Script generated by TTT

Title: FDS (12.05.2017)

Date: Fri May 12 08:32:41 CEST 2017

Duration: 88:27 min

Pages: 32

Preview: sets

Type: 'a set

Chapter 3

Case Study: Binary Search Trees

84

Preview: sets

Type: 'a set

Operations: $a \in A$, $A \cup B$, ...

Preview: sets

Preview: sets

Type: 'a set

Operations: $a \in A$, $A \cup B$, ...

Bounded quantification: $\forall a \in A. P$

Type: 'a set

Operations: $a \in A$, $A \cup B$, ...

Bounded quantification: $\forall a \in A. P$

Proof method *auto* knows (a little) about sets.

86

The (binary) tree library

~~/src/HOL/Library/Tree.thy

The (binary) tree library

~~/src/HOL/Library/Tree.thy

datatype 'a $tree = Leaf \mid Node$ ('a tree) 'a ('a tree)

97

~~/src/HOL/Library/Tree.thy

datatype 'a $tree = Leaf \mid Node ('a tree) 'a ('a tree)$

Abbreviations:

$$\langle \rangle \equiv Leaf$$

The (binary) tree library

~~/src/HOL/Library/Tree.thy

datatype 'a tree = Leaf | Node ('a tree) 'a ('a tree)

Abbreviations:

$$\langle \rangle \equiv Leaf$$

 $\langle l, a, r \rangle \equiv Node \ l \ a \ r$

87

The (binary) tree library

Size = number of nodes:

 $size :: 'a tree \Rightarrow nat$

The (binary) tree library

Size = number of nodes:

$$size :: 'a tree \Rightarrow nat$$

$$size \langle \rangle = 0$$

 $size \langle l, _, r \rangle = size l + size r + 1$

Size = number of nodes:

 $size :: 'a \ tree \Rightarrow nat$ $size \langle \rangle = 0$ $size \langle l, -, r \rangle = size \ l + size \ r + 1$

Inorder listing:

 $inorder :: 'a tree \Rightarrow 'a list$

The (binary) tree library

Size = number of nodes:

 $size :: 'a tree \Rightarrow nat$ $size \langle \rangle = 0$ $size \langle l, -, r \rangle = size l + size r + 1$

Inorder listing:

 $inorder :: 'a \ tree \Rightarrow 'a \ list$ $inorder \langle \rangle = []$ $inorder \langle l, x, r \rangle = inorder \ l @ [x] @ inorder \ r$

88

The (binary) tree library

The set of elements in a tree:

 $set_tree :: 'a tree \Rightarrow 'a set$

The (binary) tree library

The set of elements in a tree:

 $set_tree :: 'a \ tree \Rightarrow 'a \ set$ $set_tree \ \langle \rangle = \{\}$ $set_tree \ \langle l, a, r \rangle = set_tree \ l \cup \{a\} \cup set_tree \ r$

Q

The set of elements in a tree:

```
set\_tree :: 'a \ tree \Rightarrow 'a \ set
set\_tree \ \langle \rangle = \{\}
set\_tree \ \langle l, \ a, \ r \rangle = set\_tree \ l \cup \{a\} \cup set\_tree \ r
```

Applying a function to all elements a tree:

```
map\_tree :: ('a \Rightarrow 'b) \Rightarrow 'a tree \Rightarrow 'b tree
```


The (binary) tree library

The set of elements in a tree:

```
set\_tree :: 'a \ tree \Rightarrow 'a \ set
set\_tree \ \langle \rangle = \{\}
set\_tree \ \langle l, a, r \rangle = set\_tree \ l \cup \{a\} \cup set\_tree \ r
```

Applying a function to all elements a tree:

```
map\_tree :: ('a \Rightarrow 'b) \Rightarrow 'a \ tree \Rightarrow 'b \ tree
map\_tree \ f \ \langle \rangle = \langle \rangle
map\_tree \ f \ \langle l, \ a, \ r \rangle = \langle map\_tree \ f \ l, \ f \ a, \ map\_tree \ f \ r \rangle
```

89

The (binary) tree library

Binary search tree invariant:

```
bst :: 'a tree \Rightarrow bool
```


The (binary) tree library

Binary search tree invariant:

 $bst :: 'a tree \Rightarrow bool$

$$bst \langle \rangle = True$$

$$bst \langle l, a, r \rangle =$$

$$(bst l \land bst r \land (\forall x \in set_tree \ l. \ x < a) \land (\forall x \in set_tree \ r. \ a < x))$$

ar

Binary search tree invariant:

 $bst :: 'a tree \Rightarrow bool$

```
bst \ \langle \rangle = True
bst \ \langle l, a, r \rangle =
(bst \ l \land bst \ r \land (\forall x \in set\_tree \ l. \ x < a) \land (\forall x \in set\_tree \ r. \ a < x))
```

For any type 'a ?

Isabelle's type classes

91

Isabelle's type classes

A *type class* is defined by

• a set of required functions (the interface)

Isabelle's type classes

A *type class* is defined by

- a set of required functions (the interface)
- and a set of axioms about those functions

01

Isabelle's type classes

A type class is defined by

- a set of required functions (the interface)
- and a set of axioms about those functions

Example: class *linorder*: linear orders with \leq , <

Isabelle's type classes

A type class is defined by

- a set of required functions (the interface)
- and a set of axioms about those functions

Example: class *linorder*: linear orders with \leq , <

A type belongs to some class if

• the interface functions are defined on that type

91

Isabelle's type classes

A type class is defined by

- a set of required functions (the interface)
- and a set of axioms about those functions

Example: class *linorder*: linear orders with <, <

A type belongs to some class if

- the interface functions are defined on that type
- and satisfy the axioms of the class

Isabelle's type classes

A type class is defined by

- a set of required functions (the interface)
- and a set of axioms about those functions

Example: class *linorder*: linear orders with <, <

A type belongs to some class if

- the interface functions are defined on that type
- and satisfy the axioms of the class (proof needed!)

Isabelle's type classes

A type class is defined by

- a set of required functions (the interface)
- and a set of axioms about those functions

Example: class *linorder*: linear orders with \leq , <

A type belongs to some class if

- the interface functions are defined on that type
- and satisfy the axioms of the class (proof needed!)

Notation: τ :: C means type τ belongs to class C

Isabelle's type classes

A type class is defined by

- a set of required functions (the interface)
- and a set of axioms about those functions

Example: class *linorder*: linear orders with \leq , <

A type belongs to some class if

- the interface functions are defined on that type
- and satisfy the axioms of the class (proof needed!)

Notation: τ :: C means type τ belongs to class C

Example: $bst :: ('a :: linorder) tree \Rightarrow bool$

01

Isabelle's type classes

A type class is defined by

- a set of required functions (the interface)
- and a set of axioms about those functions

Example: class *linorder*: linear orders with <, <

A type belongs to some class if

- the interface functions are defined on that type
- and satisfy the axioms of the class (proof needed!)

Notation: τ :: C means type τ belongs to class C

Example: $bst :: ('a :: linorder) tree \Rightarrow bool$

 \implies 'a must be a linear order!

Case study

BST_Demo.thy

Case study

