Script generated by TTT

Title: FDS (09.06.2017)

Date: Fri Jun 09 08:34:14 CEST 2017

Duration: 81:16 min

Pages: 93

Principle: Count function calls

For every function $f:: \tau_1 \Rightarrow ... \Rightarrow \tau_n \Rightarrow \tau$ define a *timing function* $t_-f:: \tau_1 \Rightarrow ... \Rightarrow \tau_n \Rightarrow \mathit{nat}$:

- 1 Correctness
- 2 Insertion Sort
- 3 Time
- 4 Merge Sort

1

Principle: Count function calls

For every function $f:: \tau_1 \Rightarrow ... \Rightarrow \tau_n \Rightarrow \tau$ define a *timing function* $t_-f:: \tau_1 \Rightarrow ... \Rightarrow \tau_n \Rightarrow \mathit{nat}$: Translation of defining equations:

$$\frac{e \leadsto e'}{f \ p_1 \dots p_n = e \ \leadsto \ t_{-}f \ p_1 \dots p_n = e' + 1}$$

Principle: Count function calls

For every function $f:: \tau_1 \Rightarrow ... \Rightarrow \tau_n \Rightarrow \tau$ define a *timing function* $t_-f:: \tau_1 \Rightarrow ... \Rightarrow \tau_n \Rightarrow nat$: Translation of defining equations:

$$\frac{e \leadsto e'}{f p_1 \dots p_n = e \leadsto t_- f p_1 \dots p_n = e' + 1}$$

Translation of expressions:

$$\frac{s_1 \leadsto t_1 \quad \dots \quad s_k \leadsto t_k}{g \, s_1 \dots s_k \leadsto t_1 + \dots + t_k + t_- g \, s_1 \dots s_k}$$

Principle: Count function calls

For every function $f:: \tau_1 \Rightarrow ... \Rightarrow \tau_n \Rightarrow \tau$ define a *timing function* $t_-f:: \tau_1 \Rightarrow ... \Rightarrow \tau_n \Rightarrow nat$: Translation of defining equations:

$$\frac{e \leadsto e'}{f p_1 \dots p_n = e \leadsto t_- f p_1 \dots p_n = e' + 1}$$

Translation of expressions:

$$\frac{s_1 \leadsto t_1 \quad \dots \quad s_k \leadsto t_k}{g \, s_1 \dots s_k \leadsto t_1 + \dots + t_k + t_- g \, s_1 \dots s_k}$$

• Variable \rightsquigarrow 0, Constant \rightsquigarrow 0

12

Principle: Count function calls

For every function $f:: \tau_1 \Rightarrow ... \Rightarrow \tau_n \Rightarrow \tau$ define a *timing function* $t_-f:: \tau_1 \Rightarrow ... \Rightarrow \tau_n \Rightarrow nat$: Translation of defining equations:

$$\frac{e \leadsto e'}{f p_1 \dots p_n = e \iff t_- f p_1 \dots p_n = e' + 1}$$

Translation of expressions:

$$\frac{s_1 \leadsto t_1 \dots s_k \leadsto t_k}{q \, s_1 \dots s_k \leadsto t_1 + \dots + t_k + t_- q \, s_1 \dots s_k}$$

- Variable → 0, Constant → 0
- ullet Constructor calls and primitive operations on bool and numbers cost 1

Example

$$app [] ys = ys$$

Example

Example

$$\begin{array}{l} app \ [] \ ys = ys \\ \leadsto \\ t_app \ [] \ ys = 0 + 1 \end{array}$$

$$app [] ys = ys$$

$$t_app [] ys = 0 + 1$$

$$app (x\#xs) ys = x \# app xs ys$$

12

Example

A compact formulation of

 $e \leadsto t$

```
app [] ys = ys

t_app [] ys = 0 + 1

app (x\#xs) ys = x \# app xs ys

t_app (x\#xs) ys = 0 + (0 + 0 + t_app xs ys) + 1 + 1
```

t is the sum of all $t_g \ s_1 \ ... \ s_k$ such that $g \ s_1 \ ... \ s_n$ is a subterm of e

A compact formulation of $e \rightsquigarrow t$

t is the sum of all $t_g \ s_1 \ ... \ s_k$ such that $g \ s_1 \ ... \ s_n$ is a subterm of e

If q is

- a constructor or
- a predefined function on bool or numbers then t_-g ... = 1.

if and case

So far we model a call-by-value semantics

14

if and case

So far we model a call-by-value semantics

Conditionals and case expressions are evaluated lazily.

if and case

So far we model a call-by-value semantics

Conditionals and case expressions are evaluated lazily. Translation:

$$\frac{b \rightsquigarrow t \quad s_1 \rightsquigarrow t_1 \quad s_2 \rightsquigarrow t_2}{\textit{if } b \textit{ then } s_1 \textit{ else } s_2 \rightsquigarrow t + (\textit{if } b \textit{ then } t_1 \textit{ else } t_2)}$$

A compact formulation of $e \rightsquigarrow t$

t is the sum of all $t_g \ s_1 \ ... \ s_k$ such that $g \ s_1 \ ... \ s_n$ is a subterm of e

If g is

- a constructor or
- a predefined function on bool or numbers then $t_g \ldots = 1$.

if and case

So far we model a call-by-value semantics

Conditionals and case expressions are evaluated lazily. Translation:

$$\frac{b \leadsto t \quad s_1 \leadsto t_1 \quad s_2 \leadsto t_2}{\textit{if } b \textit{ then } s_1 \textit{ else } s_2 \leadsto t + (\textit{if } b \textit{ then } t_1 \textit{ else } t_2)}$$

14

O(.) is enough

O(.) is enough

 \Longrightarrow Reduce all additive constants to 1

Example

 $t_app\ (x\#xs)\ ys = t_app\ xs\ ys + 1$

Discussion

Discussion

• The definition of $t_{-}f$ from f can be automated.

- The definition of $t_{-}f$ from f can be automated.
- The correctness of $t_{-}f$ could be proved w.r.t. a semantics that counts computation steps.

17

17

Discussion

- The definition of $t_{-}f$ from f can be automated.
- The correctness of t_f could be proved w.r.t. a semantics that counts computation steps.
- Precise complexity bounds (as opposed to O(.)) would require a formal model of (at least) the compiler and the hardware.

Thys/Sorting.thy

Insertion sort complexity

```
merge :: 'a \ list \Rightarrow 'a \ list \Rightarrow 'a \ list
```

```
merge :: 'a list \Rightarrow 'a list \Rightarrow 'a list

merge [] ys = ys

merge xs [] = xs

merge (x \# xs) (y \# ys) =

(if x \leq y then x \# merge xs (y \# ys)

else y \# merge (x \# xs) ys)
```

```
merge :: 'a list \Rightarrow 'a list \Rightarrow 'a list

merge [] ys = ys

merge xs [] = xs

merge (x \# xs) (y \# ys) =

(if x \le y then x \# merge xs (y \# ys)

else y \# merge (x \# xs) ys)

msort :: 'a list \Rightarrow 'a list

msort xs =

(let n = length \ xs

in if n \le 1 then xs

else merge (msort (take (n \ div \ 2) \ xs))

(msort (drop (n \ div \ 2) \ xs)))
```


Thys/Sorting.thy

Merge sort

2

Chapter 7

Binary Trees

HOL/Library/Tree.thy
Thys/Tree_Additions.thy

25

Binary trees

```
datatype 'a tree = Leaf \mid Node ('a tree) 'a ('a tree)
```


Tree traversal

```
inorder: 'a tree \Rightarrow 'a list

inorder \langle \rangle = []

inorder \langle l, x, r \rangle = inorder \ l @ [x] @ inorder \ r

preorder:: 'a tree \Rightarrow 'a list

preorder \langle \rangle = []

preorder \langle l, x, r \rangle = x \# preorder \ l @ preorder \ r

postorder:: 'a tree \Rightarrow 'a list

postorder \langle \rangle = []

postorder \langle l, x, r \rangle = postorder \ l @ postorder \ r @ [x]
```


 $size :: 'a tree \Rightarrow nat$

$$|\langle\rangle| = 0$$

$$|\langle l, -, r \rangle| = |l| + |r| + 1$$

Size

 $size :: 'a tree \Rightarrow nat$

$$|\langle\rangle| = 0$$

$$|\langle l, -, r \rangle| = |l| + |r| + 1$$

Size

29

 $size :: 'a tree \Rightarrow nat$

$$|\langle\rangle| = 0$$

$$|\langle l, -, r \rangle| = |l| + |r| + 1$$

 $size1 :: 'a tree \Rightarrow nat$

$$|t|_1 = |t| + 1$$

Size

 $size :: 'a tree \Rightarrow nat$

$$|\langle\rangle| = 0$$

$$|\langle l, -, r \rangle| = |l| + |r| + 1$$

 $size1 :: 'a tree \Rightarrow nat$

$$|t|_1 = |t| + 1$$

$$\Longrightarrow$$

$$|\langle\rangle|_1=1$$

$$|\langle l, x, r \rangle|_1 = |l|_1 + |r|_1$$

Size

-

Height

Height

$$height :: 'a \ tree \Rightarrow nat$$

$$h(\langle \rangle) = 0$$

$$h(\langle l, \neg, r \rangle) = max \ (h(l)) \ (h(r)) + 1$$

$$height :: 'a \ tree \Rightarrow nat$$

$$h(\langle \rangle) = 0$$

$$h(\langle l, -, r \rangle) = max (h(l)) (h(r)) + 1$$

Warning: h(.) only on slides

30

3

Height

Minimal height

 $height:: 'a \ tree \Rightarrow nat$ $h(\langle \rangle) = 0$ $h(\langle l, \neg, r \rangle) = max (h(l)) (h(r)) + 1$ Warning: h(.) only on slides

Lemma $h(t) \leq |t|$

Lemma $|t|_1 \leq 2^{h(t)}$

 $min_height :: 'a tree \Rightarrow nat$

Minimal height

 $min_height :: 'a tree \Rightarrow nat$ $mh(\langle \rangle) = 0$ $mh(\langle l, _, r \rangle) = min (mh(l)) (mh(r)) + 1$

Minimal height

```
min\_height :: 'a \ tree \Rightarrow nat
mh(\langle \rangle) = 0
mh(\langle l, -, r \rangle) = min \ (mh(l)) \ (mh(r)) + 1

Warning: mh(.) only on slides
```

- 5

Internal path length

 $ipl :: 'a \ tree \Rightarrow nat$ $ipl \langle \rangle = 0$ $ipl \langle l, , r \rangle = ipl \ l + |l| + ipl \ r + |r|$

Internal path length

 $ipl :: 'a \ tree \Rightarrow nat$ $ipl \langle \rangle = 0$ $ipl \langle l, -, r \rangle = ipl \ l + |l| + ipl \ r + |r|$

Why relevant?

- **6** Binary Trees
- **6** Basic Functions
- **7** Complete and Balanced Trees

Complete tree

 $complete :: 'a tree \Rightarrow bool$

34

Complete tree

```
complete :: 'a \ tree \Rightarrow bool
complete \langle \rangle = True
complete \langle l, \neg, r \rangle =
(complete \ l \land complete \ r \land h(l) = h(r))
```


Complete tree

```
complete :: 'a tree \Rightarrow bool
complete \langle \rangle = True
complete \langle l, \neg, r \rangle =
(complete l \land complete \ r \land h(l) = h(r))
```

Lemma complete t = (mh(t) = h(t))

3/

Complete tree

```
complete :: 'a tree \Rightarrow bool

complete \langle \rangle = True

complete \langle l, \neg, r \rangle =

(complete l \land complete \ r \land h(l) = h(r))
```

Lemma complete t = (mh(t) = h(t))

Lemma complete $t \Longrightarrow |t|_1 = 2^{h(t)}$

Complete tree

```
complete :: 'a tree \Rightarrow bool

complete \langle \rangle = True

complete \langle l, \neg, r \rangle =

(complete l \land complete \ r \land h(l) = h(r))
```

Lemma complete t = (mh(t) = h(t))

Lemma complete $t \Longrightarrow |t|_1 = 2^{h(t)}$

Lemma $|t|_1 = 2^{h(t)} \Longrightarrow complete t$

34

Complete tree

```
complete :: 'a tree \Rightarrow bool
complete \langle \rangle = True
complete \langle l, \neg, r \rangle =
(complete l \land complete \ r \land h(l) = h(r))
```

Lemma complete t = (mh(t) = h(t))

Lemma complete $t \Longrightarrow |t|_1 = 2^{h(t)}$

Lemma
$$|t|_1 = 2^{h(t)} \Longrightarrow complete \ t$$

Lemma $|t|_1 = 2^{mh(t)} \Longrightarrow complete \ t$

Corollary $\neg complete \ t \Longrightarrow |t|_1 < 2^{h(t)}$

Complete tree

```
complete :: 'a tree \Rightarrow bool

complete \langle \rangle = True

complete \langle l, \neg, r \rangle =

(complete l \land complete \ r \land h(l) = h(r))
```

Lemma complete t = (mh(t) = h(t))

Lemma complete $t \Longrightarrow |t|_1 = 2^{h(t)}$

Lemma
$$|t|_1 = 2^{h(t)} \Longrightarrow complete \ t$$

Lemma $|t|_1 = 2^{mh(t)} \Longrightarrow complete \ t$

Corollary $\neg complete \ t \Longrightarrow |t|_1 < 2^{h(t)}$

3/

Complete tree

```
complete :: 'a tree \Rightarrow bool

complete \langle \rangle = True

complete \langle l, \neg, r \rangle =

(complete l \land complete \ r \land h(l) = h(r))
```

Lemma $complete\ t = (mh(t) = h(t))$

Lemma complete $t \Longrightarrow |t|_1 = 2^{h(t)}$

Lemma
$$|t|_1 = 2^{h(t)} \Longrightarrow complete \ t$$

Lemma $|t|_1 = 2^{mh(t)} \Longrightarrow complete \ t$

Corollary
$$\neg complete \ t \Longrightarrow |t|_1 < 2^{h(t)}$$

Corollary $\neg complete \ t \Longrightarrow 2^{mh(t)} < |t|_1$

Complete tree: *ipl*

Lemma A complete tree of height h has internal path length $(h-2)*2^h+2$.

35

Complete tree: *ipl*

Lemma A complete tree of height h has internal path length $(h-2)*2^h+2$.

In a search tree, finding the node labelled x takes as many steps as the path from the root to x is long. Thus the average time to find an element that is in the tree is $ipl\ t\ /\ |t|$.

Complete tree: *ipl*

Lemma A complete tree of height h has internal path length $(h-2)*2^h+2$.

In a search tree, finding the node labelled x takes as many steps as the path from the root to x is long. Thus the average time to find an element that is in the tree is $ipl\ t\ /\ |t|$.

Lemma Let t be a complete search tree of height h.

Complete tree: *ipl*

Lemma A complete tree of height h has internal path length $(h-2)*2^h+2$.

In a search tree, finding the node labelled x takes as many steps as the path from the root to x is long. Thus the average time to find an element that is in the tree is $ipl\ t\ /\ |t|$.

Lemma Let t be a complete search tree of height h. The average time to find a random element that is in the tree is asymptotically h-2 (as h approaches ∞):

Complete tree: *ipl*

Lemma A complete tree of height h has internal path length $(h-2)*2^h+2$.

In a search tree, finding the node labelled x takes as many steps as the path from the root to x is long. Thus the average time to find an element that is in the tree is $ipl\ t\ /\ |t|$.

Lemma Let t be a complete search tree of height h. The average time to find a random element that is in the tree is asymptotically h-2 (as h approaches ∞):

$$ipl t / |t| \sim h - 2$$

35

Complete tree: ipl

A problem: $(h-2)*2^h+2$ is only correct if interpreted over type *int*, not *nat*.

35

Complete tree: *ipl*

A problem: $(h-2)*2^h+2$ is only correct if interpreted over type int, not nat.

Correct version:

Lemma complete
$$t \Longrightarrow$$
 int $(ipl\ t) = (int\ (h(t)) - 2) * 2^{h(t)} + 2$

Balanced tree

Balanced tree

 $balanced :: 'a tree \Rightarrow bool$

 $balanced :: 'a tree \Rightarrow bool$ $balanced t = (h(t) - mh(t) \le 1)$

37

37

Balanced tree

Warning

 $balanced :: 'a tree \Rightarrow bool$ $balanced t = (h(t) - mh(t) \le 1)$

Balanced trees have optimal height: **Lemma** If balanced $t \wedge |t| \leq |t'|$ then $h(t) \leq h(t')$. • The terms *complete* and *balanced* are not defined uniquely in the literature.

Chapter 8

Search Trees

Most of the material focuses on BSTs = binary search trees

41

BSTs represent sets

Any tree represents a set:

```
set\_tree :: 'a \ tree \Rightarrow 'a \ set
set\_tree \ \langle \rangle = \{\}
set\_tree \ \langle l, x, r \rangle = set\_tree \ l \cup \{x\} \cup set\_tree \ r
```


BSTs represent sets

Any tree represents a set:

```
set\_tree :: 'a \ tree \Rightarrow 'a \ set
set\_tree \ \langle \rangle = \{\}
set\_tree \ \langle l, x, r \rangle = set\_tree \ l \cup \{x\} \cup set\_tree \ r
```

A BST represents a set that can be searched in time $O(h(t))\,$

BSTs represent sets

Any tree represents a set:

```
set\_tree :: 'a \ tree \Rightarrow 'a \ set
set\_tree \ \langle \rangle = \{\}
set\_tree \ \langle l, x, r \rangle = set\_tree \ l \cup \{x\} \cup set\_tree \ r
```

A BST represents a set that can be searched in time O(h(t))

Function set_tree is called an abstraction function because it maps the implementation to the abstract mathematical object

bst

```
bst :: 'a \ tree \Rightarrow bool
bst \langle \rangle = True
bst \langle l, a, r \rangle =
(bst \ l \land bst \ r \land \land)
(\forall x \in set\_tree \ l. \ x < a) \land \land
(\forall x \in set\_tree \ r. \ a < x))
```

43

bst

```
bst :: 'a tree \Rightarrow bool
```

```
bst \langle \rangle = True
bst \langle l, a, r \rangle =
(bst \ l \land bst \ r \land
(\forall x \in set\_tree \ l. \ x < a) \land
(\forall x \in set\_tree \ r. \ a < x))
```

Type 'a must be in class linorder ('a :: linorder) where linorder are linear orders (also called total orders).

bst

 $bst :: 'a tree \Rightarrow bool$

$$bst \langle \rangle = True$$

$$bst \langle l, a, r \rangle =$$

$$(bst \ l \land bst \ r \land$$

$$(\forall x \in set_tree \ l. \ x < a) \land$$

$$(\forall x \in set_tree \ r. \ a < x))$$

Type 'a must be in class linorder ('a :: linorder) where linorder are linear orders (also called total orders).

Note: nat, int and real are in class linorder

Set interface

Set interface

An implementation of sets of elements of type $\ 'a$ must provide

An implementation of sets of elements of type $\ 'a$ must provide

• An implementation type 's

4.4

Set interface

Map interface

An implementation of sets of elements of type $\ 'a$ must provide

- An implementation type 's
- *empty* :: 's
- $insert :: 'a \Rightarrow 's \Rightarrow 's$
- $delete :: 'a \Rightarrow 's \Rightarrow 's$
- $isin :: 's \Rightarrow 'a \Rightarrow bool$

Instead of a set, a search tree can also implement a map from ${}^{\prime}a$ to ${}^{\prime}b$:

Map interface

Instead of a set, a search tree can also implement a map from 'a to 'b:

- An implementation type 'm
- *empty* :: 'm
- $update :: 'a \Rightarrow 'b \Rightarrow 'm \Rightarrow 'm$

Map interface

Instead of a set, a search tree can also implement a map from 'a to 'b:

- An implementation type 'm
- *empty* :: 'm
- $update :: 'a \Rightarrow 'b \Rightarrow 'm \Rightarrow 'm$
- $delete :: 'a \Rightarrow 'm \Rightarrow 'm$
- $lookup :: 'm \Rightarrow 'a \Rightarrow 'b \ option$

45

Map interface

Instead of a set, a search tree can also implement a map from 'a to 'b:

- An implementation type 'm
- *empty* :: 'm
- $update :: 'a \Rightarrow 'b \Rightarrow 'm \Rightarrow 'm$
- $delete :: 'a \Rightarrow 'm \Rightarrow 'm$
- $lookup :: 'm \Rightarrow 'a \Rightarrow 'b \ option$

Sets are a special case of maps

Comparison of elements

We assume that the element type 'a is a linear order

Instead of using < and \le directly:

datatype $cmp_val = LT \mid EQ \mid GT$

 $cmp \ x \ y =$ (if x < y then LT else if x = y then EQ else GT)

Implementation

Implementation type: 'a tree

```
insert \ x \ \langle \rangle = \langle \langle \rangle, \ x, \ \langle \rangle \rangle
insert \ x \ \langle l, \ a, \ r \rangle = (case \ cmp \ x \ a \ of
LT \Rightarrow \langle insert \ x \ l, \ a, \ r \rangle
\mid EQ \Rightarrow \langle l, \ a, \ r \rangle
\mid GT \Rightarrow \langle l, \ a, \ insert \ x \ r \rangle)
```

