Script generated by TTT

Title: FDS (09.06.2017)

Date: Fri Jun 09 08:34:14 CEST 2017
Duration: 81:16 min

Pages: 93

)=
Principle: Count function calls
For every function fomi=>. .. =>T,=>7T

define a timing function tf: 7, = ... = 7, = nat:

12

_ NS EORESNY = o)) 100% @ Fri0B:34 Q =

© Time

11

=]«

Principle: Count function calls
For every function faomi=> .. =>17,=>T

define a timing function tf: v = ... = 7, = nat:
Translation of defining equations:

e~ ¢

fpi--.pn=e€e ~ tfp...ppo=€+1

12

(m)@]
Principle: Count function calls
For every function fomm=..=>17,=>T
define a timing function tf: 7, = ... = 7, = nat:
Translation of defining equations:

e~ ¢

fpl"‘pn:e ~ t*fpl---pn:e!‘kl

Translation of expressions:

81~ 1y S~ L

gs1...8p~ 1l +---+l+tgsy...s

12

(@)

Principle: Count function calls
For every function faomi=> .. =>17,=>T

define a timing function tf: v = ... = 7, = nat:
Translation of defining equations:

e~ ¢

fpl“'pnze ~ t*fpl---pn:f?""l

Translation of expressions:

81Wt1 Skwtk

gSs1...Sp~ly+ -+t +tgsy...s;

e Variable ~» 0, Constant ~~ 0

12

@)«
Principle: Count function calls
For every function fomm=..=>17,=>T
define a timing function tf: 7, = ... = 7, = nat:
Translation of defining equations:

e~ ¢

fpi...pn=€e ~ tfp...p,=¢€+1

Translation of expressions:

81~ 1y Sp ~= 1y,

gs1...8p~ 1l +---+l+tgsy...s

e Variable ~+ 0, Constant ~ 0
e Constructor calls and primitive operations on bool
and numbers cost 1

12

Example

app [] ys = ys

13

LS LR
Example Example
app [| ys = ys app [] ys = ys
~y ~ny
tapp [| ys =0+ 1 tapp [ys =0+ 1
app (1#1s) ys = x # app s ys
LIS (=)@
Example A compact formulation of
e~ 1
app [| ys = ys
~r t isthe sum of all £.g s; ... s

tapp [ys =0+ 1

app (z#1s) ys = = # app s ys

~ry

t_app (1#£xs) ys

=04+ O0+0+ tapprsys) +1+1

13

such that g s; ... s, is a subterm of e

14

A compact formulation of
e~ t

t isthe sumof all £.g 51 ... ;.
such that ¢ s; ... s, is a subterm of e

If g is

e a constructor or

e a predefined function on bool or numbers
then t.g... = 1.

14

if and case

So far we model a call-by-value semantics

15

if and case

So far we model a call-by-value semantics

Conditionals and case expressions are evaluated lazily.

15

if and case

So far we model a call-by-value semantics

Conditionals and case expressions are evaluated lazily.
Translation:

bh~st SIth SQWtQ

if b then sy else sy ~~ t + (if b then t; else t5)

15

A compact formulation of
e~ t

t isthe sumof all £.g 51 ... ;.
such that ¢ s; ... s, is a subterm of e

If g is

e a constructor or

e a predefined function on bool or numbers
then t.g... = 1.

14

if and case

So far we model a call-by-value semantics

Conditionals and case expressions are evaluated lazily.

Translation:

b~ t
if b then sy else sy ~~ t + (if b then t; else t5)

51~ 11 Sg~ 1y

15

O(.) is enough

16

O(.) is enough

— Reduce all additive constants to 1
Example
tapp (r#xs) ys = tapp xs ys + 1

16

Discussion

e The definition of ¢_f from fcan be automated.

17

Discussion

e The definition of ¢_f from fcan be automated.

e The correctness of t_f could be proved w.r.t.
a semantics that counts computation steps.

17

Discussion

e The definition of ¢_f from fcan be automated.

e The correctness of t_f could be proved w.r.t.
a semantics that counts computation steps.

e Precise complexity bounds (as opposed to O(.))
would require a formal model of (at least) the
compiler and the hardware.

