Script generated by TTT

Title: FDS (16.06.2017)
Date: Fri Jun 16 08:31:01 CEST 2017
Duration: 97:31 min

Pages: 83

(| & |

Also: bst must be invariant

bst empty
bst t = bst (insert x t)
bst t = bst (delete x t)

53

& TIT SN Nl OIS = o)) 100% BW} Fri08:31 Q
LGS

Why is this implementation
correct?

Because empty insert delete isin

simulate {} U{} —{} €

set_tree empty = {}

sel_tree (insert x t) = set_tree t U {z}
set_tree (delete x t) = set tree t — {z}
isin t = (r € set tree t)

Under the assumption bst ¢

52

@)«

@® Unbalanced BST

Correctness Proof Method Based on Sorted Lists

54

(| & |

sorted :: 'a list = bool

sorted [| = True
sorted [z] = True

sorted (z # y # zs) = (x < y A sorted (y # 2s))

55

@)«

Structural invariant

The proof method works not just for unbalanced trees.

56

(| & |

Structural invariant

The proof method works not just for unbalanced trees.
We assume that there is some structural invariant on the
search tree:

inv : 's = bool

e.g. some balance criterion.

56

@)«

Correctness of insert

inv t N\ sorted (inorder t) =
inorder (insert x t) = ins list x (inorder t)

57

Correctness of insert

inv t A sorted (inorder t) —>
inorder (insert x t) = ins list x (inorder t)

where
ins_list .2 'a = 'a list = 'a list

inserts an element into a sorted list.

57

Correctness of insert

inv t A sorted (inorder t) =
inorder (insert x t) = ins list x (inorder t)

where
ins_list .2 'a = 'a list = 'a list

inserts an element into a sorted list.

Also covers preservation of bst

57

Correctness of delete

inv t A\ sorted (inorder t) =
inorder (delete x t) = del list x (inorder t)

58

Correctness via sorted lists

Correctness proofs of all search trees
covered in this course
can be automated.

LIS . .
Correctness via sorted lists

Correctness proofs of all search trees
covered in this course
can be automated.

Except for the structural invariants.

@J Ll Ll
Correctness via sorted lists

Correctness proofs of all search trees
covered in this course
can be automated.

Except for the structural invariants.

Therefore we concentrate on the latter from now on.

B

© 2-3 Trees

61

=)@

Thys/Data_Structures/Tree23_Set.

62

(| & |

2-3 Trees

datatype ‘a tree23 = ()
| Node2 ('a tree23) 'a ('a tree23)
| Node3 ('a tree23) 'a ('a tree23) 'a ('a tree23)

Abbreviations:

Node2 [a r
Node3 lambr

(l:‘

a,)
(I, a, m, b,)

63

=)@

181N

isin (I, a, m, b, r)y x =
(case emp = a of
LT = isinlx
| EQ = True
| GT = case cmp z b of
LT = isin m z
| EQ = True
| GT = isin r 1)

64

(| & |

181N

isin ([, a, m, b, ry x =
(case emp x a of
LT = isinlx
| EQ = True
| GT = case cmp x b of
LT = isin m z
| EQ = True
| GT = isin r)

Assumes the usual ordering invariant

64

=)@

Invariant bal

All leaves are at the same level:

65

(| & |

Invariant bal

All leaves are at the same level:

bal () = True

65

@)«

Invariant bal

All leaves are at the same level:

bal () = True

bal (I, ,) = (bal I A bal r N h(l) = h(r))

(| & |

Invariant bal

All leaves are at the same level:

bal () = True

bal (I, .) = (bal I A bal r N h(l) = h(r))

bal (I, , m, , r) =
(bal I A bal m A bal v A h(l) = h(m) N h(m) = h(r))

65

@)«

Insertion

The idea:

Leaf ~~ Node2
Node2 ~» Node3

Node3 ~» overflow, pass 1 element back up

65

66

m)@ GRS

Insertion Insertion
Two possible return values: Two possible return values:
e tree accommodates new element e tree accommodates new element
without increasing height: 7T; ¢ without increasing height: T; ¢
e tree overflows: Up; [= r

m)@ GRS

Insertion Insertion

Two possible return values:

e tree accommodates new element
without increasing height: 7T; ¢

e tree overflows: Up; [= r

datatype ‘a up; = T; ('a tree23)
| Up; ("a tree23) 'a ('a tree23)

tree; = 'a up; = 'a tree23

67

Two possible return values:

e tree accommodates new element
without increasing height: T; ¢

e tree overflows: Up; [= r

datatype 'a up; = T; ('a tree23)
| Up; ("a tree23) 'a (‘a tree23)

tree; 2 'a up; = 'a tree23
tree; (T; 1) =t
tree; (Up; Lar) = (I, a, 1)

67

oo =@
Insertion Insertion
insert 2 'a = 'a tree23 = 'a tree23 insert :: 'a = 'a tree23 = 'a tree23
insert x t = tree; (ins z t) insert © t = tree; (ins x t)
ins :: 'a = 'a tree23 = 'a up;
oo =@
Insertion Insertion

ins x () = Upi () z ()

ins x (I, a, 1) =

69

ins x () = Up; () = ()

69

m)@)
Insertion

ins = {l, a, m, b, 1) =

70

oy
Insertion
ins = (l, a, m, b, 1) =
case cmp = a of
LT = case ins x | of
T, U'= T, {(l'' a, m, b, 1)
| Up; by ¢ b = Up; (L, ¢, b) a (m, b, 1)
| EQ = T; (I, a, m, b, 1)
| GT =
case cmp = b of
LT =
case ins r m of
T, m" = T, (l, a, m', b, 1)
| Up; mqy ¢ my = Up; (I, a, mq) ¢ {(my, b, 1)
| EQ = T; (l, a, m, b, 1)
| 7

70
T —

(=)@ _
Insertion preserves bal

Lemma
bal t = bal (tree; (ins a t))

71

|« _
Insertion preserves bal

Lemma
bal t = bal (tree; (ins a t))

Proof by induction on ¢

71

Insertion

ins x () = Up; () = ()
ins x (I, a, 1) =
case cmp r a of
LT = case ins z [of
Tl' ' = Tjz (l’, a, T')
| Up.i ll b Lz = Tz (ll, b, ZQ, a, T')
| EQ = T, (I, =,)
| GT = case ins = r of
T, "= T, (I, a, r)
| Up; r1 by = T, (l, a, 11, b, 1)

69

Insertion preserves bal

Lemma
bal t = bal (tree; (ins a t))

Proof by induction on ¢

71

Insertion preserves bal

Lemma
bal t = bal (tree; (ins a t))

where h :: 'a up; = nat
h(T; t) = h(t)
B(Up, Lar) = h(l)

Proof by induction on ¢

71

Insertion preserves bal

Lemma
bal t = bal (tree; (ins a t)) A h(ins a t) = h(t)

where h :: 'a up; = nat
h(T; t) = h(t)
W(Up, La7) = Al

Proof by induction on ¢

71

(| & |

Insertion preserves bal

Lemma

bal t = bal (tree; (ins a t)) A h(ins a t) = h(t)
where h :: 'a up; = nat

h(T; t) = h(t)

h(Up; Lar) = h(])

Proof by induction on ¢

Corollary
bal t => bal (insert a 1)

71

@)«

Insertion preserves bal

Lemma
bal t = bal (tree; (ins a t))

where h :: 'a up; = nat
h(T; t) = h(?)

W(Up; Lar) = h()
Proof by induction on ¢

71

(| & |

Deletion

Two possible return values:
e height unchanged: T, ¢
e height decreased by 1: Up,

73

@)«

Deletion

delete = 'a = 'a tree23 = 'a tree23
delete x t = treey (del x t)

74

e T ([, a,) =

case cmp z a of

LT = node21 (del z) ar
| EQ = let (d', t) = del min rin node22 [o’ t
| GT = node22 [a (del z 7))

76

e T (I, a, 1) =
case cmp z a of
LT = node21 (del 1) ar
| EQ = let (a', t) = del min rin node22 | o’ t
| GT = node22 | a (del 7))

node2l (Ty t1) a to = Ty (1, a, &)

node2l (Upy t1) a (ta, b, t3) = Upy (t1, a, ta, b, 13)
node2l (Upy t1) a (ts, b, B3, ¢, ty) =

Td ((f}l, a, fl2>, b, (tg, C, f}4>>

76

Deletion preserves bal

Lemma
bal t = bal (treey (del x t))

Corollary
bal t = bal (delete z t)

Beyond 2-3 trees

datatype 'a tree234 =
Leaf | Node2 ... | Node3 ... | Noded ...

