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Principle: Count function calls
For every function fomi=>. .. =>T,=>7T

define a timing function tf: 7, = ... = 7, = nat:
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Principle: Count function calls
For every function faomi=> .. =>17,=>T

define a timing function tf: v = ... = 7, = nat:
Translation of defining equations:

e~ ¢

fpi--.pn=e€e ~ tfp...ppo=€+1
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Principle: Count function calls
For every function fomm=..=>17,=>T
define a timing function tf: 7, = ... = 7, = nat:
Translation of defining equations:

e~ ¢

fpl"‘pn:e ~ t*fpl---pn:e!‘kl

Translation of expressions:

81~ 1y S~ L

gs1...8p~ 1l +---+l+tgsy...s
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Principle: Count function calls
For every function faomi=> .. =>17,=>T

define a timing function tf: v = ... = 7, = nat:
Translation of defining equations:

e~ ¢

fpl“'pnze ~ t*fpl---pn:f?""l

Translation of expressions:

81Wt1 Skwtk

gSs1...Sp~ly+ -+t +tgsy...s;

e Variable ~» 0, Constant ~~ 0
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Principle: Count function calls
For every function fomm=..=>17,=>T
define a timing function tf: 7, = ... = 7, = nat:
Translation of defining equations:

e~ ¢

fpi...pn=€e ~ tfp...p,=¢€+1

Translation of expressions:

81~ 1y Sp ~= 1y,

gs1...8p~ 1l +---+l+tgsy...s

e Variable ~+ 0, Constant ~ 0
e Constructor calls and primitive operations on bool
and numbers cost 1
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Example

app [] ys = ys
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Example Example
app [| ys = ys app [] ys = ys
~y ~ny
tapp [| ys =0+ 1 tapp [ ys =0+ 1
app (1#1s) ys = x # app s ys
LIS (=)@
Example A compact formulation of
e~ 1
app [| ys = ys
~r t isthe sum of all £.g s; ... s

tapp [ ys =0+ 1

app (z#1s) ys = = # app s ys

~ry

t_app (1#£xs) ys

=04+ O0+0+ tapprsys) +1+1

13

such that g s; ... s, is a subterm of e
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A compact formulation of
e~ t

t isthe sumof all £.g 51 ... ;.
such that ¢ s; ... s, is a subterm of e

If g is

e a constructor or

e a predefined function on bool or numbers
then t.g... = 1.
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if and case

So far we model a call-by-value semantics
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if and case

So far we model a call-by-value semantics

Conditionals and case expressions are evaluated lazily.
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if and case

So far we model a call-by-value semantics

Conditionals and case expressions are evaluated lazily.
Translation:

bh~st SIth SQWtQ

if b then sy else sy ~~ t + (if b then t; else t5)
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A compact formulation of
e~ t

t isthe sumof all £.g 51 ... ;.
such that ¢ s; ... s, is a subterm of e

If g is

e a constructor or

e a predefined function on bool or numbers
then t.g... = 1.

14

if and case

So far we model a call-by-value semantics

Conditionals and case expressions are evaluated lazily.

Translation:

b~ t
if b then sy else sy ~~ t + (if b then t; else t5)

51~ 11 Sg~ 1y

15

O(.) is enough
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O(.) is enough

— Reduce all additive constants to 1
Example
tapp (r#xs) ys = tapp xs ys + 1
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Discussion

e The definition of ¢_f from fcan be automated.
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Discussion

e The definition of ¢_f from fcan be automated.

e The correctness of t_f could be proved w.r.t.
a semantics that counts computation steps.
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Discussion

e The definition of ¢_f from fcan be automated.

e The correctness of t_f could be proved w.r.t.
a semantics that counts computation steps.

e Precise complexity bounds (as opposed to O(.))
would require a formal model of (at least) the
compiler and the hardware.
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Thys/Sorting.thy

Insertion sort complexity
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merge :: 'a list = 'a list = 'a list
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merge :: 'a list = 'a list = 'a list
merge [| ys = ys
merge 18 [| = s
merge (¢ # 25) (4 # 45) =
(if z < y then o # merge xs (y # ys)
else y # merge (r # xs) ys)
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LS
merge :: 'a list = 'a list = 'a list
merge [| ys = ys
merge s [| = zs
merge (z 4 75) (y # y5) =
(if z < y then = # merge xs (y # ys)
else y # merge (z # xs) ys)

msort :: 'a list = 'a list

msort rs =
(let n = length xs
inif n <1 then zs
else merge (msort (take (n div 2) zs))
(msort (drop (n div 2) xs)))

