Script generated by TTT

Title: Distributed_Applications (17.06.2013)
Date: Mon Jun 17 09:11:02 CEST 2013
Duration: 46:16 min

Pages: 17

Group communication

Introduction
Group communication facilities the interaction between groups of processes.
Motivation

Important issues
Conventional approaches

Groups of components
Management of groups
Message dissemination
Message delivery

Taxonomy of multicast
Group communication in I1SIS

JGroups

2

is a reliable group communication toolkit written in Java. It is based on IP multicast and extends it

with

JGroups — T

reliability, especially ordering of messages and atomicity.

management of group membership.

Programming Interface of JGroups

groups are identified via channels.

channel . connect ("MyGroup") :

achannel is connected to a protocol stack specifying its properties.

pratocol
stack

application

o

Sequencer
GMS

Frag

r
|
|
|
|
|
|
|
|
|
|
|
L

[netwark |

Total ordering of messages
using a coordinator

group membership layer

fragmentation layer

JGroups — T

is a reliable group communication toolkit written in Java. It is based on IP multicast and extends it

with

reliability, especially ordering of messages and atomicity.

management of group membership.

Programming Interface of JGroups

groups are identified via channels.

channel . connect ("MyGroup") :

achannel is connected to a protocol stack specifying its properties.

pratocol
stack

applical%n

e

Sequencer
GMS

Frag

r
|
|
|
|
|
|
|
|
|
|
|
L

[netwark |

Total ordering of messages
using a coordinator

group membership layer

fragmentation layer

-~

¥ JGroups — 1 ¥ Code Example A

management of group membership. String props = "UDP:Frag:GMS:causal":
Message send_msqg:
: ‘ {
Programming Interface of JGroups C‘l"l'”& &C‘WC g 4(9@4& & Object recv msg:
groups are identified via channels. Ohdw“ 9 Channel channel = new JChannel (props):
channel. connect("MyGro_‘up")i MJN Mf channel . connect ("MyGroup"):
a channel is connected to a protocol stack specifying its properties. L $o ﬁj send_msg = new Message(null. null. "hello World"):
il channel .send(send_msg):
application nef& U‘]“l .
recv_msg = (Message) channel.receive(0):
System.out.println("Received " + recv_msg):
:_- Total ordering of messages channel .disconnect():
Sequencer . dinat
: using a coordinator channel.close():
protocol : GMsS group membership layer
stack |
: Frag fragmentation layer
! R
i UDP
L. T
/(/ \\
| netwoik/Jl
Code Example [N
Gengrared by Targeream s
'f JGroups — @ Distributed Consensus — T- —
is a reliable group communication toolkit written in Java. It is based on IP multicast and extends it = problem of distributed processes to agree on a valug; processes communicate by message passing.

with Examples

reliability, especially ordering of messages and atomicity. all correct computers controlling a spaceship should decide to proceed with landing, or all of them

) . should decide to abort (after each has proposed one action or the other)

management of group membership.

Programming Interface of JGroups in an electronic money transfer transaction, all involved processes must consistently agree on whether
9 9 p to perform the transaction (debit and credit), or not

groups are identified via channels.

channel . connect ("MyGroup") ; desirable: reaching consensus even in the presence of faults

assumption: communication is reliable, but processes may fail
a channel is connected to a protocol stack specifying its properties.

Consensus Problem
application .
Consensus in synchronous Networks
:" s Total ordering of messages
equencer . .
1 using a coordinator
1
protocol : GMS group membership layer
stack I
: Frag fragmentation layer %
1
i UDP
L. T
TN

[network | L

Consensus Problem T

agreement on the value of a decision variable amongst all correct processes

pi is in state undecided and proposes a single value v; , drawn from a set of values.
next, processes communicate with each other to exchange values.

in doing so, p; sets decision variable d, and enters the decided state after which the value of d; remains
unchanged

@ d1 := proceed

v1 = proceed

v2 = proceed

Consensus
algorithm

= abort
crashes
Properties
Algorithm

The Byzantine Generals Problem

Interactive Consistency Problem

Relationship hetween these Problems

Properties

The following conditions should hold for every execution of the algorithm:
termination : eventually, each correct process sets its decision variable
agreement : the decision variable of all correct processes is the same in the decided state.

integrity : if the correct processes all proposed the same value, then any correct process has chosen that
value in the decided state.

