Script generated by TTT

Title: FDS (19.05.2017)

Date: Fri May 19 08:30:08 CEST 2017

Duration: 86:27 min

Pages: 86

- **6** Logical Formulas
- **6** Proof Automation
- Single Step Proofs

■ ⑤ 🔽 🛅 🕙 〈〉 🎺 🖇 🥏 •1)) 100% 🖦 Fri 08:30 🔍 😑

Chapter 4

Logic and Proof Beyond Equality

(

Syntax (in decreasing precedence):

Syntax (in decreasing precedence):

Examples:

$$\neg A \land B \lor C \equiv ((\neg A) \land B) \lor C$$

Syntax (in decreasing precedence):

$$form ::= (form) | term = term | \neg form \\ | form \land form | form \lor form | form \longrightarrow form \\ | \forall x. form | \exists x. form$$

Examples:

$$\neg A \land B \lor C \equiv ((\neg A) \land B) \lor C$$

 $s = t \land C \equiv (s = t) \land C$

07

Syntax (in decreasing precedence):

Examples:

$$\neg A \land B \lor C \equiv ((\neg A) \land B) \lor C$$

$$s = t \land C \equiv (s = t) \land C$$

$$A \land B = B \land A \equiv A \land (B = B) \land A$$

Syntax (in decreasing precedence):

Examples:

$$\neg A \land B \lor C \equiv ((\neg A) \land B) \lor C$$

$$s = t \land C \equiv (s = t) \land C$$

$$A \land B = B \land A \equiv A \land (B = B) \land A$$

$$\forall x. \ P \ x \land Q \ x \equiv \forall x. \ (P \ x \land Q \ x)$$

Syntax (in decreasing precedence):

Examples:

$$\neg A \land B \lor C \equiv ((\neg A) \land B) \lor C$$

$$s = t \land C \equiv (s = t) \land C$$

$$A \land B = B \land A \equiv A \land (B = B) \land A$$

$$\forall x. P x \land Q x \equiv \forall x. (P x \land Q x)$$

Input syntax: \longleftrightarrow (same precedence as \longrightarrow)

Variable binding convention:

$$\forall x y. P x y \equiv \forall x. \forall y. P x y$$

98

Warning

Quantifiers have low precedence and need to be parenthesized (if in some context)

$$! P \wedge \forall x. Q x \rightsquigarrow P \wedge (\forall x. Q x)$$

Mathematical symbols

... and their ascii representations:

(

Sets over type 'a

'a set

Sets over type 'a

'a set

• $\{\}, \{e_1, \ldots, e_n\}$

101

Sets over type 'a

'a set

- {}, $\{e_1, \ldots, e_n\}$
- $e \in A$, $A \subseteq B$
- $A \cup B$, $A \cap B$, A B, -A
- $\{x. P\}$ where x is a variable

Sets over type 'a

'a set

- $\{\}, \{e_1, \ldots, e_n\}$
- $e \in A$, $A \subseteq B$
- $A \cup B$, $A \cap B$, A B, -A
- $\{x. P\}$ where x is a variable
- ...

Sets over type 'a

'a set

- $\{\}, \{e_1, \ldots, e_n\}$
- $e \in A$, $A \subseteq B$
- $A \cup B$, $A \cap B$, A B, -A
- $\{x. P\}$ where x is a variable
- ...

- **5** Logical Formulas
- **6** Proof Automation
- Single Step Proofs

101

simp and auto

simp: rewriting and a bit of arithmetic

auto: rewriting and a bit of arithmetic, logic and sets

simp and auto

simp: rewriting and a bit of arithmetic

auto: rewriting and a bit of arithmetic, logic and sets

• Show you where they got stuck

$simp \ {\rm and} \ auto$

simp and auto

simp: rewriting and a bit of arithmetic

auto: rewriting and a bit of arithmetic, logic and sets

- Show you where they got stuck
- highly incomplete

simp: rewriting and a bit of arithmetic

auto: rewriting and a bit of arithmetic, logic and sets

- Show you where they got stuck
- highly incomplete
- Extensible with new simp-rules

Exception: auto acts on all subgoals

103

103

fastforce

fastforce

• rewriting, logic, sets, relations and a bit of arithmetic.

