Script generated by TTT

- Title: Seidl: Functional Programming and Verification (07.12.2018)
- Fri Dec 07 08:44:42 CET 2018 Date:
- Duration: 76:45 min

Pages: 17

Some of the Simplest Polymorphic Functions

```
let compose f g x = f (g x)let twice f x = f (f x)let iter f g x = if g x then x else iter f g (f x);
```

```
val compose : (\lambda a \rightarrow \lambda b) -> (\lambda c \rightarrow \lambda a) -> (\lambda c \rightarrow \lambda b) = \langle fun \rangleval twice : ('a \rightarrow 'a) \rightarrow 'a \rightarrow 'a = \frac{\text{fun}}{\text{tan}}val iter : (2a -2b) -> (2a -2b) -> 2a -2b -> 2a -2b
```
compose neg neg;; $-$: bool $-$ > bool = \tan # compose neg neg true;; $-$: bool = true;; # compose Char.chr plus2 65;; - : char = $^{\prime}$ C'

203

 \rightarrow If a functional is applied to a function that is itself polymorphic. the result may again be polymorphic:

```
# let cons_r xs x = x::xs;;
val cons r : 'a list \rightarrow 'a \rightarrow 'a list = \langle fun \rangle# let rev l = fold\_left cons_r [] 1;;
val rev : 'a list -> 'a list = \times fun>
# rev [1;2;3];;
- : int list = [3; 2; 1]# rev [true;false;false];;
- : bool list = [false; false; true]
```
let compose f $g x = f (g x)$ let twice f $x = f(f \times V)$

Some of the Simplest Polymorphic Functions

let iter f g x = if g f then x else iter fg (f x) \sim val compose : (\overrightarrow{a}) -> 'b) -> ('c -> 'a) -> (\overrightarrow{c}) -> 'b = <fun> val twice : $(\overline{a} \rightarrow a) \rightarrow a \rightarrow a \rightarrow a = \text{fun}$ val iter : $(2a -2b)$ -> $(2a -2b)$ -> $2a -2b$ -> $2a -2b$

compose neg neg;;

- : bool -> bool = \tan
- # compose neg neg true;;
- $-$: bool = true;;
- # compose Char.chr plus2 65;;

```
- : char = 'C'
```
 $(19, 5)$ fre = 0.000

Polymorphic Datatypes 3.5

User-defined datatypes may be polymorphic as well:

$$
\text{type}(\text{a}) \text{tree} = \text{Leaf}(\text{of}) \text{ a}
$$
\n
$$
\text{Mode}(\text{of}) (\text{a}) \text{tree} \cdot \text{a} \text{tree})
$$

- \rightarrow tree is called type constructor, because it allows to create a new type from another type, namely its parameter 'a.
- In the right-hand side, only those type variables mya occur, which \rightarrow have been listed on the left.
- The application of constructors to data may instantiate type \rightarrow variables:

204

Discussion

- The operator \circ concatenates two lists. \bullet
- The implementation is very simple. X
- Extraction is cheap. \bullet
- Insertion, however, requires as many calls of θ as the queue has \bullet elements.
- Can that be improved upon ?? \bullet

```
let rec size = functionLeaf
                   \Rightarrow 1
     | Node(t,t') -> size t + size t'
let rec flatten = function
       Leaf x
                   \rightarrow [x]
     | Node(t,t') -> flatten t @ flatten t'
let flatten1 t = let rec doit = function
                      (Leaf x, xs) \rightarrow x :: xs)| (Node(t,t'), xs) -> let xs = doit (t',xs)
                                       in doit (t, xs)in doit (t, [])\ldots206
```
Second Idea (cont.)

Insertion is in the second list:

let enqueue x (Queue (first, last)) = Queue (first, x::last)

- Extracted are elements always from the first list: \bullet Only if that is empty, the second list is consulted ...
	- let dequeue = function Queue ([], last) -> (match List.rev last with $[] \rightarrow$ (None, Queue ($[] \square$)) \vert x::xs -> (Some x, Queue $(xs, []$))) \vert Queue $(x::xs, last) \rightarrow$ (Some x, Queue $(xs, last)$)

Discussion

- Now, insertion is cheap! \bullet
- Extraction, however, can be as expensive as the number of \bullet elements in the second list...
- Averaged over the number of insertions, however, the extra costs are only constant !!!

 \implies amortized cost analysis

Discussion

- Now, insertion is cheap! \bullet
- Extraction, however, can be as expensive as the number of \bullet elements in the second list...
- Averaged over the number of insertions, however, the extra costs \bullet are only constant !!!

 \implies amortized cost analysis

216

Anonymous Functions 3.7

As we have seen, functions are data. Data, e.g., [1;2;3] can be used without naming them. This is also possible for functions:

- # fun x y z -> $x+y+z$;;
- : int -> int -> int -> int = \times fun>
- fun initiates an abstraction

This notion originates in the λ -calculus.

- \rightarrow has the effect of $=$ in function definitions. \bullet
- Recursive functions cannot be defined in this way, as the recurrent \bullet occurrences in their bodies require names for reference.

 $\lambda f \times g \rightarrow f \times (f g)$

Pattern matching can be used by applying match ... with \bullet for the corresponding argument.

216

In case of a single argument, function can be considered ... \bullet

> # function None \rightarrow 0 | Some $x \rightarrow x*x+1$;; - : int option -> int = \tan

Alonzo Church, 1903-1995

218

Anonymous Functions 3.7

As we have seen, functions are data. Data, e.g., [1;2;3] can be used without naming them. This is also possible for functions:

fun x y z -> $x+y+z$;;

- : int -> int -> int -> int = \times fun>
- fun initiates an abstraction \bullet This notion originates in the λ -calculus.
- \rightarrow has the effect of $=$ in function definitions. \bullet
- Recursive functions cannot be defined in this way, as the recurrent \bullet occurrences in their bodies require names for reference.

217

- Pattern matching can be used by applying match ... with for the corresponding argument.
- In case of a single argument, function can be considered ...

```
# function None \rightarrow 0
           | Some x \rightarrow x*x+1;
- : int option -> int = \langlefun>
```
Anonymous functions are convenient if they are used just once in a program. Often, they occur as arguments to functionals:

map (fun x -> x*x) $[1;2;3]$; - : int list = $[1; 4; 9]$

Often, they are also used for returning functions as result:

let make_undefined () = fun x -> None;; val make_undefined : unit -> 'a -> 'b option = \tan # let def_one (x,y) = fun x' -> if x=x' then Some y else None;; val def_one : 'a * 'b -> 'a -> 'b option = \times fun>

$$
def_{x}t e(x,y) x' = cf...
$$

5.1 Exceptions

In case of a runtime error, e.g., division by zero, the Ocaml system generates an exception

1 / 0;;

Exception: Division_by_zero. # List.tl $(List.t1 [1]);$ Exception: Failure "tl". # $Char.chr$ 300;; Exception: Invalid_argument "Char.chr".

Here, the exceptions Division_by_zero, Failure "tl" and Invalid_argument "Char.chr" are generated.

267

Another reason for an exception is an incomplete match:

match $1+1$ with $0 \rightarrow$ "null";; Warning: this pattern-matching is not exhaustive. Here is an example of a value that is not matched: $\mathbf{1}$ Exception: Match_failure ("", 2, -9).

In this case, the exception Match_failure ("", 2, -9) is generated.

268