LR(2) to LR(1)

Script generated by TTT

Example 2 finished:

With fresh nonterminals we get the final grammar

S = bCA"|bSVB, |a?|aac?
Title: Petter: Compilerbau (06.07.2017) s _ p5go A = dlact
: " v . B — CAYSbB!
‘ Zu(‘z ¢ = bCD[bSHE'|aa®|aaca®
Date: Thu Jul 06 14:15:10 CEST 2017 D — d’|acal
E — CD"|SbE!
Duration: 83:52 min
Pages: 32
LR(2) to LR(1) LR(2) to LR(1)
Right-Context-Propagation
For a Rule A — a, which is reduce-conflicting under terminal x
@ B— 3 Alis also considered reduce-conflicting under terminal x For (4:) with A — ey | ... | ay, if a; matches
@ B— [ACyis transformed by right-context-extraction on C": @ ~ Aforsome~ e (NUT)*, then (4:)—~ (1) is added
@ else (1) — a; x is added
B=BACy = B-=BAx(/C)y |yerisiene BAY(/ Chy Right-Context-Extraction
) i)) For {) with B — a4 | ... | ag, if a; matches
@ B f Axistransformed by right-context-propagation on A: o ('~ for some ~ € (N UT)*, then |) s ((MS added

B—BAxy = B-=g8{Any

~lfor some v € (N UT)*, then is added

for some y € (N UT)* and y # z, then nothing is added

@ The appropriate rules, created from introducing (1.:)— 4 and
{)— n are added to the grammar

LR(2) to LR(1) LR(2) to LR(1)

Right-Context-Propagation
For a Rule A — «a, which is reduce-confilicting under terminal

@ B — 3 Alis also considered reduce-conflicting under terminal For () with A — e | ... | oy, if a; matches
@ B— 3 AC v is transformed by right-context-extraction on C": @ + Aforsome v e (NUT)*, then (A1) =~ (1) is added
@ else (1) — a;x is added
B=BACy = B=BAx(/C)y |yeris(cne BAy U/ Chy Right-Context-Extraction
) v For {) with B — a | ... | ag, if a; matches
@ B— 3 Aux~istransformed by right-contexi-propagation on A: @ ('~ for some ~ € (N UT)", then { Y) is added
B BAxzy = B—B{A)y @ z+ forsome~ e (N UT)*, then () — ~ is added

@ yvforsome~ e (NUT)* and y # x, then nothing is added
@ The appropriate rules, created from introducing (.1.:)— ¢ and
[)— 1 are added to the grammar

Parsing Methods

deterministic languages
=LR(1) = ... = LR(K)
LALR(K
Chapter 5: ; w0 ~
SLR(k)
Summary ~
LR(0)
s - N ~
regular
‘ Ianguages/ |
LL(1) cee LUK | eee |
_\ J))

Lexical and Syntactical Analysis:

Concept of specification and implementation:

01[1-9][0-9]* Generator
E—E({op}E Generator

Lexical and Syntactical Analysis:

Computation of lookahead sets:

F et N

5 ".__‘“l __ T)=—F)

Lexical and Syntactical Analysis:

From Regular Expressions to Finite Automata
012 314
12 2 -

Coe
a ” '\ a

" a
) b

f
S
) 22 AL 34 34 a | | N
012 01 i 01 347 £ 0 L 2
A | e

) -— b

00 AL 11 E‘.\ 33 AL aa) a g :
012 f £ 012)i 0 b \\ < a a=
’_T‘] 1 3 2 1Y 1)
g 3] i £ \&

From Finite Automata to Scanners

01 01/)9\\ 2 34

(02) - z "
dand [wrTiTeTe T n] T(I TH[a[I]TTo])]

-
.

Lexical and Syntactical Analysis:

From characteristic to canonical Automata:

S N (, int, name

From Shift-Reduce-Parsers to LR(1)-Parsers:

Topic: Chapter 1:

. . Attribute Grammars
Semantic Analysis

Example: Computation of the empty|r| Attribute Implementation Strategy

@ attach an attribute empty to every node of the syntax tree
@ compute the attributes in a depth-first post-order traversal:
o at a leaf, we can compute the value of empty without considering
other nodes
o the attribute of an inner node only depends on the attribute of its
children
@ the empty attribute is a synthetic attribute
@ The local dependencies between the attributes are dependent on
the type of the node

Consider the syntax tree of the regular expression (a|b)*a(a|b):

b

Implementation Strategy Attribute Equations for empty

@ attach an attribute empty to every node of the syntax tree
@ compute the attributes in a depth-first post-order traversal:
o at a leaf, we can compute the value of empty without considering
other nodes
o the attribute of an inner node only depends on the attribute of its
children
@ the empty attribute is a synthetic attribute
@ The local dependencies between the attributes are dependent on

In order to compute an attribute /ocally, we need to specify attribute
equations for each node.
These equations depend on the type of the node:

the type of the node for leaves: r = we define empty[r] = (z=¢).
. . otherwise:
in general: empty ry | 2] = empty[ri] V empty[ry]
empty[ry -] = empty[r1] A empty[ra]
empty[ri] =
An attribute is called empty[r17] = t