- rewriting, logic, sets, relations and a bit of arithmetic.
- incomplete but better than *auto*.
- Succeeds or fails

blast

blast

• A complete proof search procedure for FOL ...

• A complete proof search procedure for FOL ...

• ... but (almost) without "="

blast

Sledgehammer

- ... but (almost) without "="
- Covers logic, sets and relations
- Succeeds or fails

10

¹Automatic Theorem Provers

10

Linear formulas

Automating Arithmetic

109

Linear formulas

Linear formulas

Only:

variables numbers Only:

variables

numbers

number * variable

$$+, =, \leq, <$$

 \neg , \land , \lor , \longrightarrow , \longleftrightarrow

Linear formulas

Only:

variables

numbers

number * variable

$$=$$
, \leq , <

 $\neg, \, \land, \, \lor, \, \longrightarrow, \, \longleftrightarrow$

Examples

Linear: $3 * x + 5 * y \le z \longrightarrow x < z$

110

Extended linear formulas

Also allowed:

min, max

even, odd

 $t \ div \ n$, $t \ mod \ n$ where n is a number

conversion functions

nat, floor, ceiling, abs

Automatic proof of arithmetic formulas

by arith

Automatic proof of arithmetic formulas

by arith

Proof method *arith* tries to prove arithmetic formulas.

- Succeeds or fails
- Decision procedure for extended linear formulas

112

11

Automatic proof of arithmetic formulas

by arith

Proof method *arith* tries to prove arithmetic formulas.

- Succeeds or fails
- Decision procedure for extended linear formulas
- Nonlinear subterms are viewed as (new) variables. Example: $x \le x * x + f y$ is viewed as $x \le u + v$

Automatic proof of arithmetic formulas

by (simp add: algebra_simps)

Automatic proof of arithmetic formulas

by (simp add: algebra_simps)

• The lemmas list *algebra_simps* helps to simplify arithmetic formulas

Automatic proof of arithmetic formulas

by (simp add: algebra_simps)

- The lemmas list *algebra_simps* helps to simplify arithmetic formulas
- It contains associativity, commutativity and distributivity of + and *.

113

113

Automatic proof of arithmetic formulas

by (simp add: field_simps)

Automatic proof of arithmetic formulas

by (simp add: field_simps)

 The lemmas list field_simps extends algebra_simps by rules for /

Automatic proof of arithmetic formulas

by (simp add: field_simps)

- \bullet The lemmas list $field_simps$ extends $algebra_simps$ by rules for /
- Can only cancel common terms in a quotient, e.g. x * y / (x * z),

Automatic proof of arithmetic formulas

by (simp add: field_simps)

- The lemmas list field_simps extends algebra_simps by rules for /
- Can only cancel common terms in a quotient, e.g. x * y / (x * z), if $x \ne 0$ can be proved.

114

Numerals

Numerals are syntactically different from Suc-terms.

114

Numerals

Numerals are syntactically different from Suc-terms. Therefore numerals do not match Suc-patterns.

Numerals

Numerals are syntactically different from Suc-terms. Therefore numerals do not match Suc-patterns.

Example

Exponentiation $x \hat{n}$ is defined by Suc-recursion on n.

Numerals

Numerals are syntactically different from Suc-terms. Therefore numerals do not match Suc-patterns.

Example

Exponentiation $x \ \hat{} \ n$ is defined by Suc-recursion on n. Therefore $x \ \hat{} \ 2$ is not simplified by simp and auto.

Numerals can be converted into Suc-terms with rule $numeral_eg_Suc$

115

115

Numerals

Numerals are syntactically different from Suc-terms. Therefore numerals do not match Suc-patterns.

Example

Exponentiation x $\hat{\ }n$ is defined by Suc-recursion on n. Therefore x $\hat{\ }2$ is not simplified by simp and auto.

Numerals can be converted into Suc-terms with rule $numeral_eg_Suc$

Example

 $simp\ add$: $numeral_eq_Suc\ rewrites\ x ^ 2 to\ x*x$

Auto_Proof_Demo.thy

What are these ?-variables ?

