Script generated by TTT
Title: Lammich: FDS Tutorial (28.04.2017)
Date: Fri Apr 28 13:24:43 CEST 2017
Duration: 20:45 min

Pages: 19

193,067 v

Exercise 1.4 Adding elements to the end of a list

Recall the definition of lists from the lecture. Define a function snoc that appends an
element at the right end of a list. Do not use the existing append operator @ for lists.

fun snoc = “'a list = 'a = 'a list”

Convince yourself on some test cases that your definition of snoe behaves as expected,
for example run:

value “snoc || ¢”

Also prove that your test cases are indeed correct, for instance show:
lemma “snoc [| ¢ = [¢]”
Next define a function reverse that reverses the order of elements in a list. (Do not use

the existing function rev from the library.) Hint: Define the reverse of z # s using the
snoc function.

fun reverse :: “'a list = 'a list”

10: ~flehrefFDs/ex [ex01.pdf

Ol [| [T 2] [o] msmm

T end

[

1+

4 Isabelle2016-1 - tutd Lthy _Ox & Isabelle2016-1 - tut01.thy (modified) _ox
File Edit Search Markers Folding View Utilities Macros Plugins Help Eile Edit Search Markers Folding View Utiities Macros Plugins Help
DEd@E & 9 ¢ XDE @@ C & © 0@dE @ 9 ¢ XHO 6@ - & @
O tut0L thy (~/lehre/FDS/ex/) v I8 tutoL thy (~/lehre/FDS/ex) |
a =B [] B
— lemma "count xs x < length xs" = — lemma "count xs x < length xs" [l
5 . . o 5 . . =]
g apply (induction xs) 2 ; apply (induction xs) 2
o E) E
2 apply auto 3 = apply auto 3
2 done = 2 done 2
5 E
S =
I (o @| fun snoc :: "'a list = 'a = 'a list" where (0|
a 7 a
s snocl] =
= mEs
@
g
o
=
2
3
S
H

[7IProof state [¢] Auto update | Update | search;

= [too% |

theorem count ?xs 7x < length ?xs

D]

[T

CHl
|8~ [output | query [sledgehammer | symbols |

[semeeuL]e

I Proof state 7] Auto update | Update | search:

~|[too% [+]

Inner syntax error: unexpected end of input
Failed to parse prop

[T

(|

il
(8]~ [output | query |

| symbols |

debian(D| _ || &) 1|2 3| 4 | |@ilammich@lapnipkow10: ~/lehre/FDS/ex Iﬁlsahellezﬂlﬁ—lrtulﬂl.(hy

m e ey
debian(D| _ |y &) 1|2 3| 4 | @ lammich@lapnipkow10: ~flehre/FDS/ex I@Isahellezolﬁrlrlutﬂl.thy(modiﬁed)

_ Ox

193,069 v/

Recall the definition of lists from the lecture. Define a function snoc that appends an

{am element at the right end of a list. Do not use the existing append operator @ for lists.
an|
fun snoc = “'a list = 'a = 'a list”
Lan|
lanm Convince yourself on some test cases that your definition of snoc behaves as expected,
ex0 for example run:
lanm|
ex0|
Lam|

Also prove that your test cases are indeed correct, for instance show:

lemma “snoc [| ¢ =

Next define a function reverse that reverses the order of elements in a list. (Do not use
the existing function rev from the library.) Hint: Define the reverse of = # zs using the
snoc function.

fun reverse :: “'a list = ‘o list”

Demonstrate that your definition is correct by running some test cases, and proving that
those test cases are correct. For example:

value “reverse [a, b, ¢|”

AR
0: ~flehre/fDsiex [2lex01.pdf

w0l (8] 9] [T 2[3]} momme

4 Isabelle2016-1 - tutd1.thy (modified)
Fle Edit Search Markers Folding View Utilties Magros Plugins Help

O&EdO & 9 XPpE @@ -

&

B tut0L.thy (~/lehre/FDS/ex/)

i Isabelle2016-1 - tut01L.thy
Eille Edit Search Markers Folding View Utilities

TEdE & 9 ¢ {00 B& C

Magros Plugins Help

B EE

|0 tutol.thy (~/lehre/FDS/ex/)

value "snoc [1,2,(3::int)] 5"

@| fun reverse :: "'a list = 'a list”

T end

[] &
t fun snoc "'a list = 'a = 'a list" where

§ "snoc [1 a = [a]"

2 | "snoc (x#xs) a = x # snoc xs a"

o

[]

"1, 2, 3, 51"
"int list"

