Script generated by TTT

Title: FDS (19.05.2017)
Date: Fri May 19 08:30:08 CEST 2017
Duration: 86:27 min

Pages: 86

(| & |

@ Logical Formulas

@® Proof Automation

@ Single Step Proofs

95

& TIT RSN OIS IS = o)) 100% EW} Fri08:30 Q

@«

Chapter 4

Logic and Proof
Beyond Equality

94

@)«

Syntax (in decreasing precedence):

form = (form) | term =term | —form
| form A form | formV form | form — form
| Vz. form | Jz. form

97

(| & |

Syntax (in decreasing precedence):

=)@

Syntax (in decreasing precedence):

form = (form) | term =term | —form form = (form) | term =term | —form
| form A form | formV form | form — form | form A form | formV form | form — form
| Va. form | dx. form | V. form | dx. form
Examples: Examples:
~AABVC = (nA)ABVC “AABVC = (-A)ABVC
s=tNC = (s=t) AN C
LIS LD

Syntax (in decreasing precedence):

form = (form) | term =term | —form
| form A form | formV form | form — form
| V. form | Jx. form
Examples:
~AABVC = (nA)ABVC
s=tNC = (s=t) AN C
ANB=BANA = AN(B=B ANA

a7

Syntax (in decreasing precedence):

form = (form) | term =term | —form
| form A form | formV form | form — form
| Vz. form | Jz. form
Examples:
“AABVC = (WA ABVC
s=tNC = (s=t) AN C
ANB=BANA = AN(B=B ANA
Ve. PzAN Qzr = Vo (Pz A Q x)

97

(| & |

Syntax (in decreasing precedence):

form = (form) | term =term | —form
| form A form | formV form | form — form
| Va. form | dx. form
Examples:
~AABVC = (WA ABVC
s=tNC = (s=t) AN C
ANB=BANA = AN(B=B NA
V. PeANQz = Vo (Pz A Q1)

Input syntax: <— (same precedence as —)

a7

=)@

Variable binding convention:

Vey Pxy = V. Vy Pzy

98

(| & |

Warning

Quantifiers have low precedence
and need to be parenthesized (if in some context)

' PAVZ Qz ~ PA(NVz Qz) |

99

=)@

Mathematical symbols

. and their ascii representations:

W \<forall> ALL
3 \<exists> EX
A \<lambda> yA
— -

«— <=>

A /\ &

V \/ I

- \<not> ~
\<noteqg> "=

100

LIES! LGS
Sets over type ‘a Sets over type ‘a
'a set 'a set
e {}, {e, .. en}
LIES! LGS
Sets over type ‘a Sets over type ‘a
'a set 'a set
c ({an e O {en o)

ecc A, ACBH
e AUB, ANB, A-B - A
e {z. P} where zis a variable

101

ecc A, ACDB
e AUB, ANB A-B —A
e {z. P} where zis a variable

101

Sets over type ‘a

'a set

{}, {e, -.,en}
ec A, ACDHB

AUB, AnB A-B -—-A
{z. P} where zis a variable

€ \<in> :

C \<subseteq> <=

U \<union> Un

N \<inter> Int

101

@ Proof Automation

102

stmp and auto

simp: rewriting and a bit of arithmetic
auto: rewriting and a bit of arithmetic, logic and sets

103

stmp and auto

simp: rewriting and a bit of arithmetic
auto: rewriting and a bit of arithmetic, logic and sets

e Show you where they got stuck

103

(| & |

stmp and auto

simp: rewriting and a bit of arithmetic

auto: rewriting and a bit of arithmetic, logic and sets

e Show you where they got stuck
e highly incomplete

103

@)«

stmp and auto

simp: rewriting and a bit of arithmetic

auto: rewriting and a bit of arithmetic, logic and sets
e Show you where they got stuck
e highly incomplete

o Extensible with new simp-rules

Exception: auto acts on all subgoals

(| & |

fastforce

e rewriting, logic, sets, relations and a bit of arithmetic

104

@)«

fastforce

e rewriting, logic, sets, relations and a bit of arithmetic

e incomplete but better than auto.
e Succeeds or fails

104

103

(| & |

blast

A complete proof search procedure for FOL ...

105

@)«

blast

o A complete proof search procedure for FOL ...

1 1"

e ... but (almost) without "=

105

(| & |

blast

A complete proof search procedure for FOL ...
... but (almost) without "="

Covers logic, sets and relations

Succeeds or fails

105

@)«

Sledgehammer

106

=& hitecture:

= &/ hitecture:

Isabelle Isabelle
Goal \L
& filtered library
external external
ATPs! ATPs!
L Automatic Theorem Provers L Automatic Theorem Provers
107 107
= @ hitecture: = &/ hitecture:
Isabelle Isabelle
Goal \L T Goal
. . Proof . . J, T Proof
& filtered library & filtered library
external external
ATPs! ATPs!

L Automatic Theorem Provers

107

Characteristics:
e Sometimes it works,
e sometimes it doesn't.

Do you feel lucky?

