Script generated by TTT

Title: FDS (16.06.2017)

Date: Fri Jun 16 08:31:01 CEST 2017

Duration: 97:31 min

Pages: 83

Also: bst must be invariant

```
\begin{array}{l} bst\ empty \\ bst\ t \Longrightarrow bst\ (insert\ x\ t) \\ bst\ t \Longrightarrow bst\ (delete\ x\ t) \end{array}
```


Why is this implementation correct?

```
Because empty insert delete isin simulate \{\} \cup \{.\} - \{.\} \in set\_tree \ empty = \{\} set\_tree \ (insert \ x \ t) = set\_tree \ t \cup \{x\} set\_tree \ (delete \ x \ t) = set\_tree \ t - \{x\} isin \ t \ x = (x \in set\_tree \ t)
```

Under the assumption bst t

52

Correctness

Correctness Proof Method Based on Sorted Lists


```
sorted :: 'a \ list \Rightarrow bool
sorted [] = True
sorted [x] = True
sorted (x \# y \# zs) = (x < y \land sorted (y \# zs))
```

Structural invariant

The proof method works not just for unbalanced trees.

56

Structural invariant

The proof method works not just for unbalanced trees. We assume that there is some structural invariant on the search tree:

```
inv: 's \Rightarrow bool
```

e.g. some balance criterion.

Correctness of *insert*

```
inv \ t \land sorted \ (inorder \ t) \Longrightarrow inorder \ (insert \ x \ t) = ins\_list \ x \ (inorder \ t)
```

5

Correctness of *insert*

 $inv \ t \land sorted \ (inorder \ t) \Longrightarrow inorder \ (insert \ x \ t) = ins_list \ x \ (inorder \ t)$

where

 $ins_list :: 'a \Rightarrow 'a \ list \Rightarrow 'a \ list$

inserts an element into a sorted list.

Correctness of *insert*

 $inv \ t \land sorted \ (inorder \ t) \Longrightarrow inorder \ (insert \ x \ t) = ins_list \ x \ (inorder \ t)$

where

 $ins_list :: 'a \Rightarrow 'a \ list \Rightarrow 'a \ list$

inserts an element into a sorted list.

Also covers preservation of bst

57

Correctness of delete

 $inv \ t \land sorted \ (inorder \ t) \Longrightarrow inorder \ (delete \ x \ t) = del_list \ x \ (inorder \ t)$

Correctness via sorted lists

Correctness proofs of all search trees covered in this course can be automated.

Correctness via sorted lists

Correctness via sorted lists

Correctness proofs of all search trees covered in this course can be automated.

Except for the structural invariants.

Correctness proofs of all search trees covered in this course can be automated.

Except for the structural invariants.

Therefore we concentrate on the latter from now on.

- Unbalanced BST
- **9** 2-3 Trees
- Red-Black Trees

Thys/Data_Structures/Tree23_Set.

2-3 Trees

isin

```
datatype 'a tree23 = \langle \rangle
| Node2 ('a tree23) 'a ('a tree23)
| Node3 ('a tree23) 'a ('a tree23) 'a ('a tree23)
```

Abbreviations:

```
\langle l, a, r \rangle \equiv Node2 \ l \ a \ r
\langle l, a, m, b, r \rangle \equiv Node3 \ l \ a \ m \ b \ r
```


64

isin

Invariant bal

 $\begin{array}{l} isin \ \langle l,\ a,\ m,\ b,\ r\rangle \ x = \\ (\mathsf{case}\ cmp\ x\ a\ \mathsf{of} \\ LT \Rightarrow isin\ l\ x \\ |\ EQ \Rightarrow True \\ |\ GT \Rightarrow \mathsf{case}\ cmp\ x\ b\ \mathsf{of} \\ LT \Rightarrow isin\ m\ x \\ |\ EQ \Rightarrow True \\ |\ GT \Rightarrow isin\ r\ x) \end{array}$

Assumes the usual ordering invariant

All leaves are at the same level:

