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@ Logical Formulas

@® Proof Automation

@ Single Step Proofs
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Chapter 4

Logic and Proof
Beyond Equality
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Syntax (in decreasing precedence):

form = (form) | term =term | —form
| form A form | formV form | form — form
|  Vz. form | Jz. form
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Syntax (in decreasing precedence):

form = (form) | term =term | —form
| form A form | formV form | form — form
| V. form | Jx. form
Examples:
~AABVC = (nA)ABVC
s=tNC = (s=t) AN C
ANB=BANA = AN(B=B ANA
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Syntax (in decreasing precedence):

form = (form) | term =term | —form
| form A form | formV form | form — form
|  Vz. form | Jz. form
Examples:
“AABVC = (WA ABVC
s=tNC = (s=t) AN C
ANB=BANA = AN(B=B ANA
Ve. PzAN Qzr = Vo (Pz A Q x)
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Syntax (in decreasing precedence):

form = (form) | term =term | —form
| form A form | formV form | form — form
| Va. form | dx. form
Examples:
~AABVC = (WA ABVC
s=tNC = (s=t) AN C
ANB=BANA = AN(B=B NA
V. PeANQz = Vo (Pz A Q1)

Input syntax: <— (same precedence as —)
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Variable binding convention:

Vey Pxy = V. Vy Pzy
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Warning

Quantifiers have low precedence
and need to be parenthesized (if in some context)

' PAVZ Qz ~ PA(NVz Qz) |
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Mathematical symbols

. and their ascii representations:

W \<forall> ALL
3 \<exists> EX
A \<lambda> yA
— -

«— <=>

A /\ &

V \/ I

- \<not> ~
# \<noteqg> "=
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LIES! LGS
Sets over type ‘a Sets over type ‘a
'a set 'a set
e {}, {e, .. en}
LIES! LGS
Sets over type ‘a Sets over type ‘a
'a set 'a set
c ( {an e O {en o)

ecc A, ACBH
e AUB, ANB, A-B - A
e {z. P} where zis a variable
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ecc A, ACDB
e AUB, ANB A-B —A
e {z. P} where zis a variable
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Sets over type ‘a

'a set

{}, {e, -.,en}
ec A, ACDHB

AUB, AnB A-B -—-A
{z. P} where zis a variable

€ \<in> :

C \<subseteq> <=

U \<union> Un

N \<inter> Int
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@ Proof Automation
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stmp and auto

simp: rewriting and a bit of arithmetic
auto: rewriting and a bit of arithmetic, logic and sets
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stmp and auto

simp: rewriting and a bit of arithmetic
auto: rewriting and a bit of arithmetic, logic and sets

e Show you where they got stuck
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stmp and auto

simp: rewriting and a bit of arithmetic

auto: rewriting and a bit of arithmetic, logic and sets

e Show you where they got stuck
e highly incomplete
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stmp and auto

simp: rewriting and a bit of arithmetic

auto: rewriting and a bit of arithmetic, logic and sets
e Show you where they got stuck
e highly incomplete

o Extensible with new simp-rules

Exception: auto acts on all subgoals
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fastforce

e rewriting, logic, sets, relations and a bit of arithmetic
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fastforce

e rewriting, logic, sets, relations and a bit of arithmetic

e incomplete but better than auto.
e Succeeds or fails

104
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blast

A complete proof search procedure for FOL ...
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blast

o A complete proof search procedure for FOL ...

1 1"

e ... but (almost) without "=
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blast

A complete proof search procedure for FOL ...
... but (almost) without "="

Covers logic, sets and relations

Succeeds or fails
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Sledgehammer
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=& hitecture:

= &/ hitecture:

Isabelle Isabelle
Goal \L
& filtered library
external external
ATPs! ATPs!
L Automatic Theorem Provers L Automatic Theorem Provers
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= @ hitecture: = &/ hitecture:
Isabelle Isabelle
Goal \L T Goal
. . Proof . . J, T Proof
& filtered library & filtered library
external external
ATPs! ATPs!

L Automatic Theorem Provers
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Characteristics:
e Sometimes it works,
e sometimes it doesn't.

Do you feel lucky?