LAutomatic Theorem Provers

107

by(proof-method
() @ Proof Automation
~ Automating Arithmetic
apply(proof-method)
done
& TIT =S @D Z W) 97% W Fri08:d4 Q

@ Proof Automation
Automating Arithmetic

109

Linear formulas

110

LJCY

(m)«)
Linear formulas Linear formulas
Only: Only:
variables variables
numbers numbers
number x variable
+, —
= <, <
- A\, V, —,
(m)(«) (m)«)
Linear formulas Extended linear formulas
Only:
variables
numbers Also allowed:

number % variable
|, —_

= <, <

=, N\, V, —, &——

Examples

Linear: Ixr+oxy<z— o<z

110

min, mazx

even, odd

t div n, t mod n where n is a number
conversion functions

nat, floor, ceiling, abs

111

(| & |

Automatic proof

of arithmetic formulas
by arith

112

@)«

Automatic proof

of arithmetic formulas
by arith

Proof method arith tries to prove arithmetic formulas.
e Succeeds or fails

e Decision procedure for extended linear formulas

112

| b
Automatic proof
of arithmetic formulas

by arith

Proof method arith tries to prove arithmetic formulas.
e Succeeds or fails
e Decision procedure for extended linear formulas
e Nonlinear subterms are viewed as (new) variables.

Example: 2 < zxzxx+ fy isviewedas =z < u + v

112

@)«

Automatic proof
of arithmetic formulas

by (simp add: algebra_simps)

113

(| & |

Automatic proof
of arithmetic formulas

by (simp add: algebra_simps)

e The lemmas list algebra_simps helps to simplify
arithmetic formulas

113

=)@

Automatic proof
of arithmetic formulas

by (simp add: algebra_simps)

e The lemmas list algebra_simps helps to simplify
arithmetic formulas

e |t contains associativity, commutativity and
distributivity of + and x.

113

(| & |

Automatic proof

of arithmetic formulas
by (simp add: field_simps)

114

=)@

Automatic proof

of arithmetic formulas
by (simp add: field simps)

e The lemmas list field simps extends algebra_simps
by rules for /

114

LIES!]
Automatic proof

of arithmetic formulas
by (simp add: field_simps)

e The lemmas list field_simps extends algebra_simps
by rules for /

e Can only cancel common terms in a quotient,
eg.zxy/ (% 2)

114

o _
Automatic proof

of arithmetic formulas
by (simp add: field simps)

e The lemmas list field simps extends algebra_simps
by rules for /

e Can only cancel common terms in a quotient,
eg. xxy/ (zx*2),if £# 0can be proved.

114

| b
Numerals

Numerals are syntactically different from Suc-terms.

115

@)@
Numerals

Numerals are syntactically different from Suc-terms.
Therefore numerals do not match Suc-patterns.

115

Numerals

Numerals are syntactically different from Suc-terms.
Therefore numerals do not match Suc-patterns.

Example
Exponentiation = ~ n is defined by Swuc-recursion on n.

115

Numerals

Numerals are syntactically different from Suc-terms.
Therefore numerals do not match Suc-patterns.
Example

Exponentiation = " n is defined by Suc-recursion on n.
Therefore ° 2 is not simplified by simp and auto.

Numerals can be converted into Suc-terms with rule
numeral_eq_Suc

115

Numerals

Numerals are syntactically different from Suc-terms.
Therefore numerals do not match Suc-patterns.

Example

Exponentiation = ~ n is defined by Swuc-recursion on n.
Therefore ° 2 is not simplified by simp and auto.

Numerals can be converted into Suc-terms with rule
numeral_eq_Suc

Example
simp add: numeral_eq Suc rewrites z =~ 2to v * x

115

Auto_Proof_Demo.thy

116

What are these 7-variables ?

After you have finished a proof, Isabelle turns all free
variables V' in the theorem into ?V.

119

What are these 7-variables ?

After you have finished a proof, Isabelle turns all free
variables V' in the theorem into ?V.

Example: theorem conjI: [?P; ?Q)] = ?P A ()

119

What are these 7-variables ?

After you have finished a proof, Isabelle turns all free
variables V' in the theorem into ?V.
Example: theorem conjI: [?P; 7Q)] = P A 2()

These 7-variables can later be instantiated:

119

What are these 7-variables 7
After you have finished a proof, Isabelle turns all free
variables V' in the theorem into ?V.
Example: theorem conjI: [?P; ?Q)] = ?P A ()

These ?-variables can later be instantiated:
e By hand:

conjIfof "a=b" "False"] ~

119

(| & |

What are these 7-variables ?

After you have finished a proof, Isabelle turns all free
variables V' in the theorem into ?V.

Example: theorem conjI: [?P; 7Q)] = P A 2()
These ?-variables can later be instantiated:
e By hand:

conjIfof "a=b" "False"] ~»
[a = b; False] = a = b A False

119

@)«

What are these 7-variables ?