[Proof state [v] Auto update | Update | search: [~|[roo% |-

[SsuseuL [s3eis | oviopis | Uoneazewnsea] 4 @]

output | query | | symbols

smC] 2 5| | 17 2]

4 1sabelle2016-1 - tut01.thy (modified)
Ele Edit Search Markers Folding View Utilities Macros Plugins Help

ODEdE & a¢ K00 a@ -

10: ~flehrefFDs/ex [

&

Isabelle2016-1 - tut01.thy

| tut0L.thy (~/lehre/FDS/exs)

@| fun reverse :: a list = 'a list”

T end

[

Proof state [¢] Auto update

[se1oauL [=335 [pptepis [uoseswncog [« (@)

Update | Search:

-] [100%

Outer syntax erroro: keyword "where" expected,
but end-of-inputs was found

[T

D]

CHl
|8~ [output | query [sledgehammer | symbols |

@| fun reverse :: "'a list = 'a list”

T end

<} fun snoc :: "'a list = 'a = 'a list" where =l L} fun snoc :: "'a list = 'a = 'a list" where el
= "snoc [] a = [a]" d "snoc [] a = [a]"

g | "snoc (x#xs) a = x # snoc xs a" ; | "snoc (x#xs) a = x # snoc xs a"

5 5

2 value "snoc [1,2,(3::int)] 5" 2 value "snoc [1,2,(3::int)] 5"

1+

[Proof state 7] Auto update | Update ‘searm ~|[too% [+

Outer syntax errora: keyword "where" expected,
but end-of-inpute was found

[seeuL | ow3s | prepis [uomewounsea] « [@]

il
(8]~ [output | query | | symbals |

debian(D| _ || &) 1|2 3 | 4 | @/lammich@lapnipkow10: ~/lehre/FDS/ex Iﬁlsahellezﬂlﬁ—l—tuml.(hy(modﬁed)

I S
debian(O| _ | Ty| 1L 1|z 3| 4| @mlammich@lapnipkow10: ~flehre/Fosjex |

Isabelle2016-1 - tut01.thy (modified)

4 Isabelle2016-1 - tut01.thy (modified) -Ox {3 Isabelle2016-1 - tut01.thy (modified) -Ox
File Edit Search Markers Folding View Utilities Magros Elugins Help File Edit Search Markers Folding View Utilities Magros Plugins Help
DE@Edp & 9 ¢ XOE @ DEEE B & @ DEdd @ s¢ 00 @ T REE # ©
B tut0l.thy (~/lehre/FDSfex/) - | tutol.thy (~/lehre/FDS/ex/) -
>] fun snoc "'a list = 'a = 'a list" where |] value "snoc [1,2,(3::int)] 5" |
- "snoc [] a = [a]" -
§ | "snoc (x#xs) a = x # snoc xs a" § fun reverse "'a list = 'a list" where
2 2 "reverse [] = []"
% value "snoc [1,2,(3::int)] 5" % | "reverse (x#xs) = snoc (reverse xs) x"

@| fun reverse a list = 'a list"
Y "reverse [] = []1"
| "reverse (x#xs) = sncof]

end B
T i}

[l [»]

[¥] Proof state [¥] Auto update | Update |Search: ~|[to0% |+

value "reverse [1,2,3,4::int]"
T end B}

4] [

[Proof state [v] Auto update | Update | search: [~|[roo% |-

1«1

[S2uceuL [sies |3apepis | Usneiusuncod | 4 @)

A
[SsuseuL [s3%15 [sviopis | Uoneazewnsea] 4 | @]

Outer syntax errora: Keyword "where" expected,
but guoted string "reverse [] = []1"a was found

"4, 3, 2, 11"
"int list"

«
(o]~ output | query [sledgehammer | symbols

O[] 9] | 1172 <]

output | query | | symbols
= —
debian®|_ || IIZBQEH

4 15abelle2016-1 - tut01.thy (modified) -Ox
File Edit Search Markers Folding Wiew Utilities Macros Plugins Help

ODEdE & a¢ K00 a@ -

0: ~flehrefrosiex [

10: ~flehrefFDs/ex [

1 - tut01.thy (modified) Isabelle2016-1 - tut01.thy (modified)