17

Thys/Sorting.thy

Insertion sort complexity

18

LS
merge :: 'a list = 'a list = 'a list

20

L&Y
merge :: 'a list = 'a list = 'a list
merge [| ys = ys
merge 18 [| = s
merge (¢ # 25) (4 # 45) =
(if z < y then o # merge xs (y # ys)
else y # merge (r # xs) ys)

20

LS
merge :: 'a list = 'a list = 'a list
merge [| ys = ys
merge s [| = zs
merge (z 4 75) (y # y5) =
(if z < y then = # merge xs (y # ys)
else y # merge (z # xs) ys)

msort :: 'a list = 'a list

msort rs =
(let n = length xs
inif n <1 then zs
else merge (msort (take (n div 2) zs))
(msort (drop (n div 2) xs)))

20

=)@

Thys/Sorting.thy

Merge sort

21

@)«

LIS
Chapter 7 HOL/Library/Tree.thy
Thys/Tree_Additions.thy
Binary Trees
(m)@] o
Binary trees Tree traversal
inorder :: 'a tree = 'a list

datatype 'a tree = Leaf | Node ('a tree) 'a ('a tree)

26

[

inorder () =
[, , 1) = inorder | Q [2] @ inorder r

inorder (I,

'a tree = 'a list

|

x, 1y = = # preorder | Q preorder r

preorder ::

preorder ()
preorder (1,

'a tree = 'a list

[

z,) = postorder | Q postorder r @ [z

postorder ::

postorder ()
postorder (I,

28

| b LBIES
Size Size
size :: 'a tree = nat size :: 'a tree = nat
()] =0 ()] =0
KLl =1+ |+ 1 KL =1+ +1
| b LBIES
Size Size

size 2 'a tree = nat

)] =0
(Ll =1+ +1

sizel :: 'a tree = nat
|t = [f + 1

29

size :: 'a tree = nat

O] =0
(Ll =1+ +1

sizel :: 'a tree = nat

[t =11 + 1

—

(Ol =1
({6 =l + |

20

o Height o Height
height :: 'a tree = nat height :: 'a tree = nat
h({)) =0 h({}) =0
h({l, -, 7)) = maz (h()) (h(r)) + 1 h({l, -, 1)) = maz (h(1)) (h(r)) + 1
Warning: h(.) only on slides
— Height o Minimal height
height :: 'a tree = nat min_height :: 'a tree = nat
h({)) =0

W({l 7)) = maz (h(D) (h(r)) + 1
Warning: A(.) only on slides
Lemma A(t) < |/

Lemma [f|; < 20

30

31

=)
Minimal height

man_height :: 'a tree = nat
mh(()) = 0
mh({l, _, 1Y) = min (mh(l)) (mh(r)) + 1

31

me
Minimal height

mian_height :: 'a tree = nat
mh(()) = 0
mh({l, _, r)) = min (mh(l)) (mh(r)) + 1

Warning: mh(.) only on slides

31

me)
Internal path length

ipl =2 'a tree = nat

ipl () =0
ipl (I, _,) = ipl I+ |l| + ipl v+ |7]

32

B
Internal path length

ipl :: 'a tree = nat

ipl () =0
ipl (I, _, r) = ipl L+ |l| + ipl v+ |7]

Why relevant?

32

(| & |

@ Complete and Balanced Trees

33

=)@

complete :: 'a tree = bool

Complete tree

(| & |
Complete tree
complete :: 'a tree = bool
complete () = True
complete (I, , 1) =
(complete | N complete r A h(l) = h(r))

=)@

complete :: 'a tree = bool
complete () = True
complete (I, |, 1) =

Complete tree

(complete | N complete r A h(l) = h(r))

Lemma complete t = (mh(t) = h(t))

(| & |
Complete tree
complete :: 'a tree = bool
complete () = True
complete (I, _, 1) =
(complete | N complete r A h(l) = h(r))

Lemma complete t = (mh(t) = h(?))

Lemma complete t = |t|; = 2"

34

o
Complete tree

complete :: 'a tree = bool

complete () = True

complete (I, 1) =

(complete | N complete r A h(l) = h(r))

Lemma complete t = (mh(t) = h(t))
Lemma complete t = |t|; = 20

Lemma |t|;, = 2" — complete t

34

LS
Complete tree

complete :: 'a tree = bool

complete () = True

complete (I, , 1) =

(complete | N complete r A h(l) = h(r))

Lemma complete t = (mh(t) = h(?))
Lemma complete t = |t|; = 2"

Lemma |t|; = 2"Y — complete t
Lemma |t|; = 2™"() — complete t

Corollary — complete t = |t|; < 2"

34

o
Complete tree

complete :: 'a tree = bool

complete () = True

complete (I, |, 1) =

(complete | N complete r A h(l) = h(r))

