Script generated by TTT

Title: Distributed_Applications (12.05.2014)
Date: Mon May 12 09:17:15 CEST 2014
Duration: 45:47 min

Pages: 15

f RPC properties

Neither the client nor the server assume that the procedure call is performed over a network.

Control flow for RPC calls

client server
register
bind to service
server
prepare ,
send request

RPC-request

unpack reply RPC-response

time

Differef"ces between RPC and local procedure call

Basic RPC characteristics
RPC and OSl
RPC vs message exchange

@) -

< Favoriten o @ ~ E|Enf g]vaE

va-ss 14ywhiteboard\va_course4. 2.html v+ | X | (B

(@ Introduction

Local vs. remote procedure call
single process

request
caller procedure
|

answer

RPC is an extension of the same type of communication to programs running on different computers; single

thread of execution and transfer of data.

interface
between remote
caller systems callee
|
request 1
program [~ T "| program
i answer
Definition

RPC properties

Differences between RPC and local procedure call

For an RPC, the caller and the callee run in different processes.
both processes (caller and callee) have

no shared address space.
no commeon runtime environment.

different life span of client and server .

Handle errors occurring during a RPC call, e.g. caused by machine crashes or communication failures

RPC-based applications must take communication failures into consideration.

Basic RPC characteristics

r*']"{'g)

An RPC can be characterized as follows

1. uniform call semantics.
2. "type-checking” of parameters and results.
3. parameter functionality.
4. Optimize response times rather than throughput.
5. new error cases
bind operation failed; request timed out; arguments are too large

goal is some transparency concerning exception handling and communication failures (relevant for the
programmer).

RPC vs message exchange

RPC message exchange
synchronous (generally) asynchronous
1 primitive operation (RPC call) 2 primitive operation (send, receive)
messages are configured by RPC system message specification by programmer

one open RPC several parallel messages possible

The RPC protocol defines only the structure of the request/answer messages; it does not supply a mechanism for

secure data transfer.

RPC exchange protocols

RPC and OSI e T —

w5

Integration of the RPC into 1SO/O8I protocol stack

layer 7

application layer client-server model

hides communication

layer 6 RPC S
details

presentation layer

Operating system interface to

layer 5 message exchange , underlying communication
session layer e.g. request -response protocol ving

protocols
layer 4 transport protocols

transfer of data packets

transport layer e.g. TCP/UDP or OSI TP4

transport protocols: UDP (User Datagram Protocol) transports data packets without guarantees; TCP
(Transmission Control Protocol) verifies correct delivery of data streams.

message exchange: socket interface to the underlying communication protocols.
RPC: hides communication details behind a procedure call and helps bridge heterogeneous platforms.

RPC exchange protocols T

There are different types of RPC exchange protocols

the request (R) protocol
the request-reply (RR) protocol

the request-reply-acknowledge (RRA) protocol.

Remote Invocation (RPG/RMI) — T — BEAF Stubs T —

Issues & Integration of software handling the communication between components of a distributed application.
Introduction Stubs encapsulate the distribution specific aspects.

Distributed applications based on RPC

Stubs represent interfaces.
Remote Method Invocation (RMI)

Serviets Cligat Stub : contains the proxy definition of the remote procedure P.

Server Stub : contains the proxy call for the procedure P.

client program logical interface server program
|
I request
clientC | ¢ : — | server S
answer
A
I
1 T 8 ' 4 5
A 4 A 4
client server
stub stub
A A
2 7 3 6
o | _message transfer o
‘ network code ["] network code
e

.f Stub functionality o T i) Distributed applications based on RPC — g —
Client and server stubs have the following tasks during client - server interaction. How to implement distributed applications based on remote procedure calls?
1. Client stub Distributed application

In order to isolate the communication idiosyncrasy of RPCs and to make the network interfaces transparent
to the application programmer, so-called stubs are introduced.

Stubs

specification of the remote service operation; assigning the call to the correct server; representation of
the parameters in the transmission format.

decoding the results and propagating them to the client application. Stub functionalit
Stub Tunctionality

unblocking of the client application. Implementing a distributed application
RPC language
Phases of RPC based distributed applications

2. Server stub

decoding the parameter values; determining the address of the service operation (e.g. a table lookup).

invoking the service operation.

prepare the result values in the transmission format and propagate them to the client.

ok

RPC generator T —3

[S=—ri

An RPC generator

reduces the time necessary for implementation and management of the components of a distributed
application.

a declarative interface description is easier to modify and therefore less error-prone.

client.c j 0 ﬁ

server.c

ms.idl

v

RPC
generator

v

ms.h
data transformation

Structure of a distributed application

BT - T

The internal structure of a distributed application created using an RPC generator is as follows:

client.o client stub RPC system RPC system server stub server.o
filter fitter |
b 4 r'y ‘ 4
send receive send receive
A4
network
generated by

RPC generator

implemented by
application programmer

F Applying the RPC generator — 7)
The individual steps for generating a distributed application are illustrated in the following figure. i
client RPC interface server
application specification operations
RPC
generator \
client data transformation server
stubs header files stubs
v \ / \ v
application client stub server stub operations
component component component component
client server
program program L
Implementing a distributed application e 1})

Manual implementation of stubs is error-prone = use of a RPC generator to generate stubs from a declarative
specification.

RPC generator
Applying the RPC generator

Structure of a distributed application