64

Invariant bal

Invariant bal

All leaves are at the same level:

$$bal \langle \rangle = True$$

All leaves are at the same level:

$$bal \langle \rangle = True$$

$$bal \langle l, -, r \rangle = (bal \ l \wedge bal \ r \wedge h(l) = h(r))$$

65

65

Invariant bal

Insertion

All leaves are at the same level:

$$bal \; \langle \rangle = True$$

$$bal \; \langle l, \neg, r \rangle = (bal \; l \wedge bal \; r \wedge h(l) = h(r))$$

$$bal \; \langle l, \neg, m, \neg, r \rangle =$$

$$(bal \; l \wedge bal \; m \wedge bal \; r \wedge h(l) = h(m) \wedge h(m) = h(r))$$

The idea:

$$Leaf \rightsquigarrow Node2$$

$$Node2 \rightsquigarrow Node3$$

$$Node3 \rightarrow \text{overflow}$$
, pass 1 element back up

Insertion

Insertion

Two possible return values:

 tree accommodates new element without increasing height: T_i t

Two possible return values:

- tree accommodates new element without increasing height: T_i t
- tree overflows: $Up_i \ l \ x \ r$

Insertion

Two possible return values:

- tree accommodates new element without increasing height: T_i t
- tree overflows: $Up_i \ l \ x \ r$

```
datatype 'a up_i = T_i ('a tree23)
 Up_i ('a tree23) 'a ('a tree23)
```

$$tree_i :: 'a \ up_i \Rightarrow 'a \ tree 23$$

 $tree_i \ (T_i \ t) = t$
 $tree_i \ (Up_i \ l \ a \ r) = \langle l, \ a, \ r \rangle$

Two possible return values:

- tree accommodates new element without increasing height: T_i t
- tree overflows: $Up_i \ l \ x \ r$

datatype 'a
$$up_i = T_i$$
 ('a $tree23$)
| Up_i ('a $tree23$) 'a ('a $tree23$)

 $tree_i :: 'a \ up_i \Rightarrow 'a \ tree23$

Insertion

$$insert :: 'a \Rightarrow 'a \ tree23 \Rightarrow 'a \ tree23$$

 $insert \ x \ t = tree_i \ (ins \ x \ t)$

$$insert :: 'a \Rightarrow 'a \ tree23 \Rightarrow 'a \ tree23$$

 $insert \ x \ t = tree_i \ (ins \ x \ t)$

 $ins :: 'a \Rightarrow 'a \ tree23 \Rightarrow 'a \ up_i$

68

Insertion

Insertion

$$ins \ x \langle \rangle = Up_i \langle \rangle \ x \langle \rangle$$

 $ins \ x \langle l, \ a, \ r \rangle =$

$$ins \ x \langle \rangle = Up_i \langle \rangle \ x \langle \rangle$$

Insertion

```
ins x \langle l, a, m, b, r \rangle =
```

70

Insertion preserves bal

Insertion preserves bal

Lemma

 $bal\ t \Longrightarrow bal\ (tree_i\ (ins\ a\ t))$

Proof by induction on t


```
\begin{array}{l} ins \ x \ \langle \rangle = \ Up_i \ \langle \rangle \ x \ \langle \rangle \\ ins \ x \ \langle l, \ a, \ r \rangle = \\  \text{case } cmp \ x \ a \ \text{of} \\ LT \Rightarrow \text{case } ins \ x \ l \ \text{of} \\ T_i \ l' \Rightarrow T_i \ \langle l', \ a, \ r \rangle \\ \mid Up_i \ l_1 \ b \ l_2 \Rightarrow T_i \ \langle l_1, \ b, \ l_2, \ a, \ r \rangle \\ \mid EQ \Rightarrow T_i \ \langle l, \ x, \ r \rangle \\ \mid GT \Rightarrow \text{case } ins \ x \ r \ \text{of} \\ T_i \ r' \Rightarrow T_i \ \langle l, \ a, \ r' \rangle \\ \mid Up_i \ r_1 \ b \ r_2 \Rightarrow T_i \ \langle l, \ a, \ r_1, \ b, \ r_2 \rangle \end{array}
```


Insertion preserves bal

Lemma

```
bal\ t \Longrightarrow bal\ (tree_i\ (ins\ a\ t))
```

Proof by induction on t

71

Insertion preserves bal

Lemma

$$bal \ t \Longrightarrow bal \ (tree_i \ (ins \ a \ t))$$

 $where \ h :: 'a \ up_i \Rightarrow nat$
 $h(T_i \ t) = h(t)$
 $h(Up_i \ l \ a \ r) = h(l)$