20
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Thys/Sorting.thy

Merge sort

21
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Chapter 7 HOL/Library/Tree.thy
Thys/Tree_Additions.thy
Binary Trees
(m)@] o
Binary trees Tree traversal
inorder :: 'a tree = 'a list

datatype 'a tree = Leaf | Node ('a tree) 'a ('a tree)

26

[

inorder () =
[, , 1) = inorder | Q [2] @ inorder r

inorder (I,

'a tree = 'a list

|

x, 1y = = # preorder | Q preorder r

preorder ::

preorder ()
preorder (1,

'a tree = 'a list

[

z, ) = postorder | Q postorder r @ [z

postorder ::

postorder ()
postorder (I,

28




| b LBIES
Size Size
size :: 'a tree = nat size :: 'a tree = nat
()] =0 ()] =0
KLl =1+ |+ 1 KL =1+ +1
| b LBIES
Size Size

size 2 'a tree = nat

)] =0
(Ll =1+ +1

sizel :: 'a tree = nat
|t = [f + 1

29

size :: 'a tree = nat

O] =0
(Ll =1+ +1

sizel :: 'a tree = nat

[t =11 + 1

—

(Ol =1
({6 =l + |

20




o Height o Height
height :: 'a tree = nat height :: 'a tree = nat
h({)) =0 h({}) =0
h({l, -, 7)) = maz (h()) (h(r)) + 1 h({l, -, 1)) = maz (h(1)) (h(r)) + 1
Warning: h(.) only on slides
— Height o Minimal height
height :: 'a tree = nat min_height :: 'a tree = nat
h({)) =0

W({l 7)) = maz (h(D) (h(r)) + 1
Warning: A(.) only on slides
Lemma A(t) < |/

Lemma [f|; < 20

30
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Minimal height

man_height :: 'a tree = nat
mh(()) = 0
mh({l, _, 1Y) = min (mh(l)) (mh(r)) + 1

31

me
Minimal height

mian_height :: 'a tree = nat
mh(()) = 0
mh({l, _, r)) = min (mh(l)) (mh(r)) + 1

Warning: mh(.) only on slides
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Internal path length

ipl =2 'a tree = nat

ipl () =0
ipl (I, _, ) = ipl I+ |l| + ipl v+ |7]

32

B
Internal path length

ipl :: 'a tree = nat

ipl () =0
ipl (I, _, r) = ipl L+ |l| + ipl v+ |7]

Why relevant?
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@ Complete and Balanced Trees

33
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complete :: 'a tree = bool

Complete tree

(| & |
Complete tree
complete :: 'a tree = bool
complete () = True
complete (I, , 1) =
(complete | N complete r A h(l) = h(r))
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complete :: 'a tree = bool
complete () = True
complete (I, |, 1) =

Complete tree

(complete | N complete r A h(l) = h(r))

Lemma complete t = (mh(t) = h(t))
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Complete tree
complete :: 'a tree = bool
complete () = True
complete (I, _, 1) =
(complete | N complete r A h(l) = h(r))

Lemma complete t = (mh(t) = h(?))

Lemma complete t = |t|; = 2"

34

o
Complete tree

complete :: 'a tree = bool

complete () = True

complete (I, 1) =

(complete | N complete r A h(l) = h(r))

Lemma complete t = (mh(t) = h(t))
Lemma complete t = |t|; = 20

Lemma |t|;, = 2" — complete t

34
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Complete tree

complete :: 'a tree = bool

complete () = True

complete (I, , 1) =

(complete | N complete r A h(l) = h(r))

Lemma complete t = (mh(t) = h(?))
Lemma complete t = |t|; = 2"

Lemma |t|; = 2"Y — complete t
Lemma |t|; = 2™"() — complete t

Corollary — complete t = |t|; < 2"
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o
Complete tree

complete :: 'a tree = bool

complete () = True

complete (I, |, 1) =

(complete | N complete r A h(l) = h(r))