LAutomatic Theorem Provers
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by(proof-method
( ) @ Proof Automation
~ Automating Arithmetic
apply(proof-method)
done
& TIT =S @D Z W) 97% W Fri08:d4 Q

@ Proof Automation
Automating Arithmetic
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Linear formulas
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Linear formulas Linear formulas
Only: Only:
variables variables
numbers numbers
number x variable
+, —
= <, <
- A\, V, —,
(m)(«) (m)«)
Linear formulas Extended linear formulas
Only:
variables
numbers Also allowed:

number % variable
_|_, —_

= <, <

=, N\, V, —, &——

Examples

Linear: Ixr+oxy<z— o<z
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min, mazx

even, odd

t div n, t mod n where n is a number
conversion functions

nat, floor, ceiling, abs
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Automatic proof

of arithmetic formulas
by arith
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Automatic proof

of arithmetic formulas
by arith

Proof method arith tries to prove arithmetic formulas.
e Succeeds or fails

e Decision procedure for extended linear formulas
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Automatic proof
of arithmetic formulas

by arith

Proof method arith tries to prove arithmetic formulas.
e Succeeds or fails
e Decision procedure for extended linear formulas
e Nonlinear subterms are viewed as (new) variables.

Example: 2 < zxzxx+ fy isviewedas =z < u + v
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Automatic proof
of arithmetic formulas

by (simp add: algebra_simps)
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Automatic proof
of arithmetic formulas

by (simp add: algebra_simps)

e The lemmas list algebra_simps helps to simplify
arithmetic formulas
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Automatic proof
of arithmetic formulas

by (simp add: algebra_simps)

e The lemmas list algebra_simps helps to simplify
arithmetic formulas

e |t contains associativity, commutativity and
distributivity of + and x.
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Automatic proof

of arithmetic formulas
by (simp add: field_simps)
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Automatic proof

of arithmetic formulas
by (simp add: field simps)

e The lemmas list field simps extends algebra_simps
by rules for /
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Automatic proof

of arithmetic formulas
by (simp add: field_simps)

e The lemmas list field_simps extends algebra_simps
by rules for /

e Can only cancel common terms in a quotient,
eg.zxy/ (% 2)
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o _
Automatic proof

of arithmetic formulas
by (simp add: field simps)

e The lemmas list field simps extends algebra_simps
by rules for /

e Can only cancel common terms in a quotient,
eg. xxy/ (zx*2),if £# 0can be proved.
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Numerals

Numerals are syntactically different from Suc-terms.
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Numerals

Numerals are syntactically different from Suc-terms.
Therefore numerals do not match Suc-patterns.
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Numerals

Numerals are syntactically different from Suc-terms.
Therefore numerals do not match Suc-patterns.

Example
Exponentiation = ~ n is defined by Swuc-recursion on n.

115

Numerals

Numerals are syntactically different from Suc-terms.
Therefore numerals do not match Suc-patterns.
Example

Exponentiation = " n is defined by Suc-recursion on n.
Therefore  ° 2 is not simplified by simp and auto.

Numerals can be converted into Suc-terms with rule
numeral_eq_Suc
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Numerals

Numerals are syntactically different from Suc-terms.
Therefore numerals do not match Suc-patterns.

Example

Exponentiation = ~ n is defined by Swuc-recursion on n.
Therefore  ° 2 is not simplified by simp and auto.

Numerals can be converted into Suc-terms with rule
numeral_eq_Suc

Example
simp add: numeral_eq Suc rewrites z =~ 2to v * x
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Auto_Proof_Demo.thy
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What are these 7-variables ?

After you have finished a proof, Isabelle turns all free
variables V' in the theorem into ?V.
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After you have finished a proof, Isabelle turns all free
variables V' in the theorem into ?V.

Example: theorem conjI: [?P; ?Q)] = ?P A ()
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What are these 7-variables ?

After you have finished a proof, Isabelle turns all free
variables V' in the theorem into ?V.
Example: theorem conjI: [?P; 7Q)] = P A 2()

These 7-variables can later be instantiated:
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What are these 7-variables 7
After you have finished a proof, Isabelle turns all free
variables V' in the theorem into ?V.
Example: theorem conjI: [?P; ?Q)] = ?P A ()

These ?-variables can later be instantiated:
e By hand:

conjIfof "a=b" "False"] ~
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What are these 7-variables ?

After you have finished a proof, Isabelle turns all free
variables V' in the theorem into ?V.

Example: theorem conjI: [?P; 7Q)] = P A 2()
These ?-variables can later be instantiated:
e By hand:

conjIfof "a=b" "False"] ~»
[a = b; False] = a = b A False

119
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What are these 7-variables ?

