Script generated by TTT

Title: FDS (12.05.2017)
Date: Fri May 12 08:32:41 CEST 2017
Duration: 88:27 min

Pages: 32

mmmmmmmm

Preview: sets

Type: ‘a set

86

& T HE @D D £ W) 100% EEM Fri0B:32 Q

Chapter 3

Case Study: Binary Search Trees

84

Preview: sets

Type: 'a set

Operations: a € A, AU B, ...

86

Preview: sets

Type: 'a set
Operations: a € A, AU B, ...

Bounded quantification: VacA. P

86

Preview: sets

Type: 'a set
Operations: a € A, AU B, ...
Bounded quantification: VacA. P

Proof method auto knows (a little) about sets.

86

The (binary) tree library

~~/src/HOL/Library/Tree.thy

87

The (binary) tree library

~~/src/HOL/Library/Tree. thy

datatype 'a tree = Leaf | Node ('a tree) 'a ('a tree)

87

(| & |

The (binary) tree library

~~/src/HOL/Library/Tree.thy

datatype 'a tree = Leaf | Node ('a tree) 'a ('a tree)

Abbreviations:

(y = Leaf

87

@)«

The (binary) tree library

~~/src/HOL/Library/Tree.thy

datatype 'a tree = Leaf | Node ('a tree) 'a ('a tree)

Abbreviations:

Leaf
Node | a r

(l, a, 1)

87

(| & |

The (binary) tree library

Size = number of nodes:
size 2 'a tree = nat

88

@)«

The (binary) tree library

Size = number of nodes:
size ;2 'a tree = nat

size () = 0
size (I, ., r) = size | + size r+ 1

88

(| & |

The (binary) tree library

Size = number of nodes:
size : 'a tree = nat

size () = 0
size (l, _, r)y = size | + size v+ 1

Inorder listing:
inorder :: 'a tree = 'a list

88

=)@

The (binary) tree library

Size = number of nodes:
size :: 'a tree = nat

size () = 0
size (I, ., r) = size | + size r+ 1

Inorder listing:
inorder :: 'a tree = 'a list

inorder () = ||
inorder (I, x,)y = inorder | Q [2] Q inorder r

88

(| & |

The (binary) tree library

The set of elements in a tree:
set_tree :: 'a tree = 'a set

89

=)@

The (binary) tree library

The set of elements in a tree:
set_tree 2 'a tree = 'a set

set_tree () = {}
set_tree (I, a, r) = set_tree [U {a} U sel_tree r

80

(| & |

The (binary) tree library

The set of elements in a tree:
set_tree :: 'a tree = 'a set

set_tree () = {}
set_tree (I, a, r)y = set_tree [U {a} U sel_tree r

Applying a function to all elements a tree:
map_tree :: ('a = 'b) = 'a tree = 'b tree

89

=)@

The (binary) tree library

The set of elements in a tree:
set_tree :: 'a tree = 'a set

set_tree () = {}

set_tree (I, a, r) = set_tree [U {a} U sel_tree r

Applying a function to all elements a tree:
map_tree :: ('a = 'b) = 'a tree = 'b tree
map.tree f () =
map_tree (I, a,) = (map_tree f I, [a, map_tree [r)

80

(| & |

The (binary) tree library

Binary search tree invariant:
bst :: 'a tree = bool

90

=)@

The (binary) tree library

Binary search tree invariant:
bst :: 'a tree = bool

bst () = True

bst (I, a, r) =

(bst I A

bst r A

(Y a€set tree . x < a) N (Vz€set tree . a < 1))

90

O os
The (binary) tree library Isabelle’s type classes
Binary search tree invariant:
bst :: 'a tree = bool
bst () = True
bst (I, a, r) =
(bst [A
bst r A\
(V z€set tree [. © < a) N (VY zEset tree r. a < 1))
For any type 'a ?
O os

Isabelle’s type classes

A type class is defined by
e a set of required functions (the interface)

91

Isabelle’s type classes

A type class is defined by
e a set of required functions (the interface)
e and a set of axioms about those functions

91

Isabelle’s type classes

A type class is defined by
e a set of required functions (the interface)
e and a set of axioms about those functions

Isabelle’s type classes

A type class is defined by
e a set of required functions (the interface)
e and a set of axioms about those functions

Example: class linorder: linear orders with <, < Example: class linorder: linear orders with <, <
A type belongs to some class if
e the interface functions are defined on that type
91 91
m|@) =

Isabelle’s type classes

A type class is defined by
e a set of required functions (the interface)
e and a set of axioms about those functions

Example: class linorder: linear orders with <, <

A type belongs to some class if
e the interface functions are defined on that type
e and satisfy the axioms of the class

91

Isabelle’s type classes

A type class is defined by
e a set of required functions (the interface)
e and a set of axioms about those functions

Example: class linorder: linear orders with <, <

A type belongs to some class if
e the interface functions are defined on that type
e and satisfy the axioms of the class (proof needed!)

91

Isabelle’s type classes

A type class is defined by
e a set of required functions (the interface)
e and a set of axioms about those functions

Example: class linorder: linear orders with <, <

A type belongs to some class if
e the interface functions are defined on that type
e and satisfy the axioms of the class (proof needed!)

Notation: 7 :: C' means type T belongs to class

91

Isabelle’s type classes

A type class is defined by
e a set of required functions (the interface)
e and a set of axioms about those functions

Example: class linorder: linear orders with <, <

A type belongs to some class if
e the interface functions are defined on that type
e and satisfy the axioms of the class (proof needed!)

Notation: 7 :: (' means type 7 belongs to class ('

Example: bst :: (“a :: linorder) tree = bool

91

Isabelle’s type classes

A type class is defined by
e a set of required functions (the interface)
e and a set of axioms about those functions

Example: class linorder: linear orders with <, <

A type belongs to some class if
e the interface functions are defined on that type
e and satisfy the axioms of the class (proof needed!)

Notation: 7 :: C' means type T belongs to class

Example: bst :: (‘a :: linorder) tree = bool
— 'a must be a linear order!

91

Case study

BST_Demo. thy

92

O
Case study

_ i > /.
Seryerp !
UNC /