After you have finished a proof, Isabelle turns all free variables $\,V\,$ in the theorem into $\,?V.$

What are these ?-variables ?

After you have finished a proof, Isabelle turns all free variables $\,V\,$ in the theorem into $\,?V.$

Example: theorem conjI: $[P] : P : P : P \land P$

110

What are these ?-variables?

After you have finished a proof, Isabelle turns all free variables V in the theorem into ?V.

These ?-variables can later be instantiated:

119

What are these ?-variables ?

After you have finished a proof, Isabelle turns all free variables V in the theorem into ?V.

Example: theorem conjI: $[PP; PQ] \Longrightarrow P \land PQ$

These ?-variables can later be instantiated:

 By hand: conjI[of "a=b" "False"] ~

What are these ?-variables ?

After you have finished a proof, Isabelle turns all free variables V in the theorem into ?V.

Example: theorem conjI: $[P] : P : P \to P \land P$

These ?-variables can later be instantiated:

• By hand:

conjI[of "a=b" "False"]
$$\rightsquigarrow$$
 [$a = b$; $False$] $\Longrightarrow a = b \land False$

What are these ?-variables ?

After you have finished a proof, Isabelle turns all free variables $\,V\,$ in the theorem into $\,?V.$

Example: theorem conjI: $[PP; PQ] \Longrightarrow P \land PQ$

These ?-variables can later be instantiated:

• By hand:

conjI[of "a=b" "False"]
$$\rightarrow$$
 $[a = b; False] \implies a = b \land False$

• By unification: unifying $?P \land ?Q$ with $a=b \land False$

11

Rule application

119

Rule application

Example: rule: $[P; P] \Longrightarrow P \land P$ subgoal: $P \land P$

Rule application

Example: rule: $[P; P] \Longrightarrow P \land P$ subgoal: $1 \ldots \Longrightarrow A \land B$

Result: $1. \ldots \Longrightarrow A$ $2. \ldots \Longrightarrow B$

The general case: applying rule $[\![A_1; \ldots; A_n]\!] \Longrightarrow A$ to subgoal $\ldots \Longrightarrow C$:

Rule application

Example: rule: $[P; P] \Longrightarrow P \land P$ subgoal: $1 \ldots \Longrightarrow A \land B$

Result: $1. \ldots \Longrightarrow A$ $2. \ldots \Longrightarrow B$

The general case: applying rule $[\![A_1; \ldots; A_n]\!] \Longrightarrow A$ to subgoal $\ldots \Longrightarrow C$:

ullet Unify A and C

12

Rule application

Example: rule: $[P; P] \Longrightarrow P \land P$ subgoal: $1 \cdot \cdot \cdot \Longrightarrow A \land B$

Result: $1. \ldots \Longrightarrow A$ $2. \ldots \Longrightarrow B$

The general case: applying rule $[\![A_1; \ldots; A_n]\!] \Longrightarrow A$ to subgoal $\ldots \Longrightarrow C$:

- ullet Unify A and C
- Replace C with n new subgoals $A_1 \ldots A_n$

Rule application

Example: rule: $[P; P] \Longrightarrow P \land P$ subgoal: $A \land B$

Result: $1. \ldots \Longrightarrow A$ $2. \ldots \Longrightarrow B$

The general case: applying rule $[\![A_1; \ldots; A_n]\!] \Longrightarrow A$ to subgoal $\ldots \Longrightarrow C$:

- ullet Unify A and C
- Replace C with n new subgoals $A_1 \ldots A_n$

apply(rule xyz)

Rule application

Example: rule: $[P; P] \Longrightarrow P \land P$ subgoal: $P \land P$

Result: $1. \ldots \Longrightarrow A$ $2. \ldots \Longrightarrow B$

The general case: applying rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ to subgoal $\ldots \Longrightarrow C$:

- $\bullet \ \ {\rm Unify} \ A \ {\rm and} \ C$
- Replace C with n new subgoals $A_1 \ldots A_n$

apply(rule xyz)

"Backchaining"