After you have finished a proof, Isabelle turns all free
variables V' in the theorem into ?V.
Example: theorem conjI: [?P; ?Q)] = ?P A ()

These 7-variables can later be instantiated:
e By hand:

conjIfof "a=b" "False"] ~
[a = b; False] = a = b A Fulse

e By unification:
unifying ¢P A 20 with a=b A False

119
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Rule application

120

=)@

Rule application
rule: [¢P; Q] = “P A ?Q
subgoal: 1. ... = A A B

Example:

120
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Rule application Rule application
Example: rule: [¢P; 2Q] = 7P A 2Q) Example: rule: [¢P; Q] = 7P A 2Q)
subgoal: 1. ... = A A B subgoal: 1. ... = A A B
Result: 1. ... = A Result: 1. ... = A
2. ... =D 2. ... = 1B
The general case: applying rule [ Ay; ... ; A, ] = A The general case: applying rule [ Ay; ... ; 4, ] = A
to subgoal ... = C: to subgoal ... = C:
e Unify A and C
()@ =)@
Rule application Rule application
Example: rule: [¢P; 2Q] = 7P A 2Q) Example: rule: [¢P; Q] = 7P A 2Q)
subgoal: 1. ... = A A B subgoal: 1. ... = A A B
Result: 1. ... —= A Result: 1. ... = A
2. ... =D 2. ... = 1B
The general case: applying rule [ Ay; ... ; A, ] = A The general case: applying rule [ Ay; ... ; 4, ] = A
to subgoal ... = C: to subgoal ... = C:
e Unify A and C e Unify A and C
o Replace C'with n new subgoals A; ... A, o Replace C'with n new subgoals A4, ... A,
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apply(rule xyz)
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Rule application
Example: rule: [¢P; 2Q] = 7P A 2Q)

subgoal: 1. ... = A A B
Result: 1. ... = A
2. ... =D
The general case: applying rule [ Ay; ... ; A, ] = A
to subgoal ... = C:

e Unify A and C
o Replace C'with n new subgoals A; ... A,

apply(rule zyz)
“Backchaining”
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Typical backwards rules

P A 7Q
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Typical backwards rules

roQ .
m conjl
7P = 7Q)

P 2 P!

121

oo

Typical backwards rules

P A 20

7P — 2Q
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Typical backwards rules
°P 20

———-=~conjl

7P A 70

P — 20) . Az 2Pz
op— o0 Pl g ep g 21
2P —s 20

P = 70

Q= 7P
Y iffI
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Forward proof: OF

If ris a theorem A — B
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Forward proof: OF

If ris a theorem A — B
and s is a theorem that unifies with A4
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Forward proof: OF

If ris a theorem A — B
and s is a theorem that unifies with A then

rlOF 4]

is the theorem obtained by proving A with s.
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Forward proof: OF

If ris a theorem A — B
and s is a theorem that unifies with A then

rlOF 4]
is the theorem obtained by proving A with s.
Example: theorem refl: 7t = ¢t

conjI[OF refl[of "a"l]
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Forward proof: OF

If ris a theorem A — B
and s is a theorem that unifies with A then

rlOF s]
is the theorem obtained by proving A with s.
Example: theorem refl: #t = %t

conjI[OF refl[of "a"]]

s

0= a=aN 70

122

ey
g general case:

If ris a theorem [ Ay; ...; A, ] = A
and 7y, ..., 1, (m<n) are theorems then

rfOF r ... T

is the theorem obtained
by proving A ... A,, with 1 ... 1,,.
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—we general case:

If ris a theorem [ Ay; ...; 4, ] = A
and 1, ..., 1, (m<n) are theorems then
rOF r ... 1]

is the theorem obtained
by proving Ay ... A,, with r ... 7,,.

Example: theorem refl: %t = %t
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—me general case:

If ris a theorem [ Ay; ...; A, ] = A
and 7y, ..., 1, (m<n) are theorems then

rOF ... 1]

is the theorem obtained
by proving A ... A,, with 1 ... 1,,.

Example: theorem refl: 7t = %t

conjI[OF refllof "a"] refll[of "b"]]
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m|a
—we general case:

If ris a theorem [ Ay; ...; 4, ] = A
and 1, ..., 1, (m<n) are theorems then

rOF r ... 1]

is the theorem obtained
by proving Ay ... A,, with r ... 7,,.

Example: theorem refl: %t = ¢t
conjI[0F refll[of "a"] refl[of "b"]]
a=aANb=>
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From now on: ¢ mostly suppressed on slides
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Single_Step_Demo.thy
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Single_Step_Demo.thy
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show R

proof cases
assume P

show I ...
next
assume — P

show R ...
ged

Case distinction

have PV () ...
then show R
proof

assume P

show R ...
next
assume ()

show R ...
ged

142