Lemma complete t = (mh(t) = h(t))
Lemma complete t = |t|; = 20

Lemma |t|;, = 2" — complete t
Lemma |f|; = 2™ — complete t

Corollary — complete t = |t|; < 2"V

34

2%

Complete tree
complete :: 'a tree = bool
complete () = True

complete (I, _, 1) =
(complete | N complete r A h(l) = h(r))

Lemma complete t = (mh(t) = h(?))
Lemma complete t = |t|; = 2"

Lemma |t|; = 2"Y — complete t
Lemma |t|; = 2™"() — complete t

Corollary — complete t = |t|; < 2"V
Corollary = complete t = 2™H(") < ||

34

Complete tree: ipl

Lemma A complete tree of height A has internal path
length (h — 2) * 2" + 2.

35

Complete tree: ipl
Lemma A complete tree of height A has internal path
length (h — 2) * 2" + 2.

In a search tree, finding the node labelled = takes as
many steps as the path from the root to z is long.
Thus the average time to find an element that is in the
tree is ipl t / |1].

35

Complete tree: ipl

Lemma A complete tree of height A has internal path
length (h — 2) * 2" + 2.

In a search tree, finding the node labelled z takes as
many steps as the path from the root to z is long.
Thus the average time to find an element that is in the
tree is ipl t / |1|.

Lemma Let ¢ be a complete search tree of height h.

35

Complete tree: ipl
Lemma A complete tree of height A has internal path
length (h — 2) * 2" + 2.

In a search tree, finding the node labelled = takes as
many steps as the path from the root to z is long.
Thus the average time to find an element that is in the
tree is ipl t / |1].

Lemma Let ¢ be a complete search tree of height A.
The average time to find a random element that is in the
tree is asymptotically h — 2 (as h approaches co):

35

Complete tree: ipl
Lemma A complete tree of height A has internal path
length (h — 2) * 2" + 2.

In a search tree, finding the node labelled z takes as
many steps as the path from the root to z is long.
Thus the average time to find an element that is in the
tree is ipl t / |1|.

Lemma Let ¢ be a complete search tree of height h.
The average time to find a random element that is in the
tree is asymptotically o — 2 (as h approaches co):

iplt) [t ~ T — 2

35

Complete tree: ipl

A problem: (h — 2) * 2" + 2 is only correct if
interpreted over type int, not nat.

36

Complete tree: ipl

A problem: (h — 2) * 2" + 2 is only correct if
interpreted over type int, not nat.

Correct version:
Lemma complete t —
int (ipl t) = (int (h(t)) — 2) * 2" 4 2

36

| b
Balanced tree

balanced :: 'a tree = bool

37

@)«

Balanced tree

balanced :: 'a tree = bool

balanced t = (h(t) — mh(t) < 1)

37

| b
Balanced tree

balanced :: 'a tree = bool

balanced t = (h(t) — mh(t) < 1)

Balanced trees have optimal height:
Lemma If balanced t A |t| < |t| then h(t) < h(t)).

37

@)«

Warning

e The terms complete and balanced
are not defined uniquely in the literature.

38

(| & |

Chapter 8

Search Trees

39

@)«

Most of the material focuses on
BSTs = binary search trees

41

LS
BSTs represent sets
Any tree represents a set:

set_tree :: 'a tree = 'a set

set_tree () = {}

set_tree (I, x, r) = set_tree [U {z} U sel_tree r

a2

@)«
BSTs represent sets
Any tree represents a set:

set_tree :: 'a tree = 'a set
set_tree () = {}
set_tree (I, x, r) = sel_tree | U {z} U sel_tree r

A BST represents a set that can be searched in time
O(h(1))

42

(bst { A bst T A
(Vxeset_tree . x < a) A
(V z€set tree 1. a < 1))

Type 'a must be in class linorder ("a :: linorder) where
linorder are linear orders (also called total orders).

a3

m)= @)=
BSTs represent sets bst
Any tree represents a set: bst :: 'a tree = bool
set_tree :: 'a tree = 'a set bst () = True
set_tree () = {} bst (I, a, r) =
set_tree (I, x, r) = set_tree [U {z} U sel_tree r (bst I A bst 1 A
A BST represents a set that can be searched in time g: igii?gji i "Z<< (2))/\
O(h(t)) o
Function set_tree is called an abstraction function
because it maps the implementation
to the abstract mathematical object
m)= @)=
bst bst
bst :: 'a tree = bool bst :: 'a tree = bool
bst () = True bst () = True
bst (I, a, r) = bst (I, a, r) =

(bst I A bst r A
(Vaeset_tree l. x < a) N
(Y z€set tree r. a < 1))

Type 'a must be in class linorder (‘a :: linorder) where
linorder are linear orders (also called total orders).