78

(| & |

Beyond 2-3 trees

datatype 'a tree234 =
Leaf | Node2 ... | Node3 ... | Noded ...

Like 2-3 tress, but with many more cases

The general case:

B-trees and (a,b) trees

8

@)«

Relationship to 2-3-4 trees

ldea: encode 2-3-4 trees as binary trees;

81

(| & |

Relationship to 2-3-4 trees

|dea: encode 2-3-4 trees as binary trees;
use color to express grouping

0 = 0

81

@)«

Relationship to 2-3-4 trees

ldea: encode 2-3-4 trees as binary trees;
use color to express grouping

0 = 0
(t1,a,t2) (t1,a,t9)
(t1,a,t2,b,t3) ((t1,a,1),b,t3) (t1,a,(t2,b,13))

Qa

81

(m)@] =)«

Relationship to 2-3-4 trees Invariants
|dea: encode 2-3-4 trees as binary trees;
use color to express grouping
0~ 0
(tlaa‘ t2> ~ (tlaa’at2>
(tlaa‘ tQab t3> ~ <<tlra:t2>abat3> <t17a3<t‘25b:t3>>
<t17a b, b 13, ¢, t4> ~ <<tlrart2>:b:<t3rcrt4>>

(m)@] =)«

Invariants Invariants

e The root is Black.
o Every () is considered Black.

82

e The root is Black.
e Every () is considered Black.
e If 2 node is Red,

82

Invariants

The root is Black.
Every () is considered Black.
If a node is Red, its children are Black.

All paths from a node to a leaf have the same
number of

82

Red-black trees

datatype color = Red | Black

83

Red-black trees

datatype color = Red | Black

datatype
‘a rbt = Leaf | Node color ('a tree) 'a ('a tree)

83

Red-black trees

datatype color = Red | Black

datatype
‘a rbt = Leaf | Node color ('a tree) 'a ('a tree)

Abbreviations:

() = Leaf
(¢, [, a,) = Nodeclar
Rlar = Node Redl ar

83

LS L&Y
Red-black trees Color
datatype color = Red | Black
4 color = 'a bt = color
atatype I — Black
‘a rbt = Leaf | Node color ('a tree) 'a ('a tree) EZZZ: 83 L Ci; _ .
Abbreviations: paint :: color = 'a bt = 'a rbt
() = Leaf paint ¢ () = ()
(¢, [, a,7) = Nodeclar paint ¢ (., I, a,) = (¢, I, a, 1)
Rlar = Node Red [ar
Blar = Node Black | a r
[m)®) _ oy _
Invariants Invariants

rbt 2 'a rbt = bool
rbt t = (inve t A invh t A color t = Black)

85

rbt :: 'a rbt = bool
rbt t = (inve t A invh t A color t = Black)

inve =2 'a bt = bool

inve () = True

inve (¢, I, , r) =

(inve [A inve r A

(¢ = Red — color | = Black N color r = Black))

85

Invariants Invariants
invh :: 'a rbt = bool invh :: 'a rbt = bool
invh () = True
invh (I, ry = (invh L A invh r A bh(l) = bh(r))
&) . = L b
Invariants Logarithmic height
invh :: 'a rbt = bool
invh () = True
invh (., I, ., ry = (invh [A invh v A bh(l) = bh(r)) Lemma

bheight :: 'a rbt = nat

bh(()) = 0
(e, 1, , 1)) =
(if ¢ = Black then bh(l) + 1 else bh(l))

86

rbt t = h(t) < 2 * logy |t];

87

oo =@
Insertion Insertion
insert :: 'a = 'a rbt = 'a rbt insert :: 'a = 'a rbt = 'a rbt
insert x t = paint Black (ins z t) insert x t = paint Black (ins x 1)

ins :: 'a = 'a rbt = 'a rbt

ins 7() = R () 2 {

ins © (B lar) = (case ecmp = a of
LT = baliL (ins zl) ar
| EQ = Blar
| GT = baliR | a (ins z 1))

ins © (R [ar) = (case emp = a of
LT= R (inszl)ar
| EQ= Rlar
| GT = R la (ins z 1))

