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Exercise 1.4 Adding elements to the end of a list

Recall the definition of lists from the lecture. Define a function snoc that appends an
element at the right end of a list. Do not use the existing append operator @ for lists.

fun snoc = “'a list = 'a = 'a list”

Convince yourself on some test cases that your definition of snoe behaves as expected,
for example run:

value “snoc || ¢”

Also prove that your test cases are indeed correct, for instance show:
lemma “snoc [| ¢ = [¢]”
Next define a function reverse that reverses the order of elements in a list. (Do not use

the existing function rev from the library.) Hint: Define the reverse of z # s using the
snoc function.

fun reverse :: “'a list = 'a list”
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Recall the definition of lists from the lecture. Define a function snoc that appends an

{am element at the right end of a list. Do not use the existing append operator @ for lists.
an|
fun snoc = “'a list = 'a = 'a list”
Lan|
lanm Convince yourself on some test cases that your definition of snoc behaves as expected,
ex0 for example run:
lanm|
ex0|
Lam|

Also prove that your test cases are indeed correct, for instance show:

lemma “snoc [| ¢ =

Next define a function reverse that reverses the order of elements in a list. (Do not use
the existing function rev from the library.) Hint: Define the reverse of = # zs using the
snoc function.

fun reverse :: “'a list = ‘o list”

Demonstrate that your definition is correct by running some test cases, and proving that
those test cases are correct. For example:

value “reverse [a, b, ¢|”
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