@ synthetic if its value is always propagated upwards in the tree (in
the direction leaf — root)

@ inherited if its value is always propagated downwards in the tree
(in the direction root — leaf)

Specification of General Attribute Systems Observations
General Attribute Systems

In general, for establishing attribute systems we need a flexible way to
refer to parents and children:

~- We use consecutive indices to refer to neighbouring attributes

@ the local attribute equations need to be evaluated using a global
algorithm that knows about the dependencies of the equations
@ in order to construct this algorithm, we need
@ a sequence in which the nodes of the tree are visited
@ a sequence within each node in which the equations are evaluated
@ this evaluation strategy has to be compatible with the
dependencies between attributes

attributey [0] : the attribute of the current root node
attribute, 4] : the attribute of the i-th child (i > 0)

Observations Simultaneous Computation of Multiple Attributes
Computing empty, first, next from regular expressions:
S—E:| empty[0] := empty[l]
first[0] = first[1]
next[l] = 0
@ in order to infer an evaluation strategy, it is not enough to empty[0] =
consider the local attribute dependencies at each node first[0] =

@ the evaluation strategy must also depend on the global
dependencies, that is, on the information flow between nodes

@ the global dependencies thus change with each new syntax tree

@ in the example, the parent node is always depending on children
only
~- a depth-first post-order traversal is possible ;
@ in general, variable dependencies can be much more complex \
) @

D(E—=z)={ }

=

DES=Er=S"T{empryithempty|0

Sirst[1], forst[Of)}

Regular Expressions: Rules for Concatenation

. emaly) = empty{Hacmont)
= first[1] W (empty[1] 7 first[2]: 0)
U (empty[2] 0

Regular Expressions: Rules for Alternative

E—E|E| - empty[0] = empty[l]V empty[2]

first[0] = first[1] U first[2]
ﬂext = next[0] next = first[2] 7 next[0]: 0)
next{2 = next[0] next[2] = next[0]

D(E—E-E) :

D(E—E|E) :

empty(1], empty[0]),
empty(2], empty[0]),
fir s/[l] fir H/[(]]
/u‘s‘/[QL first [(]])4
next[0], next[2]),
next[0], next[1])}

(empty(1], empty(0]),
(empty[2], empty[0]),
(empty[2], next[1]),
(empty[1], first[0]),
(first[1], first[0]),
(first[2], first[0]),
(first[2], next[1]),
(next[0], next[2]),
(next[0], next[1])}

Regular Expressions: Kleene-Star and *?’ Challenges for General Attribute Systems

empty[0] = ¢
first[0] = first[1] : :
next[1] = first[1] U next[0] Static evaluation o :

Is there a static evaluation strategy, which is generally applicable?
E—E? : ty[0] = ¢
:Zs[g][] = first[l] @ an evaluation strategy can only exist, if for any derivation tree the
next[1] — next[0] dependencies between attributes are acyclic
) @ itis DEXPTIME-complete to check for cyclic dependencies
D(E—Ex): D(E-E?) : [Jazayeri, Odgen, Rounds, 1975]

i < f e [n‘
i é f e [n‘
D(E—E=) ={ (first[1], first[0]),

(First[1), newt[2]),
(next[0], next[1])}

D(E—E?)={ (first[1], first[0]),
(next[0], next[1])}

Subclass: Strongly Acyclic Attribute Dependencies Subclass: Strongly Acyclic Attribute Dependencies

The 2-ary operator L|[i] re-decorates relations from L
Lfi) = {(ald], b{i]) | (a,b) € L}
m, projects only onto relations between root elements only
m0(S) = {(a,) | (a[0). 0[0]) € S}

For all nonterminals X compute a set R(X) of relations
between its attributes, as an overapproximation of the global
dependencies between root attributes of every production for X.

Describe R(X)s as sets of relations, similar tc D(p) by

@ setting up each production X — X, ... X, s effect on the
relations of R(X)

@ compute effect on all so far accumulated evaluations of each rhs
Xi's R(X:)

@ iterate until stable

Subclass: Strongly Acyclic Attribute Dependencies Example: Strong Acyclic Test

Given grammar S— L, L—a | b. Dependency graphs ID,,:
Pk

Strongly Acyclic Grammars

If all D(p) UR*(X1)[1] U... UR*(X})[k| are acyclic for all p € G,
G is strongly acyclic.

we compute the least solution 72*(X') of R(X) by a fixpoint
computation, starting from 72(X) = 0.

Example: Strong Acyclic Test Strong Acyclic and Acyclic
The grammay S—L, L—a | bas only two derivation trees which are

Juth Qbyu:;u.
h h [i]

% A

' b h

1S ot strongly acyclic since the over-approximated giooat
dependence graph for the non-terminal L contributes to a cycle when

computing R(5):
@

Continue with R(S) = [S—L|*(R(L)):
& O

A7 S
U

@ re-decorate and embed R(L)[1]
@ transitive closure of all relations

(D5 LY U R 2[H)F UG AL)F)™
0 dpply | /T%
i

From Dependencies to Evaluation Strategies
Possible strategies:

