Script generated by TTT

Title: Petter: Compilerbau (27.07.2017)
Date: Thu Jul 27 14:15:17 CEST 2017
Duration: 97:31 min

Pages: 41

Chapter 1:
The Register C-Machine

Topic:

Code Synthesis

The Register C-Machine (R-CMa)

We generate Code for the Register C-Machine.
The Register C-Machine is a virtual machine (VM).

@ there exists no processor that can execute its instructions

@ ... but we can build an interpreter for it

@ we provide a visualization environment for the R-CMa

@ the R-CMa has no double, float, char, short or long types

@ the R-CMa has no instructions to communicate with the
operating system
@ the R-CMa has an unlimited supply of registers



Virtual Machines Components of a Virtual Machine

Consider Java as an example:

0 1 ] ec

A virtual machine has the following ingredients:
@ any virtual machine provides a set of instructions
@ instructions are executed on virtual hardware

@ the virtual hardware is a collection of [data structuresithat is

accessed and modified by the VM instructions

@ ... and also by other components of the run-time system, namely
functions that go beyond the instruction semantics

@ the interpreter is part of the run-time system

0 DSP

A virtual machine such as the Dalvik VM has the following structure:
@ S:the data store —a memory region in which cells can be stored
in LIFO order ~~ stack.
@ SP: (= stack pointer) pointer to the last used cell in S
@ beyond S follows the memory containing the heap

Executing a Program

@ the machine loads an instruction from C[PC]|into the instruction
register IR in order to execute it

@ before evaluating the instruction, the PC is incremented by one
while {
IR = C[PC];[PC++;

execute (IR);
)

]

Chapter 2:
Generating Code for the Register C-Machine

@ node: the PC must be incremented before the execution, since
an instruction may modify the PC

@ the loop is exited by evaluating instruction that returns
directly to the operating system




Principles of the R-CMa

The R-CMa is composed of a stack, heap and a code segment, just
like the JVM; it additionally has register sets:

@ Jocalregisters are Ry, R, ... R;, ...
@ globalregister are[Ry, =), ... Ry . .

The Register Sets of the R-CMa

The two register sets have the following purpose:
@ the local registers R;

e save temporary results
e store the contents of local variables of a function
e can efficiently be stored and restored from the stack

(@]

195

Ry R
ol O W
Ry R_4

Translation of Simple Expressions Translation of Expressions

Let op = {add, sub, div, mul, mod, le, gr, eq, leq, geq, and, or}.
Using variables stored in registers; loading constants: The R-CMa provides an instruction for each operator op.
instruction semantics  intuition op I R; Ry
loadc R; ¢ Ri=c¢ load constant
move R; R; R, = R; copy R, to It;

]

where R; is the target register, ?; the first and 2, the second
argument.

Correspondingly, we generate code as follows:

codef, eyopeg p = (‘U(l(‘; ey p
(‘U(h‘i:rl €y p
op Ry Ry Ry

—

L [T




Managing Temporary Registers
Observe that temporary registers are re-used: translate 3x4+3*4

Semantics of Operators

with ¢ = 4: The operators have the following semantics:
(‘U(l(‘?( 3x443x4 p = (‘U(h\ﬁ 3x4 p
code, 3x4 p add R; R; Ry Ri = R; + Ry
add Ry Ry Rs Sl'le, R; Ry R, =R; — R
div R R; Ry, Ri=R,/R:
where mul R; R; Ry, R; = R; * R
codel, 3+4 p = loadc % 3 mod R; R; Ry R; = signum(Ry) - k with
loade Ry, 4 Bl=n- 1|+t kAn>00<k<|R
mul R, R; Rivy le R R; Ry R; =if R; < R then 1 else 0
er R, R; Ry, R, =R, >R, then1else0
we obtain eq R; R; Ry R; =if R; = R, then 1 else 0
codeh 3%4+3+4 p = leq R, R; Ry R; =ifR; < Rj then1else 0
geq R, R; Ry R; =if R; > R) then 1 else 0
and R; R; Ry R, = R; & Ry, // bit-wise and
or R; R; Ry R, = R; | Ry // bit-wise or