Consensus Problem T

agreement on the value of a decision variable amongst all correct processes

pi is in state undecided and proposes a single value v; | drawn from a set of values.
next, processes communicate with each other to exchange values.

in doing s0, p; sets decision variable d; and enters the decided state after which the value of d; remains
unchanged

@ d1 := proceed

v1 = proceed

v2 = proceed [%

Properties
Algorithm
The Byzantine Generals Problem

Interactive Consistency Problem

Relationship between these Problems

The Byzantine Generals Problem

three or more generals are to agree to attack or to retreat.
one general, the commander issues order

others (lieutenants to the commander) have to decide to attack or retreat

one of the generals may be treacherous
if commander is treacherous, it proposes attacking to one general and retreating to the other

if lieutenants are treacherous, they tell one of their peers that commander ordered to attack, and
others that commander ordered to retreat

difference to consensus problem: one process supplies a value that others have to agree on

Aranackino.

The Byzantine Generals Problem — 1 F Interactive Consistency Problem — 1

if lieutenants are treacherous, they tell one of their peers that commander ordered to attack, and e Each process suggests a single value.

others that commander ordered to retreat .
goal : all correct processes agree on a vector of values ("decision vector"); each component correspond to

one processes’ agreed value

[]
[]
/_\I- M l example: agreement about each processes' local state.
" properties:

termination: eventually each correct process sets its decision vector.
agreement: the decision vector of all correct processes is the same.

integrity: if pi is correct, then all correct processes decide on v as the i-th component of their vector.

Genera

Lo
b’w\ww\ i &4:

difference to consensus problem: one process supplies a value that others have to agree on

properties: %
termination: eventually each correct process sets its decision variable.
agreement: the decision value of all correct processes is the same.

integrity: if the commander is correct, then all processes decide on the value that the commander
proposes.

Relationship between these Problems e T

Relationship between these Problems o T

Dy£alILING GEHEIal> . D3 (R, V] 1TGWUHID LT UGLIDIVIT VAIUT UL PIULEDD P WIHTITE PE R LIS UL TJS] A

Assume that the previous problems could be solved, yielding the following decision variables which proposes the value v

Consensus : Ci (v4 v) returns the decision value of process p,

Interactive Consistency : 1C; (v4 v)[k] returns the k-th value in the decision vector of process p;

Byzantine Generals : BG; (k, v) returns the decision value of process p; where p, is the commander where vy ..., v, are the values that the processes proposed
which proposes the value v Possibilities to derive solutions out of the solutions to oher problems
Interactive Consistency : ICi (v1 ,.., vn)[k] returns the k-th value in the decision vector of process p; solution to IC from BG

where vy ..., v, are the values that the processes proposed run BG n times, once with each p; acting as commander

Possibilities to derive solutions out of the solutions to other problems
, IG (Vs ... va)IK] = BGy (k, vic) with (L k=1, ...)
solution to IC from BG
run BG n times, once with each p; acting as commander solution to € from IC

o run IC to produce a vector of values at each process x
ICi (V1 ,.., Vo)[K] =BG (k, v) with (i, k =1, .., n)

) apply an appropriate function on the vector's values to derive a single value
solution to € from IC

run IC to produce a vector of values at each process Gi (v1 ..., va) = majority(1Ci (v1 ,.., v)[1],... 1Gi (w1 ..., v)[N])

apply an appropriate function on the vector's values to derive a single value solution to BG from C

. commander p, sends its proposed value v to itself and each of the remaining processes
Ci (vi ..., vn) = majority(ICi (v1 ,... va)[1]..., 1Ci (v1 ..., vn)[N])

all processes run G with the values v1 ..., vo that they receive
solution to BG from ¢ pr run G wi values vi .., vn Y receiv

commander pIk sends its proposed value v to itself and each of the remaining processes derive BG (k, v) = Ci (vy ,.., va) withi=1, .., n

all processes run C with the values vy .., v that they receive @ termination, agreement and integrity preserved in each case. @

Consensus in synchronous Networks

Assumption : no more than f of the n processes crash (f < n).
The algorithm proceeds in f+1 rounds in order to reach consensus.
the processes B-multicast values between them.
at the end of +1 rounds, all surviving processes are in a position to agres.
algorithm for process p; = concensus group g
On initialization
values; (1) := {vi }: values; (0) := {}:
in round r (1 € r £ f+1)
B-multicast(g, wvalues; (r)-values; (r-1)):
sssend only values that have not been sent
values; | 1) := wvalues; (r)
while (in round r) {
On B-deliver(v;) from some pj
values; (r+1) := wvalues; (r+1) U vy

}

After (f+1) rounds

assign di = minimum (values; (f+1))

— T 'f Basic mechanisms for distributed applications P @ —)

Issues
The following section discusses several important basic issues of distributed applications.
Data representation in heterogeneous environments.
Discussion of an execution model for distributed applications.
What is the appropriate error handling?
What are the characteristics of distributed transactions?
What are the basic aspects of group communication (e.g. algorithms used by 181S) ?

How are messages propagated and delivered within a process group in order to maintain a consistent
state?

External data representation
Time

Distributed execution model

Failure handling in distributed applications

Distributed transactions

Group communication
Distributed Consensus

Authentication service Kerberos