Implementation

```
delete \ x \langle \rangle = \langle \rangle
```

50

Implementation

```
\begin{array}{l} \operatorname{delete} \ x \ \langle \rangle = \langle \rangle \\ \operatorname{delete} \ x \ \langle l, \ a, \ r \rangle = \\ (\operatorname{case} \ \operatorname{cmp} \ x \ a \ \operatorname{of} \\ LT \Rightarrow \langle \operatorname{delete} \ x \ l, \ a, \ r \rangle \\ | \ EQ \Rightarrow \operatorname{if} \ r = \langle \rangle \ \operatorname{then} \ l \\ \qquad \qquad \operatorname{else} \ \operatorname{let} \ (a', \ r') = \operatorname{del\_min} \ r \ \operatorname{in} \ \langle l, \ a', \ r' \rangle \\ | \ GT \Rightarrow \langle l, \ a, \ \operatorname{delete} \ x \ r \rangle) \end{array}
```

Implementation

```
\begin{array}{l} \textit{delete } x \; \langle \rangle = \langle \rangle \\ \textit{delete } x \; \langle l, \; a, \; r \rangle = \\ (\mathsf{case} \; \mathit{cmp} \; x \; a \; \mathsf{of} \\ LT \Rightarrow \langle \mathit{delete} \; x \; l, \; a, \; r \rangle \\ \mid \mathit{EQ} \Rightarrow \mathsf{if} \; r = \langle \rangle \; \mathsf{then} \; l \\ \quad \quad \mathsf{else} \; \mathsf{let} \; (a', \; r') = \mathit{del\_min} \; r \; \mathsf{in} \; \langle l, \; a', \; r' \rangle \\ \mid \mathit{GT} \Rightarrow \langle l, \; a, \; \mathit{delete} \; x \; r \rangle) \\ \\ \mathit{del\_min} \; \langle l, \; a, \; r \rangle = \\ (\mathsf{if} \; l = \langle \rangle \; \mathsf{then} \; (a, \; r) \\ \\ \mathsf{else} \; \mathsf{let} \; (x, \; l') = \mathit{del\_min} \; l \; \mathsf{in} \; (x, \; \langle l', \; a, \; r \rangle)) \end{array}
```

5

Correctness

Correctness Proof Method Based on Sorted Lists

Why is this implementation correct?

Because empty insert delete isin simulate $\{\}$ \cup $\{.\}$ - $\{.\}$ \in

F2

Why is this implementation correct?

 $set_tree\ empty = \{\}$

Why is this implementation correct?

Because empty insert delete isin simulate $\{\}$ \cup $\{.\}$ - $\{.\}$ \in

 $set_tree\ empty = \{\}$ $set_tree\ (insert\ x\ t) = set_tree\ t \cup \{x\}$

Why is this implementation correct?

```
Because empty insert delete isin simulate \{\} \cup \{.\} - \{.\} \in set\_tree \ empty = \{\} set\_tree \ (insert \ x \ t) = set\_tree \ t \cup \{x\} set\_tree \ (delete \ x \ t) = set\_tree \ t - \{x\}
```

Why is this implementation correct?

```
Because empty insert delete isin simulate \{\} \cup \{.\} - \{.\} \in set\_tree \ empty = \{\} set\_tree \ (insert \ x \ t) = set\_tree \ t \cup \{x\} set\_tree \ (delete \ x \ t) = set\_tree \ t - \{x\} isin \ t \ x = (x \in set\_tree \ t)
```

.

Why is this implementation correct?

```
Because empty insert delete isin simulate \{\} \cup \{.\} - \{.\} \in set\_tree \ empty = \{\} set\_tree \ (insert \ x \ t) = set\_tree \ t \cup \{x\} set\_tree \ (delete \ x \ t) = set\_tree \ t - \{x\} isin \ t \ x = (x \in set\_tree \ t)
```

Under the assumption bst t

Also: bst must be invariant

```
bst \ empty
bst \ t \Longrightarrow bst \ (insert \ x \ t)
bst \ t \Longrightarrow bst \ (delete \ x \ t)
```


Also: *bst* must be invariant

```
\begin{array}{l} bst\ empty \\ bst\ t \Longrightarrow bst\ (insert\ x\ t) \\ bst\ t \Longrightarrow bst\ (delete\ x\ t) \end{array}
```


Why is this implementation correct?

```
Because empty insert delete isin simulate \{\} \cup \{.\} - \{.\} \in set\_tree \ empty = \{\} set\_tree \ (insert \ x \ t) = set\_tree \ t \cup \{x\} set\_tree \ (delete \ x \ t) = set\_tree \ t - \{x\} isin \ t \ x = (x \in set\_tree \ t)
```

Under the assumption

.