@/lammich @lapnipkow10: ~/lehre/FDS/ex _Ox

2 tUt01 thy (~/lehre/FDS/ex) ha
R = : =g T g
fun reverse :: a list = 'a list" where =
d "reverse [] = []" =
. I T " " g
Convince yourself on some test cases that your definition of snoc behaves as expected, ¢ | "reverse (x#xs) = snoc (reverse xs) x H
5
for example run: & Fl
2 value "reverse [1,2,3,4::int]" 2
value “snoc || ¢” g
X X lemma "reverse (reverse xs) = xs' |
Also prove that your test cases are indeed correct, for instance show: a
&
lemma “snoc [| ¢ = apply (keyword) 2
©|end %
Next define a function reverse that reverses the order of elements in a list. (Do not use gl
P - 3
the existing function rev from the library.) Hint: Define the reverse of © # zs using the 7 e
snoe function. 2
. [Proof state 7] Auto update | Update ‘searm ~|[too% [+]=
fun reverse :: “'a list = 'a list”
proof (prove) =
Demonstrate that your definition is correct by running some test cases, and proving that goal (1 subgoal):
! 1. reverse (reverse xs) = xs
those test cases are correct. For example:
value “reverse [a, b, c]”
lemma “reverse [a, b, | = [c, b, a]”
Prove the following theorem. Hint: You need to find an additional lemma relating reverse L
and snoc to prove it. il ol
theorem “reverse (reverse xs) = ws” [E1Ed - Lomboiz]

r s
debian(D| _ || &) |T2 3| 4 | [@lammich@lapnipkow10: ~jlehre/FDs/ex [2lexon.pdf debianO|_ |7y 2 1|2 3| 4| l@jlammich@lapnipkow10: ~flehrefFDsjex [

Isabelle2016-1 - tut01.thy (modified)

4ip Isabelle2016-1 - tut01.thy -Ox 4p Isabelle2016-1 - tut01.thy (modified) -Ox

File Edit Search Markers Folding View Utilities Magros Elugins Help File Edit Search Markers Folding View Utilities Magros Plugins Help
D& ® @D @ ¢ X G& CHDEE X & © DEd@E & a¢ HEO 0@ TODEE B & O
0 tut0l.thy (~/lehre/FDSfex/) = /B tutol thy (~/lehre/FDs/ex) A
=] "reverse [] = [1" =l L} el
t | "reverse (x#xs) = snoc (reverse xs) x" t value "reverse [1,2,3,4::int]"
] T
H H
s value "reverse [1,2,3,4::int]" Zll®| lemma "
2 2

lemma "reverse (reverse xs) = xs"
apply (induction xs)

lemma "reverse (reverse xs) = xs
apply (induction xs)

[a00mL [=3=15 | sporepis | toneiuswnsoa | 4 @]
[SauoeuL [esess somepis | Ueneiuswncoa | ¢ | @]

apply auto
end M @|end M
< I 1] [T
Proof state [¥] Auto update | Update | Search: | ~|j100% |v Proof state [v] Auto update | Update | Search: | ~|[too% |+
“[4, 3, 2, 11" [2] proof (prove) =

"int list" goal (1 subgoal):
1. ,’\a XS, reverse (reverse xs) = xS —> reverse (snoc (reverse xs) a) = a # xS

< D] 1l |
(o]~ output | query [sledgehammer | symbols (2]~ [output | query [| symbols
= s = = = S - - — -
devian(0|_ || & llz 34| @ i i ~flehresposiex | 1 - tut01.thy debian©[_ [Ty & 1|2 3| 4 | @lammich@lapnipkow10: ~flehre/FDS/ex sabelle2016-1 - tut01.thy (modified}
4p Isabelle2016-1 - tut01.thy -Ox & Isabelle2016-1 - tut01.thy -Ox
Fle Edit Search Markers Folding View Utilties Magros Plugins Help Ele Edit Search Markers Folding View Utilities Macros Plugins Help

DEd@E & 9 ¢ XDE @@ C

B & @ DEd@E & 9¢ XHAE 8@ -

O tut01.thy (~/lehre/FDSfex/) | |0 tut0L.thy (~/lehre/FDS/ex/) g
a =B [] B
— value "reverse [1,2,3,4::int]" = — value "reverse [1,2,3,4::int]" =
3 g 3 g
£ 2 H 2
g lemma Ireverse (snoc xs x) = x # reverse xs" 3 g lemma aux: "reverse (snoc xS X) = X # reverse xs" sorry 3
g g
= & = Ft
@| lemma "reverse (reverse xs) = xs" g lemma "reverse (reverse xs) = xs"]
apply (induction xs) (o apply @nductlon XS)I o]
apply auto & apply auto &
= =
= 2
@|end @ @|end @
== g e (2
- | =|| @
= =
z ST g
a Dl |2 il Dl 8
H &
Proof state (7] Auto update | Update | Search: -] [100% = Proof state] Auto update | Update | Search: ~] [1o0% =

proof (prove) 12| proof (prove) 1=

goal (1 subgoal): goal (2 subgoals):
1. reverse (snoc xs X} = x # reverse xs 1. reverse (reverse []) = []
2. ,’\a XS, reverse (reverse xs) = xS —> reverse (reverse (a # xs)) = a # xs
T |