Lemma complete t = (mh(t) = h(t))
Lemma complete t = |t|; = 20

Lemma |t|;, = 2" — complete t
Lemma |f|; = 2™ — complete t

Corollary — complete t = |t|; < 2"V

34
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Complete tree
complete :: 'a tree = bool
complete () = True

complete (I, _, 1) =
(complete | N complete r A h(l) = h(r))

Lemma complete t = (mh(t) = h(?))
Lemma complete t = |t|; = 2"

Lemma |t|; = 2"Y — complete t
Lemma |t|; = 2™"() — complete t

Corollary — complete t = |t|; < 2"V
Corollary = complete t = 2™H(") < ||
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Complete tree: ipl

Lemma A complete tree of height A has internal path
length (h — 2) * 2" + 2.
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Complete tree: ipl
Lemma A complete tree of height A has internal path
length (h — 2) * 2" + 2.

In a search tree, finding the node labelled = takes as
many steps as the path from the root to z is long.
Thus the average time to find an element that is in the
tree is ipl t / |1].
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Complete tree: ipl

Lemma A complete tree of height A has internal path
length (h — 2) * 2" + 2.

In a search tree, finding the node labelled z takes as
many steps as the path from the root to z is long.
Thus the average time to find an element that is in the
tree is ipl t / |1|.

Lemma Let ¢ be a complete search tree of height h.

35




Complete tree: ipl
Lemma A complete tree of height A has internal path
length (h — 2) * 2" + 2.

In a search tree, finding the node labelled = takes as
many steps as the path from the root to z is long.
Thus the average time to find an element that is in the
tree is ipl t / |1].

Lemma Let ¢ be a complete search tree of height A.
The average time to find a random element that is in the
tree is asymptotically h — 2 (as h approaches co):
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Complete tree: ipl
Lemma A complete tree of height A has internal path
length (h — 2) * 2" + 2.

In a search tree, finding the node labelled z takes as
many steps as the path from the root to z is long.
Thus the average time to find an element that is in the
tree is ipl t / |1|.

Lemma Let ¢ be a complete search tree of height h.
The average time to find a random element that is in the
tree is asymptotically o — 2 (as h approaches co):

iplt ) [t ~ T — 2

35

Complete tree: ipl

A problem: (h — 2) * 2" + 2 is only correct if
interpreted over type int, not nat.
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Complete tree: ipl

A problem: (h — 2) * 2" + 2 is only correct if
interpreted over type int, not nat.

Correct version:
Lemma complete t —
int (ipl t) = (int (h(t)) — 2) * 2" 4 2

36
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Balanced tree

balanced :: 'a tree = bool
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Balanced tree

balanced :: 'a tree = bool

balanced t = (h(t) — mh(t) < 1)

37
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Balanced tree

balanced :: 'a tree = bool

balanced t = (h(t) — mh(t) < 1)

Balanced trees have optimal height:
Lemma If balanced t A |t| < |t| then h(t) < h(t)).

37
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Warning

e The terms complete and balanced
are not defined uniquely in the literature.
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Chapter 8

Search Trees
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Most of the material focuses on
BSTs = binary search trees

41
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BSTs represent sets
Any tree represents a set:

set_tree :: 'a tree = 'a set

set_tree () = {}

set_tree (I, x, r) = set_tree [ U {z} U sel_tree r

a2

@)«
BSTs represent sets
Any tree represents a set:

set_tree :: 'a tree = 'a set
set_tree () = {}
set_tree (I, x, r) = sel_tree | U {z} U sel_tree r

A BST represents a set that can be searched in time
O(h(1))
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(bst { A bst T A
(Vxeset_tree . x < a) A
(V z€set tree 1. a < 1))

Type 'a must be in class linorder ("a :: linorder) where
linorder are linear orders (also called total orders).

a3

m)= @)=
BSTs represent sets bst
Any tree represents a set: bst :: 'a tree = bool
set_tree :: 'a tree = 'a set bst () = True
set_tree () = {} bst (I, a, r) =
set_tree (I, x, r) = set_tree [ U {z} U sel_tree r (bst I A bst 1 A
A BST represents a set that can be searched in time g: igii?gji i "Z<< (2))/\
O(h(t)) o
Function set_tree is called an abstraction function
because it maps the implementation
to the abstract mathematical object
m)= @)=
bst bst
bst :: 'a tree = bool bst :: 'a tree = bool
bst () = True bst () = True
bst (I, a, r) = bst (I, a, r) =

(bst I A bst r A
(Vaeset_tree l. x < a) N
(Y z€set tree r. a < 1))

Type 'a must be in class linorder (‘a :: linorder) where
linorder are linear orders (also called total orders).

