NN Introduction v @

Scri pt generated by TTT When a group of programmers has the task to build a distributed application, in addition to distributed code
management there is also the need for distributed file services.

Definitions

Motivation for replicated files

Two consistency types

Title: Distributed_Applications (10.07.2012) Replica placement

Date: Tue Jul 10 14:30:41 CEST 2012
Duration: 87:25 min

Pages: 27

) Introduction W)

A distributed file system supporting replicated files has the following characteristics: When a group of programmers has the task to build a distributed application, in addition to distributed code

I o . management there is also the need for distributed file services.
Less network traffic and better response times.

Definitions

Higher availability and fault tolerance with respect to communication and server errors. Motivation for replicated files

Parallel processing of several client requests. Two consistency types
The key concept of a distributed file system is transparency. Replica placement

User's impression: interaction with a normal, central file system.

Goal to support the following transparency types: location, access, name, replication and concurrency
transparency.

Replica placement S @

A major issue of distributed data store is the decision when and where to place the file replicas.
Permanent replicas

The number and placement of replicas is decided in advance, e.g. mirroring of files at different sites.
Server-initiated replicas

They are intended to enhance the performance of the server.

%ynamic replication to reduce the load on a server.
file replicas migrate to a server placed in the proximity of clients that issue file requests.

Client-initiated replicas
Client-initiated replicas are more commonly known as caches.

Used only to improve access times to data.
Client caches are normally placed on the same machine as its client.

Replicas are only kept for a limited time.

co @

Each layer of the distributed file service has a specific task.
Name/directory service

placement of files; file relocation for load balancing and performance improvement; localization of the server
which manages the referenced file.

mapping of textual file names to file references (server name and file identifier).

Replication service
file replication for shorter response times and increased availability.

handles data consistency and the multiple copy update problem.

Transaction service
provideSTa mechanism for grouping of elementary operations so as to execute them atomically;

mechanisms for concurrency control;
Mechanisms for reboot after errors;

File service
relates file identifiers to particular files;

performs read and write operations on the file content and file attributes.

Block service

accesses and allocates disk blocks for the file.

The functions of a distributed file service are usually arranged in a hierarchical way.

naming / directory service

replication service

transaction service

file servics

block service

Layer semantics

Distributed file service w

Issues

This section introduces schemes for replication and concurrency control in the context of distributed file
services.

What are the general characteristics of a distributed file service?
How to maintain consistency of replicated files?
What are voting schemes?
Presentation of the Coda file service.
Introduction
Layers of a distributed file service
Update of replicated files
Coda file system

e Pessimistic concurrency control © o

multiple copy update Pessimistic concurrency control for data-critical applications, e.g. banking applications. Always accgss to

consistent data.
/[}g\ Classification of pessimistic concurrency control

nonvoting voting Primary site
/ \ A well-defined file copy, the primary site, serializes and synchronizes all (write) operations.
Token passing
i . i majority weighted . o
primary site token passing voting voting Access to the replicated file (i.e. a file copy) is only permitted, if the client has the token.
Generared by Targeteam Voting schemes

The result of the negotiation between all file replicas determines whether a file access is granted or not.

global consent is necessary, but control is decentralized.
in case of consent, the relevant file block is locked.

Examples: Majority consensus, weighted voting.

rie5) Voting schemes V)

Definition: The votum for a desired access of a file is defined Voting schemes provide pessimistic concurrency control.

as the sum of votes from the set of computers that have voted for the desired access. Introduction

Voting schemes are algorithms for maintaining mutual consistency of replicates even in situations of
Definition: The obtained votum is called successful if the sum of votes from the set of computers that have voted computer crashes and network partitionings.

for the desired access is equal to or greater than a lower bound, the so-called quorum . Let us assume. there exist REP replicas of file d.
File access is permitted (positive votum), if the following holds
' 's permitted (positive votum), i wing Let sg(r) be the weight of the vote of computer r; K be the set of all computers considered.

for read access: at least R positive votes (read quorum). Let the sum of all weights be SUM = © sg(r)
= LrekK -

for write access: at least W positive votes (write quorum). Definitions

Multiple-reader-single-writer strategy
Voting scheme variants

&

Voting schemes provide pessimistic concurrency control.

Introduction

Voting schemes are algorithms for maintaining mutual consistency of replicates even in situations of
computer crashes and network partitionings.

Let us assume, there exist REP replicas of file d.
Let sg(r) be the weight of the vote of computer r; K be the set of all computers considered.

Let the sum of all weights be SUM = I, =k sg(r).

Definitions

Voting schemes

Multiple-reader-single-writer strategy

Voting scheme variants

client machine

Architecture

server machine

I A 2

local file system

virtual fil@system layer

Vice
process

user user Venus
process process process
4 A A i
RPC client|

stub

!