Proof by induction on t

Insertion preserves bal

Lemma

$$\begin{array}{l} \textit{bal } t \Longrightarrow \textit{bal } (\textit{tree}_i \; (\textit{ins a t})) \; \land \; \textit{h}(\textit{ins a t}) = \textit{h}(t) \\ \textit{where } \textit{h} :: '\textit{a} \; \textit{up}_i \Rightarrow \textit{nat} \\ \textit{h}(\textit{T}_i \; t) = \textit{h}(t) \\ \textit{h}(\textit{Up}_i \; \textit{l} \; \textit{a} \; \textit{r}) = \textit{h}(\textit{l}) \end{array}$$

Proof by induction on t

Insertion preserves bal

Lemma

```
\begin{array}{l} \textit{bal } t \Longrightarrow \textit{bal } (\textit{tree}_i \; (\textit{ins a t})) \; \land \; \textit{h}(\textit{ins a t}) = \textit{h}(t) \\ \textit{where } \textit{h} :: '\textit{a} \; \textit{up}_i \Rightarrow \textit{nat} \\ \textit{h}(\textit{T}_i \; t) = \textit{h}(t) \\ \textit{h}(\textit{Up}_i \; \textit{l} \; \textit{a} \; \textit{r}) = \textit{h}(\textit{l}) \end{array}
```

Corollary

```
bal\ t \Longrightarrow bal\ (insert\ a\ t)
```

Proof by induction on t

Insertion preserves bal

Lemma

```
bal \ t \Longrightarrow bal \ (tree_i \ (ins \ a \ t))
where \ h :: 'a \ up_i \Longrightarrow nat
h(T_i \ t) = h(t)
h(Up_i \ l \ a \ r) = h(l)
```

Proof by induction on t

Deletion

Deletion

Two possible return values:

- height unchanged: T_d t
- height decreased by 1: Up_d t

 $delete :: 'a \Rightarrow 'a \ tree23 \Rightarrow 'a \ tree23$ $delete \ x \ t = tree_d \ (del \ x \ t)$

```
(case cmp \ x \ a of LT \Rightarrow node21 \ (del \ x \ l) \ a \ r | EQ \Rightarrow let (a', \ t) = del\_min \ r in node22 \ l \ a' \ t | GT \Rightarrow node22 \ l \ a \ (del \ x \ r))
```

```
(case cmp \ x \ a of LT \Rightarrow node21 \ (del \ x \ l) \ a \ r | EQ \Rightarrow \text{let} \ (a', \ t) = del\_min \ r \ \text{in} \ node22 \ l \ a' \ t | GT \Rightarrow node22 \ l \ a \ (del \ x \ r))

node21 \ (T_d \ t_1) \ a \ t_2 = T_d \ \langle t_1, \ a, \ t_2 \rangle
node21 \ (Up_d \ t_1) \ a \ \langle t_2, \ b, \ t_3 \rangle = Up_d \ \langle t_1, \ a, \ t_2, \ b, \ t_3 \rangle
node21 \ (Up_d \ t_1) \ a \ \langle t_2, \ b, \ t_3, \ c, \ t_4 \rangle = T_d \ \langle \langle t_1, \ a, \ t_2 \rangle, \ b, \ \langle t_3, \ c, \ t_4 \rangle
```

76

76

Deletion preserves bal

Lemma

 $bal\ t \Longrightarrow bal\ (tree_d\ (del\ x\ t))$

Corollary

 $bal\ t \Longrightarrow bal\ (delete\ x\ t)$

Beyond 2-3 trees

datatype 'a tree234 = $Leaf \mid Node2 \dots \mid Node3 \dots \mid Node4 \dots$

77

Beyond 2-3 trees

datatype $'a \ tree 234 =$ $Leaf \mid Node 2 \dots \mid Node 3 \dots \mid Node 4 \dots$

Like 2-3 tress, but with many more cases

The general case:

B-trees and (a,b) trees

Relationship to 2-3-4 trees

Idea: encode 2-3-4 trees as binary trees;

81

Relationship to 2-3-4 trees

Idea: encode 2-3-4 trees as binary trees; use color to express grouping

$$\langle \rangle \approx \langle \rangle$$

Relationship to 2-3-4 trees

Idea: encode 2-3-4 trees as binary trees; use color to express grouping

$$\begin{array}{rcl}
\langle \rangle & \approx & \langle \rangle \\
\langle t_1, a, t_2 \rangle & \approx & \langle t_1, a, t_2 \rangle \\
\langle t_1, a, t_2, b, t_3 \rangle & \approx & \langle \langle t_1, a, t_2 \rangle, b, t_3 \rangle \langle t_1, a, \langle t_2, b, t_3 \rangle \rangle
\end{array}$$

Ω1

Relationship to 2-3-4 trees

Invariants

Idea: encode 2-3-4 trees as binary trees; use color to express grouping

$$\begin{array}{ccc}
\langle \rangle & \approx & \langle \rangle \\
\langle t_1, a, t_2 \rangle & \approx & \langle t_1, a, t_2 \rangle \\
\langle t_1, a, t_2, b, t_3 \rangle & \approx & \langle \langle t_1, a, t_2 \rangle, b, t_3 \rangle & \langle t_1, a, \langle t_2, b, t_3 \rangle \rangle \\
\langle t_1, a, t_2, b, t_3, c, t_4 \rangle & \approx & \langle \langle t_1, a, t_2 \rangle, b, \langle t_3, c, t_4 \rangle \rangle
\end{array}$$

81

9

Invariants

Invariants

- The root is Black.
- Every () is considered Black.

- The root is Black.
- Every $\langle \rangle$ is considered Black.
- If a node is Red,

Q°

Invariants

Red-black trees

datatype $color = Red \mid Black$

- The root is Black.
- Every () is considered Black.
- If a node is Red, its children are Black.
- All paths from a node to a leaf have the same number of

92

83

Red-black trees

datatype $color = Red \mid Black$

datatype

'a rbt = Leaf | Node color ('a tree) 'a ('a tree)

Red-black trees

datatype $color = Red \mid Black$

datatype

 $'a \ rbt = Leaf \mid Node \ color \ ('a \ tree) \ 'a \ ('a \ tree)$

Abbreviations:

$$\begin{array}{ccc} \langle \rangle & \equiv & Leaf \\ \langle c, \ l, \ a, \ r \rangle & \equiv & Node \ c \ l \ a \ r \\ R \ l \ a \ r & \equiv & Node \ Red \ l \ a \ r \end{array}$$

Q

Red-black trees

datatype $color = Red \mid Black$

datatype

```
'a rbt = Leaf | Node color ('a tree) 'a ('a tree)
```

Abbreviations:

$$\begin{array}{ccc} \langle \rangle & \equiv & Leaf \\ \langle c, \ l, \ a, \ r \rangle & \equiv & Node \ c \ l \ a \ r \\ R \ l \ a \ r & \equiv & Node \ Red \ l \ a \ r \\ B \ l \ a \ r & \equiv & Node \ Black \ l \ a \ r \end{array}$$

Color

```
color :: 'a \ rbt \Rightarrow color
color \langle \rangle = Black
color \langle c, \neg, \neg, \neg \rangle = c
paint :: color \Rightarrow 'a \ rbt \Rightarrow 'a \ rbt
paint \ c \ \langle \rangle = \langle \rangle
paint \ c \ \langle \neg, l, a, r \rangle = \langle c, l, a, r \rangle
```

0.4

Invariants

```
rbt :: 'a \ rbt \Rightarrow bool

rbt \ t = (invc \ t \land invh \ t \land color \ t = Black)
```


Invariants

```
rbt :: 'a \ rbt \Rightarrow bool
rbt \ t = (invc \ t \land invh \ t \land color \ t = Black)
invc :: 'a \ rbt \Rightarrow bool
invc \ \langle \rangle = True
invc \ \langle c, l, \neg, r \rangle =
(invc \ l \land invc \ r \land (c = Red \longrightarrow color \ l = Black \land color \ r = Black))
```

Q

Invariants

Invariants

 $invh :: 'a \ rbt \Rightarrow bool$

 $invh :: 'a \ rbt \Rightarrow bool$ $invh \langle \rangle = True$ $invh \langle -, l, -, r \rangle = (invh \ l \wedge invh \ r \wedge bh(l) = bh(r))$

86

Invariants

Logarithmic height

 $\begin{array}{l} invh :: 'a \ rbt \Rightarrow bool \\ invh \ \langle \rangle = \ True \\ invh \ \langle \neg, \ l, \ \neg, \ r \rangle = (invh \ l \wedge invh \ r \wedge bh(l) = bh(r)) \\ bheight :: 'a \ rbt \Rightarrow nat \\ bh(\langle \rangle) = 0 \\ bh(\langle c, \ l, \ \neg, \ \neg \rangle) = \\ (\text{if } c = Black \ \text{then} \ bh(l) + 1 \ \text{else} \ bh(l)) \end{array}$

Q


```
insert :: 'a \Rightarrow 'a \ rbt \Rightarrow 'a \ rbt
insert \ x \ t = paint \ Black \ (ins \ x \ t)
```

Insertion

```
insert :: 'a \Rightarrow 'a \ rbt \Rightarrow 'a \ rbt
insert x \ t = paint \ Black \ (ins \ x \ t)
ins :: 'a \Rightarrow 'a \ rbt \Rightarrow 'a \ rbt
ins x \ \langle \rangle = R \ \langle \rangle \ x \ \langle \rangle
ins x \ (B \ l \ a \ r) = (case \ cmp \ x \ a \ of
LT \Rightarrow baliL \ (ins \ x \ l) \ a \ r
| EQ \Rightarrow B \ l \ a \ r
| GT \Rightarrow baliR \ l \ a \ (ins \ x \ r))
ins x \ (R \ l \ a \ r) = (case \ cmp \ x \ a \ of
LT \Rightarrow R \ (ins \ x \ l) \ a \ r
| EQ \Rightarrow R \ l \ a \ r
| GT \Rightarrow R \ l \ a \ (ins \ x \ r))
```

88

Adjusting colors

baliL, baliR :: 'a $rbt \Rightarrow$ 'a $rbt \Rightarrow$ 'a rbt

Adjusting colors

baliL, baliR :: 'a $rbt \Rightarrow$ 'a $rbt \Rightarrow$ 'a rbt

• Combine arguments l a r into tree, ideally $\langle l, a, r \rangle$

20

Adjusting colors

baliL, baliR :: 'a $rbt \Rightarrow$ 'a $rbt \Rightarrow$ 'a rbt

- Combine arguments l a r into tree, ideally $\langle l, a, r \rangle$
- Treat invariant violation Red-Red in l/r

Adjusting colors

baliL, baliR :: 'a $rbt \Rightarrow$ 'a $rbt \Rightarrow$ 'a rbt

- Combine arguments l a r into tree, ideally $\langle l, a, r \rangle$
- Treat invariant violation Red-Red in l/r baliL (R (R t_1 a_1 t_2) a_2 t_3) a_3 t_4 = R (B t_1 a_1 t_2) a_2 (B t_3 a_3 t_4)

90

Adjusting colors

baliL, baliR :: 'a $rbt \Rightarrow$ 'a $rbt \Rightarrow$ 'a rbt

Adjusting colors

baliL, baliR :: 'a $rbt \Rightarrow$ 'a $rbt \Rightarrow$ 'a rbt

- Combine arguments l a r into tree, ideally $\langle l, a, r \rangle$
- Treat invariant violation Red-Red in l/r baliL (R (R t_1 a_1 t_2) a_2 t_3) a_3 t_4 = R (B t_1 a_1 t_2) a_2 (B t_3 a_3 t_4) baliL (R t_1 a_1 (R t_2 a_2 t_3)) a_3 t_4 = R (B t_1 a_1 t_2) a_2 (B t_3 a_3 t_4)
- Principle: replace Red-Red by Red-Black
- Final equation: $baliL \ l \ a \ r = B \ l \ a \ r$