[l il
|8~ [output | query [sledgenammer | symbols (8]~ [output [query | | symbals |

o e
debian(O|_ | Ty| 17 34| @ammi i Jlehre/FDS/ 1- tutol.thy IRTENEEE ool |5 2 1[2 3] 4| @iammich@lspnipkow10: ~flehre/Fs/ex

Isabelle2016-1 - tut01.thy B ‘ B I . . . m

7p Isabelle2016-1 - tut01.thy (modified) -Ox 4p Isabelle2016-1 - tut01.thy -Ox

File Edit Search Markers Folding View Utilities Magros Plugins Help Elle Edit Search Markers Folding View Utiities Magros Plugins Help
— 3 \7 = < = A 7 = &
&> @ e X & & HEE B & © DEdhd @ s ¢ X0 6 & DEE B & ©
B tut0l.thy (~/lehre/FDSfex/) | |0 tutol.thy (~/lehre/FDS/ex/) -
L} Bl =} "reverse [1 = [1" =l
M value "reverse [1,2,3,4::int]" = = | "reverse (x#xs) = snoc (reverse xs) x" =
5 o 5 =]
] g) g
H " " g H " ; f 2
= lemma aux: "reverse (snoc xs X) = x # reverse xs" sorry Fl k= value "reverse [1,2,3,4::int] 3
g 3
2 il |2 g
lemma "reverse (reverse xs) = xs" g lemma aux: "reverse (snoc xs x) = X # reverse xs" g
apply (induction xs) o | o |
g g
apply (auto sinmp: [J 2 2
2 lemma "reverse (reverse xs) = xs' Hig
d o apply (induction xs) =[2
= i &
=z 9 apply (auto simp: aux) -
SR ©| done =
< v 7|8 1] Dl
@ @
Proof state [¥] Auto update | Update | Search: | ~|[Loo% |w| Proof state [v] Auto update | Update | Search: | ~|[roo% [«
proof (prove) 1=l proof (prove) 1~
goal (1 subgoal): goal (1 subgoal):
1. /\a XS. reverse (reverse xs) = xS —> reverse (snoc (reverse xs) a) = a # xS 1. reverse (sSnoc xs x) = X # reverse xs
< D | DN
(o]~ output | query [sledgehammer | symbols (2]~ [output | query [| symbols

1 - tut01.thy (modified)

= e B - = =
devian(0|_ || & 1|2 3|4 | @ i i ~/lehre/FDS/ex | debianO|_ || & 1|z 3| 4 | @ lammich@lapnipkow10: ~flehre/FDS/ex

4 Isabelle2016-1 - tut0 L.thy _Ox 4 Isabelle2016-1 - tut01.thy -Ox
File Edit Search Markers Folding View Utilities Magros Plugins Help Eile Edit Search Markers Folding Wiew Utilities Macros Plugins Help

DEd@E & 9 ¢ XDE @@ C DEd@E & 9¢ XHAE 8@ -

sabelle2016-1 - tut01.thy

0 tut0L.thy (~/lehre/FDS/ex/) ~| (01 tUt0L. thy (~/lehre/FDS/ex) ~|
<) =8l 2] apply auto <1E]
: fun snoc "'a list = 'a = 'a list" where = t done =
3 "snoc [] a = [a]" ‘g ¢ %E
2 | Isnoc (x#x3) a = x # snoc xs a" 3 L 3
2 = 2 lemma "reverse (reverse xs) = xs" 2

value "snoc [1,2,(3::int)] 5" g apply (induction xs) §
m apply [(puto simp: au)ff fo|
fun reverse "'a list = 'a list" where [done 3
“reverse [] = []" & =
| "reverse (x#xs) = snoc (reverse xs) x" 7? T end g
- (& =&
value "reverse [1,2,3,4::int]" = ; ;
(il] A1 8
o 2
Proof state (7] Auto update | Update | Search: -] [100% = Proof state] Auto update | Update | Search: ~] [1o0% =l
proof (prove) =l proof (prove) el
goal (1 subgoal): goal:
1. reverse (snoc xs x) = X # reverse xs No subgoals!
< q T |
|8~ [output | query [sledgenammer | symbols (8]~ [output | query | | symbals |

e = e = T
debian(O|_ | Ty| 17 34| @ammi i Jlehre/FDS/ 1- tutol.thy IR NEEE e[|5 2 1[2 3] 4| @iammich@lspnipkow10: ~flehre/Fs/ex

sabelle2016-1 - tut01.thy