RPC
server stub

Venus processes provide access to files maintained by the Vice file servers.

role is similar to that of an NFS client.

responsible for allowing the client to continue operation even if access to the file servers is (temporarily)

impossible.

Voting scheme variants

For further variants and details see the book Borghoff/Schlichter, Springer-Verlag, 2000.
Write-All-Read-Any

Majority consensus

Weighted voting

Coda file system

Coda was designed to be a scalable, secure, and highly available distributed file service.

supporting the mobile use of computers.

files are organized in volumes.

Coda relies on the replication of volumes.

Replication strategy
Disconnected operation

Coda assigns each file a 96-bit file identifier.

file identifier
volume [RvID] file handle
replication DB
file server
h 4
sewerl file handle —|—> _@
volume v
location DB serverl fe hande 4—’ _@

file server

When a file is opened, an entire copy of the file is transferred to the client; caching of the file.

clierit becomes less dependent on the availability of the server.

Cache coherence is maintained by means of callbacks.
« Server records a callback promise for a client.
= update of the file by a client = notification to the server = invalidation message to other clients.

client A
open(RD) file f invalidate open(RD) file f
lose
server time
file T open(WR OK‘
open(WR close no file transfer

client B

Naming L)

Each file is contained in exactly one volume. Distinction between
physical volumes. [y

logical volume (represents all replicas of a volume).

RVID (Replicated Volume ldentifier): identifier of a logical volume.
VID (Volume Identifier): identifier of a physical volume.
File identifier

Replication strategy 1 L0

Coda relies on replication to achieve high availability. 1t distinguishes between two types of replication.

Client caching
Server replication

oo @

Coda uses an optimistic strategy for file replication. For each file version there exists a Coda version vector
(CVV).

CVV is a vector timestamp with one element for each server in the relevant VSG.
CVV is initialized to [1,, 1].

On file close the Venus process of the client broadcasts an update message to all servers in AVSG = all
servers of AVSG update the relevant CVV entries.

Let v1 and v2 are CVVs for two versions of a file f.

\aﬁlheﬂ neither vi < v2 nor v2 < v1 = there is a conflict between the two file versions.

Distributed Applications - Verteilte Anwendungen @

« Prof. J. Schlichter
= Lehrstuhl fir Angewandte Informatik / Kooperative Systeme, Fakultat fiir Informatik, TU Miinchen

« Boltzmannstr. 3, 85748 Garching

Email: |schlichter @in.tum.de|
Tel.: 089-289 18654
URL: http://www11.in.tum.de/

Overview

Introduction

Architecture of distributed systems

Remote Invocation (RPC/RMI)

Basic mechanisms for distributed applications

Web Services

Design of distributed applications

Distributed file service

Distributed Shared Memory
Object-based Distributed Systems

Summary

Server replication L)

Coda allows file server to be replicated; the unit of replication is a volume.
Volume Storage Group (VS@G): collection of servers that have a copy of a volume.
client's Accessible Volume Storage Group (AVSG): list of those servers in the volume's VSG that the client
can contact.
AVSG = {}: client is disconnected.

Coda uses a variant of the “read-one, write-all" update protocol.
Coda version vector

Programming model

Message passing model
variables have to be marshalled from one process, transmitted and unmarshalled into other variables at the
receiving process.
Distributed shared memory
the involved processes access the shared variables directly; no marshalling necessary.
processes may communicate via DSM even if they have non-overlapping lifetimes.
Implementation approaches
in hardware
shared memory multiprocessor architectures, e.g. NUMA architecture.
in middleware

language support such as Linda tuple space or JavaSpaces.

The content of DSM may be replicated by caching it at the separate computers;

data is read from the local replica.

updates have to be propagated to the other replicas of the shared memory.
Approaches to keep the replicas consistent
Write-update
updates are made locally and multicast to all replicas possessing a copy of the data item.

the remote data items are modified immediately.

Write-invalid%te
before an update takes place, a multicast message is sent to all copies to invalidate them;

acknowledgement by the remote sites before the write can take place.
other processes are prevented to access the blocked data item.

the update is propagated to all copies, and the blocking is removed.

Generazed by Targeteam

G o

The (Object Management Group) was founded in 1989 by a number of companies to encourage the
adoption of distributed object systems and to enable interoperability for heterogeneous environments

(hardware, networks, operating systems and programming languages).
Object Management Architecture - OMA

Object Request Brokers ORB

Common object services

Inter-ORB protocol

Distributed COM

Integration of Corba/DCOM and Web Services

.NET Framework

Generazed by Targeseam

Distributed Shared Memory

Issues of the section

implicit communication via shared memory
what is the Linda tuple space?
Javaspaces as modern tuple space

Introduction
Programming model
Consistency model
Tuple space

Object Space

Generated by Targeream

ingTool - Yersion 25.10.2009

Student Teacher PostProcessing Extras

¥ ’, 5 —
14 Start [} J a (- Object-based Distribu... {imy TeleTeachingTool - V...