Translation of Unary Operators Applying Translation Schema for Expressions

Suppose the following function  yoid f(void) {
is given: int x

i I

Unary operators op = {neg, not} take only two registers:

code, opep = codepep .
cdeR OP € £ o}; I 1?/ o Let p={x— 1,y — 2,2 — 3} be the address environment.
@ Let R, be the first free register, that is, i = 4.
code* x=y+z+3p = (‘U(h'ﬁ y+z+3 p
move Ry [y

—




Translation of Statement Sequences

The code for a sequence of statements is the concatenation of the
instructions for each statement in that sequence:

code' (sss)p = (‘u

code’ ssp
code’ € p = K empty sequence of instructions

Chapter 3:

Statements and Control Structures

Note here: s is a statement, ss is a sequence of statements

[T ]

Simple Conditional General Conditional

We first considerls =if (lc) l:l |
...and present a translation withdut-basic blocks.

ldea:

@ emit the code of ¢ and ss in sequence
@ insert a jump instruction in-between, so that correct control flow

Translation of if (c ) tt else

is ensured
) codep forc
) code’ if(c) tt elseee p =
code® sp |= ("U(l("f( cp codeg for ¢ (‘u(h‘ﬂ cp jumpz ®
| - jumpz It A code for tt
jumpz & code tt p
I:SI o code for ss jump B3 | jump °
| codet ee p
o000 : ! code for ee -
o0e0 -




lterating Statements

We othe loop s = while

Example for if-statement
Let p = {x — 4,y — 7} and let s be the statement
) s'. For this statement we

(i)
(i1) defifie:
(111)
Code’ W codeg fore
Therytode' s p yields: Jumpz R B jumpz L
code® s p ™~
imn A code fors’

O B: jump
[N -

AJ\D

Consecutive Alternatives
Let switch s be given with k& consecutive case alternatives:

switch (e) {
case (: sy;

for-Loops

break;

The for-loop s = for (e1; e2; e3) s is equivalent to the statement
sequence e;; while (es) {5 e3; } —as long as s’ does not contain a

continue statement.

case k—1: s;_1; break;
default: s;; break;

Thus, we translate:

= codeg e p

A: codep ea p
jumpz R; B

Cb code’ s p

codel eg p

code’ for(e;ea;ez) s p

jump A

-




Translation of the check! Macro Translation of the check’ Macro

The macro check® 1w B checksif Il < R, <u. Letk =u — 1.
@ ifl<R;,<wuitjumpsto B+ R; —1
@ ifR;, <lorR; > uitjumpsto Ay

we define:

The macro check’ l u B checksif | < R; <u.Letk =u—1.
@ ifl<R, <uitjumpsto B+ R; —1
@ if R; <lorR; > uitjumpsto A

check® lu B = loadc R;q 1

geq Lo R Ri
jumpz R, .o E
sub R; R; Ry
loade R\ u o

geq Rz R Rivs jump Ay
jumpz R, o D C:

loadc RR; u—1

jumpi R; B

B: jump Ay B: jump Ay

jump Aj
C:

ollc

Improvements for Jump Tables General translation of switch-Statements

In general, the values of the various cases may be far apart:

@ generate an if-ladder, that is, a sequence of i f-statements

@ for n cases, an if-cascade (tree of conditionals) can be
generated ~ O(logn) tests

@ if the sequence of numbers has small gaps (< 3), a jump table
may be smaller and faster

@ one could generate several jump tables, one for each sets of
consecutive cases

@ an if cascade can be re-arranged by using information from
profiling, so that paths executed more frequently require fewer
tests

This translation is only suitable for certain switch-statement.
@ In case the table starts with 0 instead of « we don’'t need to
subtract it from e before we use it as index

@ if the value of ¢ is guaranteed to be in the interval [I, u], we can
omit check




Ingredients of a Function

The definition of a function consists of
@ a name with which it can be called;
@ a specification of its formal parameters;