Note: nat, int and real are in class linorder

43

Set interface

An implementation of sets of elements of type ‘o must
provide

Set interface

An implementation of sets of elements of type ‘a must
provide

e An implementation type s

Set interface

An implementation of sets of elements of type ’a must
provide

e An implementation type s

o empty :: s

e insert :: 'a="s="'s
delete :: 'a = 's = s

e isin:: 's= 'a = bool

Map interface

Instead of a set, a search tree can also implement a map
from 'a to 'b:

5

(| & |

Map interface

Instead of a set, a search tree can also implement a map
from 'a to 'b:

e An implementation type 'm

e empty 2 'm

@)«

Map interface

Instead of a set, a search tree can also implement a map
from 'a to 'b:

An implementation type 'm

empty = 'm

o update :: 'a = 'b = 'm="m e update :: 'a = b= 'm = "m
e delete :: 'a = 'm = 'm
e lookup :: 'm = 'a = 'b option
45 45
LS

Map interface

Instead of a set, a search tree can also implement a map
from 'a to 'b:

e An implementation type 'm

e empty 2 'm

o update :: 'a = 'b = 'm="m
delete :: 'a = 'm = 'm

e lookup :: 'm = 'a = 'b option

Sets are a special case of maps

a5

@)«

Comparison of elements

We assume that the element type ‘a is a linear order

Instead of using < and < directly:
datatype cmp val = LT | EQ | GT

cmp Ty =

(if z < y then LT else if z = y then EQ else GT)

6

=) _
Implementation

Implementation type: a tree

me _
Implementation

delete x () = ()

empty = Leaf
insert z () = (), 5, ()
insert x (I, a, 1) = (case cmp x a of
LT = (insert x I, a, r)
| EQ = (I, a, 7
| GT = (I, a, insert x 1))
Oy Uy

Implementation

delete z () = ()
delete = (I, a, 1) =
(case emp x a of
LT = (delete z 1, a, 1)
| EQ = if r= () then !
else let (a', ') = del_min rin (I, o', 1)
| GT = (I, a, delete z 1))

50

Implementation

delete x () = ()
delete x (I, a, 1) =
(case cmp = a of
LT = (delete x I, a, 1)
| EQ = if r= () then (
else let (o', 1) = del_min rin (I, o', 1)
| GT = (I, a, delete x 7))

del_min (I, a, r) =
(if [= () then (a, 1)
else let (z, I') = delmin lin (z, (I'; a, 7}))

50

(| & |

©® Unbalanced BST
Correctness

51

=)@

Why is this implementation
correct?

Because empty insert delete isin

simulate {} U{} —{} €

52

(| & |

Why is this implementation
correct?

Because empty insert delete isin

simulate {} U{.} —{} €

set_tree empty = {}

52

=)@

Why is this implementation
correct?

Because empty insert delete isin

simulate {} U{} —{} €

set_tree empty = {}
sel_tree (insert x t) = set_tree t U {z}

52

0o
Why is this implementation

correct?

insert delete isin

Ui}t =11 ¢

set_tree empty = {}
set_tree (insert x t) = sel_tree t U {z}
set_tree (delete x t) = set tree t — {x}

Because empty
simulate {}

52

CIKy
Why is this implementation

correct?

insert delete 1sin

Ui} =11 €

set_tree empty = {}

sel_tree (insert x t) = set_tree t U {z}
set_tree (delete x t) = set tree t — {z}
isin t = (r € set tree t)

Because empty
simulate {}

52

@l% L] L] L] L]
Why is this implementation
correct?
Because empty insert delete isin
simulate {} U{.} —{} €

set_tree empty = {}

set_tree (insert x t) = sel_tree t U {z}
set_tree (delete x t) = set tree t — {x}
isin t ¥ = (r € set tree t)

Under the assumption bst ¢

52

@ . .
Also: bst must be invariant

bst empty
bst t = bst (insert x t)
bst t = bst (delete x t)

53

B

Also: bst must be invariant

bst empty
bst t = bst (insert x t)
bst t = bst (delete x t)

53

CIKy
Why is this implementation

correct?

Because empty insert delete isin

simulate {} U{} —{} €

set_tree empty = {}

sel_tree (insert x t) = set_tree t U {z}
set_tree (delete x t) = set tree t — {z}
isin t = (r € set tree t)

Under the assumption

52

