

(&\‘Q\W = app (l‘@app ty)z

= :: app (app t y) z by induction hypothesis

WS L] St

app [(match h::t with [] -> []

]&,.‘ |h::t—>|h::appty'z
3

= app (app (h::t) y) z

:c%p{(%

app (app x y) z

(}\ 351

Then

We deduce:

app x (app y 2)

= h::t where t haslength n — 1.

app (h::t) (app y 2)

match h::t with [] -> app y =z
| h::t -> h :: app t (app y z)

h :: app t (app y 2)

h :: app (app t y) z by induction hypothesis

app t y) =z

app (match h::t with [1 -> []

app (h ::
| h::t ->h :: app t y) z

app (app (h::t) y) z

app (app x y) z

351

Discussion

e For the correctness of our induction proofs, we require that all

occurring function calls terminate.

e In the example, it suffices to prove that for all

some v such that:

352

X, V, there exists

aphry = o |
idh we have already~preyen, as usual, by induction.
Py