Typical backwards rules

$$\frac{?P \quad ?Q}{?P \land \ ?Q} \operatorname{conjI}$$

121

Typical backwards rules

$$\frac{?P}{?P \land ?Q} \operatorname{conj} \mathbf{I}$$

$$\frac{?P \Longrightarrow ?Q}{?P \longrightarrow ?Q} \, \mathrm{impI}$$

Typical backwards rules

$$\frac{?P}{?P \land ?Q} \operatorname{conj} \mathbf{I}$$

$$\frac{?P \Longrightarrow ?Q}{?P \longrightarrow ?Q} \text{ impI} \qquad \frac{\bigwedge x. ?P x}{\forall x. ?P x} \text{ allI}$$

Typical backwards rules

$$\frac{?P}{?P \land ?Q}$$
 conjI

$$\frac{?P \Longrightarrow ?Q}{?P \longrightarrow ?Q} \text{impI} \qquad \frac{\bigwedge x. ?P \ x}{\forall \ x. ?P \ x} \text{allI}$$

$$\frac{?P \Longrightarrow ?Q \quad ?Q \Longrightarrow ?P}{?P = ?Q} \text{ iffI}$$

Forward proof: OF

If r is a theorem $A \Longrightarrow B$

12

Forward proof: OF

If r is a theorem $A \Longrightarrow B$ and s is a theorem that unifies with A

Forward proof: OF

If r is a theorem $A \Longrightarrow B$ and s is a theorem that unifies with A then

is the theorem obtained by proving A with s.

Forward proof: OF

If r is a theorem $A \Longrightarrow B$ and s is a theorem that unifies with A then

is the theorem obtained by proving A with s.

Example: theorem refl: ?t = ?t

Forward proof: OF

If r is a theorem $A \Longrightarrow B$ and s is a theorem that unifies with A then

is the theorem obtained by proving A with s.

Example: theorem refl: ?t = ?t

conjI[OF refl[of "a"]]

122

12

Forward proof: OF

If r is a theorem $A \Longrightarrow B$ and s is a theorem that unifies with A then

is the theorem obtained by proving A with s.

Example: theorem refl: ?t = ?t

$$\stackrel{\sim}{?Q} \Longrightarrow a = a \land ?Q$$

general case:

If r is a theorem $[\![A_1; \ldots; A_n]\!] \Longrightarrow A$ and r_1, \ldots, r_m $(m \le n)$ are theorems then

$$r[OF \ r_1 \ \dots \ r_m]$$

is the theorem obtained by proving $A_1 \ldots A_m$ with $r_1 \ldots r_m$.

general case:

If r is a theorem $[A_1; \ldots; A_n] \Longrightarrow A$ and $r_1, \ldots, r_m \ (m \le n)$ are theorems then

$$r[OF \ r_1 \ \dots \ r_m]$$

is the theorem obtained by proving $A_1 \ldots A_m$ with $r_1 \ldots r_m$.

Example: theorem refl: ?t = ?t

general case:

If r is a theorem $[\![A_1; \ldots; A_n]\!] \Longrightarrow A$ and $r_1, \ldots, r_m \ (m \le n)$ are theorems then

$$r[OF \ r_1 \ \dots \ r_m]$$

is the theorem obtained by proving $A_1 \ldots A_m$ with $r_1 \ldots r_m$.

Example: theorem refl: ?t = ?t

conjI[OF refl[of "a"] refl[of "b"]]

123

general case:

If r is a theorem $[A_1; \ldots; A_n] \Longrightarrow A$ and r_1, \ldots, r_m ($m \le n$) are theorems then

$$r[OF \ r_1 \ \dots \ r_m]$$

is the theorem obtained by proving $A_1 \ldots A_m$ with $r_1 \ldots r_m$.

Example: theorem refl: ?t = ?t

conjI[OF refl[of "a"] refl[of "b"]]

$$a = a \wedge b = b$$

From now on: ? mostly suppressed on slides

Single_Step_Demo.thy

Single_Step_Demo.thy

Case distinction

```
show R
                     have P \vee Q \dots
proof cases
                     then show R
 assume P
                     proof
                       assume P
 show R ...
                       show R ...
next
 assume \neg P
                     next
                       assume Q
 show R \dots
qed
                       show R ...
                     qed
```