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Chapter 3

Case Study: Binary Search Trees
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Preview: sets

Type: 'a set
Operations: a € A, AU B, ...
Bounded quantification: VacA. P

Proof method auto knows (a little) about sets.
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The (binary) tree library

~~/src/HOL/Library/Tree.thy
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The (binary) tree library

~~/src/HOL/Library/Tree. thy

datatype 'a tree = Leaf | Node ('a tree) 'a ('a tree)
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The (binary) tree library

~~/src/HOL/Library/Tree.thy

datatype 'a tree = Leaf | Node ('a tree) 'a ('a tree)

Abbreviations:

(y = Leaf
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The (binary) tree library

~~/src/HOL/Library/Tree.thy

datatype 'a tree = Leaf | Node ('a tree) 'a ('a tree)

Abbreviations:

Leaf
Node | a r

(l, a, 1)
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The (binary) tree library

Size = number of nodes:
size 2 'a tree = nat
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The (binary) tree library

Size = number of nodes:
size ;2 'a tree = nat

size () = 0
size (I, ., r) = size | + size r+ 1
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The (binary) tree library

Size = number of nodes:
size : 'a tree = nat

size () = 0
size (l, _, r)y = size | + size v+ 1

Inorder listing:
inorder :: 'a tree = 'a list

88

=)@

The (binary) tree library

Size = number of nodes:
size :: 'a tree = nat

size () = 0
size (I, ., r) = size | + size r+ 1

Inorder listing:
inorder :: 'a tree = 'a list

inorder () = ||
inorder (I, x, )y = inorder | Q [2] Q inorder r
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The (binary) tree library

The set of elements in a tree:
set_tree :: 'a tree = 'a set
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The (binary) tree library

The set of elements in a tree:
set_tree 2 'a tree = 'a set

set_tree () = {}
set_tree (I, a, r) = set_tree [ U {a} U sel_tree r
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The (binary) tree library

The set of elements in a tree:
set_tree :: 'a tree = 'a set

set_tree () = {}
set_tree (I, a, r)y = set_tree [ U {a} U sel_tree r

Applying a function to all elements a tree:
map_tree :: ('a = 'b) = 'a tree = 'b tree
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The (binary) tree library

The set of elements in a tree:
set_tree :: 'a tree = 'a set

set_tree () = {}

set_tree (I, a, r) = set_tree [ U {a} U sel_tree r

Applying a function to all elements a tree:
map_tree :: ('a = 'b) = 'a tree = 'b tree
map.tree f () =
map_tree (I, a, ) = (map_tree f I, [ a, map_tree [ r)
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The (binary) tree library

Binary search tree invariant:
bst :: 'a tree = bool
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The (binary) tree library

Binary search tree invariant:
bst :: 'a tree = bool

bst () = True

bst (I, a, r) =

(bst I A

bst r A

(Y a€set tree . x < a) N (Vz€set tree . a < 1))
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The (binary) tree library Isabelle’s type classes
Binary search tree invariant:
bst :: 'a tree = bool
bst () = True
bst (I, a, r) =
(bst [ A
bst r A\
(V z€set tree [. © < a) N (VY zEset tree r. a < 1))
For any type 'a ?
O os

Isabelle’s type classes

A type class is defined by
e a set of required functions (the interface)
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Isabelle’s type classes

A type class is defined by
e a set of required functions (the interface)
e and a set of axioms about those functions
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e a set of required functions (the interface)
e and a set of axioms about those functions

Example: class linorder: linear orders with <, < Example: class linorder: linear orders with <, <
A type belongs to some class if
e the interface functions are defined on that type
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A type class is defined by
e a set of required functions (the interface)
e and a set of axioms about those functions

Example: class linorder: linear orders with <, <

A type belongs to some class if
e the interface functions are defined on that type
e and satisfy the axioms of the class (proof needed!)
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Isabelle’s type classes

A type class is defined by
e a set of required functions (the interface)
e and a set of axioms about those functions

Example: class linorder: linear orders with <, <

A type belongs to some class if
e the interface functions are defined on that type
e and satisfy the axioms of the class (proof needed!)

Notation: 7 :: (' means type 7 belongs to class ('

Example:  bst :: (“a :: linorder) tree = bool

91

Isabelle’s type classes

A type class is defined by
e a set of required functions (the interface)
e and a set of axioms about those functions

Example: class linorder: linear orders with <, <

A type belongs to some class if
e the interface functions are defined on that type
e and satisfy the axioms of the class (proof needed!)

Notation: 7 :: C' means type T belongs to class

Example:  bst :: (‘a :: linorder) tree = bool
— 'a must be a linear order!
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Case study

BST_Demo. thy
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