Chapter 4: o possibly a result type;
. @ a sequence of statements.
Functions In C we have:
codel, fp = loade R; _f with_f starting address of f
Observe:

@ function names must have an address assigned to them

@ since the size of functions is unknown before they are translated,
the addresses of forward-declared functions must be inserted
later

Memory Management in Functions Memory Management in Function Variables

int main (void) {
int n;
n = fac(2) + fac(l);
printf ("sd", n);

}

int fac(int x) {
if (x<=0) return 1;
else return x+fac(x-1);

) The formal parameters and the local variables of the various

instances of a function must be kept separate

Idea for implementing functions:
At run-time several instances may be active, that is, the function has
been called but has not yet returned.

The recursion tree in the example:

@ set up a region of memory each time it is called

@ in sequential programs this memory region can be allocated on
the stack

@ thus, each instance of a function has its own region on the stack
@ these regions are called stack frames

main

fac printf

@

fac




Organization of a Stack Frame

@ stack representation: grows upwards
@ SP points to the last used stack cell

SP ———»

FP [———= PCold
FPold

local memory
callee

organizational

cells

Principle of Function Call and Return

actions taken on entering g:

compute the start address of ¢ |

1
2. compute actua| parameters in globals

packup of caller-save registers |

3.

4‘ T

5. | set the new FP|

) ack up of PC and

jump to the beginning of g

Fopy actual params 1o locals ]

ctions taken on leaving g:

|comgute the result into R“I
estore FP, SP
return to the call site in f,

that is, restore PC
4. |restore the caller-save registers |

} saveloc
} mark are in f

call

are in g

return

restore]oc}

Split of Obligations

Let f be the current function that calls a function g.
@ fis dubbed caller
@ g is dubbed callee

The code for managing function calls has to be split between caller
and callee.

This split cannot be done arbitrarily since some information is only
known in that caller or only in the callee.

Observation:

The space requirement for parameters is only know by the caller:
Example: printf

Managing Registers during Function Calls

The two register sets (global and local) are used as follows:
@ automatic variables live in jocal registers R,
@ intermediate results also live in local registers R,
o|parameters live in global registers 17; (with ¢ < 0)
@ global variables:



Translation of Function Calls
A functig ...e,) is translated as follows:
codey, |gller, - p = codeg|gp

S A1
codep™ p

('uch'}j’" e p

move L’,‘TR,,L

move R_,|Ri,

saveloc 7 1v; 1
mark

call R;

restoreloc Ry R;

move I; Ry

Return from a Function

The instruction return relinquishes control of the current stack frame,
that is, it restores PC and FP.

FP = S[SP+1];

l)(,‘ L l)(,‘
kP P FP
] return
PC = S[FP];
SP = FP-2;

Rescuing the FP

The instruction mark allocates stack space for the return value and
the organizational cells and backs up FP.

mark
S[SP+1] = FP;
SP=SP+1;

Translation of Whole Programs

A program P = Fi;... F, must have a single main function.
code! Pp = loadc R, main
mark ‘“
call R
halt
_fi: (‘o(@Fl pPBposn

_fn: code!r F, p» Pfn




Translation of the fac-function

Consider:

int fac(int x) {
if (x<=0) then
return 1;

)

else

return x+fac (x

_fac:
i=2

move 11 4
move [y Ry
loadec I3 0
leq Ry [y I3
jumpz Ry _A
loadc Iy 1
move 7y I»
return

jump _B

(1

-1);

save param.
if (x<=0)

to else
return 1

) B:
code is dead

= W

move Ry Ry
move Rz Iy
loade Ry 1
sub Ry Ry Ry
move 1| Rj
loadc R3 _fac
saveloc 1?1 o
mark

call R3
restoreloc 1?1 Ro
move 3 [y
mul Ry Ry Ry
move g R>
return

return

x+*fac(x-1)
x-1

fac (x-1)

return x«*..

Ende der Prasentation. Klicken Sie zum SchlieBen.