88

()@ =)@

Adjusting colors Adjusting colors

baliL, baliR :: 'a bt = 'a = 'a rbt = 'a 7bt balil,, baliR :: 'a rbt = 'a = 'a rbt = 'a rbt
e Combine arguments [a 7 into tree, ideally ([, a, 1)

89

(| & |

Adjusting colors

baliL, baliR :: 'a bt = 'a = 'a rbt = 'a 7bt
e Combine arguments [a 7 into tree, ideally (L, a, 7)
e Treat invariant violation Red-Red in [/r

89

!@J . .
Adjusting colors
balil, baliR :: 'a bt = 'a = 'a rbt = 'a rbt

e Combine arguments [a 7 into tree, ideally ([, a, 1)

e Treat invariant violation Red-Red in [/r
balil (R (R tl aq 152) (05)] tg) as t4
=R (B tl aq tg) a9 (B tg as t4)

80

(| & |

Adjusting colors
baliL, baliR :: 'a bt = 'a = 'a rbt = 'a 7bt

89

@)«

Adjusting colors

balil, baliR :: 'a bt = 'a = 'a rbt = 'a rbt
e Combine arguments [a 7 into tree, ideally ([, a, 1)
e Treat invariant violation Red-Red in [/r
balil (R (R tl aq 152) (05)] tg) as t4
=R (B tl aq tg) a9 (B tg as t4)
balil, (R tl aq (R tz a9 tg)) as t4
=R (B tl aq tg) a9 (B tg as t4)
e Principle: replace Red-Red by Red-Black
e Final equation:

balilL lar= Blar

80

(| & |

Adjusting colors
baliL, baliR :: 'a bt = 'a = 'a rbt = 'a 7bt

e Combine arguments [a 7 into tree, ideally (L, a, 7)

e Treat invariant violation Red-Red in [/r
balil (R (R tl (051 tg) a9 tg) as t4
=R (B tl aq tg) a9 (B tg as t4)
balil. (R tl aq (R tg a9 tg)) as t4
=R (B tl aq tg) a9 (B tg as t4)

e Principle: replace Red-Red by Red-Black

89

=)@

Adjusting colors

balil, baliR :: 'a bt = 'a = 'a rbt = 'a rbt
e Combine arguments [a 7 into tree, ideally ([, a, 1)

80

(| & |

Preservation of invariant

Theorem
rbt t = rbt (insert x t)

90

=)@

Deletion

delete x t = paint Black (del z t)

91

Deletion

delete x t = paint Black (del z t)

del () = (

del x {_, I, a, vy = (case cmp z a of
LT = dellL xlar

| EQ = combine [r

| GT = delR zlar)
dellL z (Bt a) bty = baldL (del x (B t; a b)) b 13
dellL. zlar= R (delzl)ar
delRzty a (Bt bly) = baldR t; a (del z (Bl b t3))
delRzlar=Rla/ (delzr)

91

FIEN

Adjusting colors
balil, baliR :: 'a bt = 'a = 'a rbt = 'a rbt
e Combine arguments [@ r into tree, ideally ([, a, 1)
e Treat invariant violation Red-Red in [/r
balil (R (R tl aq 152) (05)] tg) as t4
=R (B tl aq tg) a9 (B tg as t4)
balil, (R tl aq (R tz a9 tg)) as t4
=R (B tl aq tg) a9 (B tg as t4)
Principle: replace Red-Red by Red-Black

Final equation:

balilL lar= Blar
Symmetric: baliR

89

EN

AL)

Adjusting colors

baliL, baliR :: 'a bt = 'a = 'a rbt = 'a 7bt
e Combine arguments [a 7 into tree, ideally (L a, 7)
e Treat invariant violation Red-Red in I/r

89

Deletion

delete x t = paint Black (del z t)

(

a, 1) = (case cmp x a of
LT = delLxlar

| EQ = combine [r

| GT = delR zlar)
dellL z (Bt a) bty = baldL (del z (B t; a b)) b 13
dellL.zlar=R(delzl)ar
delR zty a (B ly bt3) = baldR t; a (del z (B 1 b t3))
delRzlar=Rla(delzr)

del () =
del = (, 1,

91