After you have finished a proof, Isabelle turns all free
variables V' in the theorem into ?V.
Example: theorem conjI: [?P; ?Q)] = ?P A ()

These 7-variables can later be instantiated:
e By hand:

conjIfof "a=b" "False"] ~
[a = b; False] = a = b A Fulse

e By unification:
unifying ¢P A 20 with a=b A False

119

(| & |

Rule application

120

=)@

Rule application
rule: [¢P; Q] = “P A ?Q
subgoal: 1. ... = A A B

Example:

120

()@ =)@
Rule application Rule application
Example: rule: [¢P; 2Q] = 7P A 2Q) Example: rule: [¢P; Q] = 7P A 2Q)
subgoal: 1. ... = A A B subgoal: 1. ... = A A B
Result: 1. ... = A Result: 1. ... = A
2. ... =D 2. ... = 1B
The general case: applying rule [Ay; ... ; A,] = A The general case: applying rule [Ay; ... ; 4,] = A
to subgoal ... = C: to subgoal ... = C:
e Unify A and C
()@ =)@
Rule application Rule application
Example: rule: [¢P; 2Q] = 7P A 2Q) Example: rule: [¢P; Q] = 7P A 2Q)
subgoal: 1. ... = A A B subgoal: 1. ... = A A B
Result: 1. ... —= A Result: 1. ... = A
2. ... =D 2. ... = 1B
The general case: applying rule [Ay; ... ; A,] = A The general case: applying rule [Ay; ... ; 4,] = A
to subgoal ... = C: to subgoal ... = C:
e Unify A and C e Unify A and C
o Replace C'with n new subgoals A; ... A, o Replace C'with n new subgoals A4, ... A,

120

apply(rule xyz)

120

=@
Rule application
Example: rule: [¢P; 2Q] = 7P A 2Q)

subgoal: 1. ... = A A B
Result: 1. ... = A
2. ... =D
The general case: applying rule [Ay; ... ; A,] = A
to subgoal ... = C:

e Unify A and C
o Replace C'with n new subgoals A; ... A,

apply(rule zyz)
“Backchaining”

120

LSS

Typical backwards rules

P A 7Q

121

(| & |

Typical backwards rules

roQ .
m conjl
7P = 7Q)

P 2 P!

121

oo

Typical backwards rules

P A 20

7P — 2Q

121

Typical backwards rules
°P 20

———-=~conjl

7P A 70

P — 20) . Az 2Pz
op— o0 Pl g ep g 21
2P —s 20

P = 70

Q= 7P
Y iffI

121

Forward proof: OF

If ris a theorem A — B

122

Forward proof: OF

If ris a theorem A — B
and s is a theorem that unifies with A4

122

Forward proof: OF

If ris a theorem A — B
and s is a theorem that unifies with A then

rlOF 4]

is the theorem obtained by proving A with s.

122

Forward proof: OF

If ris a theorem A — B
and s is a theorem that unifies with A then

rlOF s]
is the theorem obtained by proving A with s.

Example: theorem refl: %t = %t

122

Forward proof: OF

If ris a theorem A — B
and s is a theorem that unifies with A then

rlOF 4]
is the theorem obtained by proving A with s.
Example: theorem refl: 7t = ¢t

conjI[OF refl[of "a"l]

122

Forward proof: OF

If ris a theorem A — B
and s is a theorem that unifies with A then

rlOF s]
is the theorem obtained by proving A with s.
Example: theorem refl: #t = %t

conjI[OF refl[of "a"]]

s

0= a=aN 70

122

ey
g general case:

If ris a theorem [Ay; ...; A,] = A
and 7y, ..., 1, (m<n) are theorems then

rfOF r ... T

is the theorem obtained
by proving A ... A,, with 1 ... 1,,.

123

m|a
—we general case:

If ris a theorem [Ay; ...; 4,] = A
and 1, ..., 1, (m<n) are theorems then
rOF r ... 1]

is the theorem obtained
by proving Ay ... A,, with r ... 7,,.

Example: theorem refl: %t = %t

123

H| %

—me general case:

If ris a theorem [Ay; ...; A,] = A
and 7y, ..., 1, (m<n) are theorems then

rOF ... 1]

is the theorem obtained
by proving A ... A,, with 1 ... 1,,.

Example: theorem refl: 7t = %t

conjI[OF refllof "a"] refll[of "b"]]

123

m|a
—we general case:

If ris a theorem [Ay; ...; 4,] = A
and 1, ..., 1, (m<n) are theorems then

rOF r ... 1]

is the theorem obtained
by proving Ay ... A,, with r ... 7,,.

Example: theorem refl: %t = ¢t
conjI[0F refll[of "a"] refl[of "b"]]
a=aANb=>

123

From now on: ¢ mostly suppressed on slides

124

(| & |

Single_Step_Demo.thy

125

m/a

B ElLEId@xXX

Single_Step_Demo.thy

125

(| & |

show R

proof cases
assume P

show I ...
next
assume — P

show R ...
ged

Case distinction

have PV () ...
then show R
proof

assume P

show R ...
next
assume ()

show R ...
ged

142