Note: nat, int and real are in class linorder
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Set interface

An implementation of sets of elements of type ‘o must
provide

Set interface

An implementation of sets of elements of type ‘a must
provide

e An implementation type s

Set interface

An implementation of sets of elements of type ’a must
provide

e An implementation type s

o empty :: s

e insert :: 'a="s="'s
delete :: 'a = 's = s

e isin:: 's= 'a = bool

Map interface

Instead of a set, a search tree can also implement a map
from 'a to 'b:

5
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Map interface

Instead of a set, a search tree can also implement a map
from 'a to 'b:

e An implementation type 'm

e empty 2 'm
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Map interface

Instead of a set, a search tree can also implement a map
from 'a to 'b:

An implementation type 'm

empty = 'm

o update :: 'a = 'b = 'm="m e update :: 'a = b= 'm = "m
e delete :: 'a = 'm = 'm
e lookup :: 'm = 'a = 'b option
45 45
LS

Map interface

Instead of a set, a search tree can also implement a map
from 'a to 'b:

e An implementation type 'm

e empty 2 'm

o update :: 'a = 'b = 'm="m
delete :: 'a = 'm = 'm

e lookup :: 'm = 'a = 'b option

Sets are a special case of maps

a5
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Comparison of elements

We assume that the element type ‘a is a linear order

Instead of using < and < directly:
datatype cmp val = LT | EQ | GT

cmp Ty =

(if z < y then LT else if z = y then EQ else GT)

6




=) _
Implementation

Implementation type: a tree

me _
Implementation

delete x () = ()

empty = Leaf
insert z () = (), 5, ()
insert x (I, a, 1) = (case cmp x a of
LT = (insert x I, a, r)
| EQ = (I, a, 7
| GT = (I, a, insert x 1))
Oy Uy

Implementation

delete z () = ()
delete = (I, a, 1) =
(case emp x a of
LT = (delete z 1, a, 1)
| EQ = if r= () then !
else let (a', ') = del_min rin (I, o', 1)
| GT = (I, a, delete z 1))

50

Implementation

delete x () = ()
delete x (I, a, 1) =
(case cmp = a of
LT = (delete x I, a, 1)
| EQ = if r= () then (
else let (o', 1) = del_min rin (I, o', 1)
| GT = (I, a, delete x 7))

del_min (I, a, r) =
(if [ = () then (a, 1)
else let (z, I') = delmin lin (z, (I'; a, 7}))

50
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©® Unbalanced BST
Correctness

51
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Why is this implementation
correct?

Because empty insert delete isin

simulate  {} U{} —{} €
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Why is this implementation
correct?

Because empty insert delete isin

simulate  {} U{.} —{} €

set_tree empty = {}
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Why is this implementation
correct?

Because empty insert delete isin

simulate  {} U{} —{} €

set_tree empty = {}
sel_tree (insert x t) = set_tree t U {z}
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Why is this implementation

correct?

insert delete isin

Ui}t =11 ¢

set_tree empty = {}
set_tree (insert x t) = sel_tree t U {z}
set_tree (delete x t) = set tree t — {x}

Because empty
simulate  {}
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Why is this implementation

correct?

insert delete 1sin

Ui} =11 €

set_tree empty = {}

sel_tree (insert x t) = set_tree t U {z}
set_tree (delete x t) = set tree t — {z}
isin t = (r € set tree t)

Because empty
simulate  {}
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Why is this implementation
correct?
Because empty insert delete isin
simulate  {} U{.} —{} €

set_tree empty = {}

set_tree (insert x t) = sel_tree t U {z}
set_tree (delete x t) = set tree t — {x}
isin t ¥ = (r € set tree t)

Under the assumption bst ¢
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Also: bst must be invariant

bst empty
bst t = bst (insert x t)
bst t = bst (delete x t)
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Also: bst must be invariant

bst empty
bst t = bst (insert x t)
bst t = bst (delete x t)
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Why is this implementation

correct?

Because empty insert delete isin

simulate  {} U{} —{} €

set_tree empty = {}

sel_tree (insert x t) = set_tree t U {z}
set_tree (delete x t) = set tree t — {z}
isin t = (r € set tree t)

Under the assumption
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