Adjusting colors

baliL, baliR :: 'a $rbt \Rightarrow$ 'a $rbt \Rightarrow$ 'a rbt

- Combine arguments l a r into tree, ideally $\langle l, a, r \rangle$
- Treat invariant violation Red-Red in l/r $baliL (R (R t_1 a_1 t_2) a_2 t_3) a_3 t_4$ $= R (B t_1 a_1 t_2) a_2 (B t_3 a_3 t_4)$ $baliL (R t_1 a_1 (R t_2 a_2 t_3)) a_3 t_4$ $= R (B t_1 a_1 t_2) a_2 (B t_3 a_3 t_4)$
- Principle: replace Red-Red by Red-Black

Adjusting colors

baliL, baliR :: 'a $rbt \Rightarrow$ 'a $rbt \Rightarrow$ 'a rbt

• Combine arguments l a r into tree, ideally $\langle l, a, r \rangle$

Preservation of invariant

Theorem $rbt \ t \Longrightarrow rbt \ (insert \ x \ t)$

Deletion

 $delete \ x \ t = paint \ Black \ (del \ x \ t)$

Deletion

```
delete x \ t = paint \ Black \ (del \ x \ t)
del_{-} \langle \rangle = \langle \rangle
del \ x \langle -, \ l, \ a, \ r \rangle = (case \ cmp \ x \ a \ of
LT \Rightarrow delL \ x \ l \ a \ r
| EQ \Rightarrow combine \ l \ r
| GT \Rightarrow delR \ x \ l \ a \ r)
delL \ x \ (B \ t_1 \ a \ t_2) \ b \ t_3 = baldL \ (del \ x \ (B \ t_1 \ a \ t_2)) \ b \ t_3
delL \ x \ l \ a \ r = R \ (del \ x \ l) \ a \ r
delR \ x \ t_1 \ a \ (B \ t_2 \ b \ t_3) = baldR \ t_1 \ a \ (del \ x \ (B \ t_2 \ b \ t_3))
delR \ x \ l \ a \ r = R \ l \ a \ (del \ x \ r)
```

Adjusting colors

baliL, baliR :: 'a $rbt \Rightarrow$ 'a $rbt \Rightarrow$ 'a rbt

- Combine arguments l a r into tree, ideally $\langle l, a, r \rangle$
- Treat invariant violation Red-Red in l/r baliL $(R \ (R \ t_1 \ a_1 \ t_2) \ a_2 \ t_3) \ a_3 \ t_4$ $= R \ (B \ t_1 \ a_1 \ t_2) \ a_2 \ (B \ t_3 \ a_3 \ t_4)$ baliL $(R \ t_1 \ a_1 \ (R \ t_2 \ a_2 \ t_3)) \ a_3 \ t_4$ $= R \ (B \ t_1 \ a_1 \ t_2) \ a_2 \ (B \ t_3 \ a_3 \ t_4)$
- Principle: replace Red-Red by Red-Black
- Final equation: $baliL \ l \ a \ r = B \ l \ a \ r$
- Symmetric: baliR

89

Adjusting colors

baliL, baliR :: 'a $rbt \Rightarrow$ 'a $rbt \Rightarrow$ 'a rbt

- Combine arguments l a r into tree, ideally $\langle l, a, r \rangle$
- Treat invariant violation Red-Red in l/r

Deletion

delete $x t = paint \ Black \ (del \ x \ t)$ $del_{-} \langle \rangle = \langle \rangle$ $del \ x \langle -, \ l, \ a, \ r \rangle = (case \ cmp \ x \ a \ of$ $LT \Rightarrow delL \ x \ l \ a \ r$ $| EQ \Rightarrow combine \ l \ r$ $| GT \Rightarrow delR \ x \ l \ a \ r)$ $delL \ x \ (B \ t_1 \ a \ t_2) \ b \ t_3 = baldL \ (del \ x \ (B \ t_1 \ a \ t_2)) \ b \ t_3$ $delL \ x \ l \ a \ r = R \ (del \ x \ l) \ a \ r$ $delR \ x \ t_1 \ a \ (B \ t_2 \ b \ t_3) = baldR \ t_1 \ a \ (del \ x \ (B \ t_2 \ b \ t_3))$ $delR \ x \ l \ a \ r = R \ l \ a \ (del \ x \ r)$

_.