Script generated by TTT

Title:
Date:
Duration:

Pages:

Petter: Compilerbau (08.06.2017)
Thu Jun 08 14:15:09 CEST 2017
97:53 min

26

Reverse Rightmost Derivations in Shift-Reduce-Parsers

Idea: Observe reverse rightmost-derivations of 17!

Input: Eﬂ
counter = 2 + 40 E [[T
o N
uno N EE T
F[1)
[name]

Q>

Shift-Reduce Parser

Observation:

The sequence of reductions corresponds to a reverse
rightmost-derivation for the input

To prove correctnes, we have to prove:

(e, w)H" (A, €) iff A—="w

The shift-reduce pushdown automaton 1/ s in general also
non-deterministic

For a deterministic parsing-algorithm, we have to identify
computation-states for reduction

LR-Parsing

Y

Bottom-up Analysis: Viable Prefix

ary

is viable for [B —~e] iff S} aBu

=niy

Lowith a=ay ... apy

Bottom-up Analysis: Admissible Items Characteristic Automaton

Theitem [B—~yef] iscalled admissible for o' iff

with o = ay: Observation:

The set of viable prefixes from (N U T')* for (admissible) items can be
computed from the content of the shift-reduce parser’s pushdown
with the help of a finite automaton:

States: Items
Start state: [5' — o 5]
Final states: {{B—~e|| B—~ € P}

Transitions:
([Amae X X [A—waXef]), X e (NUT),A—=aXpj € P;
([A—aeBfle [B— eq]), A—-aBpB, B—~y ¢ P;

The automaton «((7) is called characteristic automaton for .

Lwith a=ap ... ay,
Characteristic Automaton

Reverse Rightmost Derivations in Shift-Reduce-Parsers

Observation:

Input: 0 The set of viable prefixes from (N U T')* for (admissible) items can be
+ j computed from the content of the shift-reduce parser’s pushdown
with the help of a finite automaton:
Pushdown: - E
(q) States: Items

Start state: [S' — o 5]
Final states: {[B—~e|| B>~ € P}

Transitions:
([A—aeX g X[A-aXep]), X e (NUT)A—aXp e P,
([A—aeBfle [B— o4]), A—=aBpB, B—~y € P;

The automaton ¢(G) is called characteristic automaton for G.

Characteristic Automaton Characteristic Automaton

For example:

E — E4T | T
T — T«F | F Observation:
Fo— (£) | int

The set of viable prefixes from (N U T')* for (admissible) items can be
computed from the content of the shift-reduce parser’s pushdown
with the help of a finite automaton:

States: Items
Start state: [5' — o 5]
Final states: {{B—~e|| B—~ € P}

Transitions:
([Amae X X [A—waXef]), X e (NUT),A—=aXpj € P;
([A—aeBfle B eq]), A—-aBpB, B—~y ¢ P;

(E
[Foo(E) > {F(E) >[F~(E") }—4{’ F—(E)s H
int

(et} i

The automaton «((7) is called characteristic automaton for .

Characteristic Automaton Characteristic Automaton

For example: E = FyrT\ | T For example: E — E+T | T
T —[TxF | F T — TxF | F
F —={(E) /| int F — (E) | int

/ —~

-
|1.A-1;+7"

E

}—»\ E—Ee+T }—+>| [.'H[H--T}l»H E—E+Te H
F

T

~

)

v XD 7 §
[[T= -Tw*}—»l [T—TexH }—>* [T} -."}——H’ T—TxFe ”
\ >]

>

-

(E
[Fos(E) |={Fo(E) ~[F—(E+) }—’»Hrau—.)- H

int

ETTI R |

Canonical LR(0)-Automaton Canonical LR(0)-Automaton

The canonical LR(0)-automaton L R((7) is created from (&) by:
@ performing arbitrarily many e-transitions after every consuming

transition Example: E - E+T | T
@ performing the powerset construction ? — (TEL; || @
‘ — y n
—~, + T Therefore we determine:
e 6) 9
... for example: E int.” /| . - — —
’ w @ /] LS PETESEHT (=1 J
N — — iy —
e/ | g)] b= T I3 [F-(e3
qo (0 —={3)) | 11 * — .
7 VA . " | [F - me] —
(4) —aa,
PNy E _) _
(5) — ={ 8 — _ s - —
N7/ 8(To | E)s 7 zf:g > b_:(/[z—,eé,‘-#?};
NP2 o I F _ L m—
2 * D=8 (3(/r/+>' L LESET T T T > F
1 J= T
Canonical LR(0)-Automaton Canonical LR(0)-Automaton
g = o, () = {[F=(eL)], qr = @) = {[—=Txerl], s = g, () = {[F=(eE)] g = ax) = [T
H .;H] H s o (E)] H .5]4-1] g
o eTr, [T o TxF],
[T — o F, = Ol E) = {[F— [T — oF], @ = g E) = {[F—
H >°(/'-ﬁ]‘ [E—+LEe+T]} H .\-(f-.ﬁ]. [E—E
" eint " eint
@ = 6@ T) = {[E—>E+Te]) @ = 0gT) = {[£
4 = dlan+) {H >/:'Yf°[’{j]‘ [T— TexIl} w = dg,t) = {H Jjolf]] [
F‘ \"(’])] qo = g, I) = {[T->T H \oi})] qo = Mg, F) = {[T—-T
F e (E)], e (E)],
[I"— eint]} = g,) = A[F—=(E)e} [~ eint]} g = og)) = {[F

Canonical LR(0)-Automaton Canonical LR(0)-Automaton

The canonical LR(0)-automaton L R((7) is created from (&) by:
@ performing arbitrarily many e-transitions after every consuming

transition
@ performing the powerset construction

Observation:

The canonical L12(0)-automaton can be created directly from the
grammar.

— o+ T Therefore we need a helper function 57 (e-closure)
1 .6 9
... for example: E it A + (g =qU{[B— e~ | I[A—aeB B € q,
int e int e (NUTY : B -*Bg)
int_>{(4 ;-— —
int\/F \ We define:
1,0 —F>3 f 11) “I x States: Sets of items;
~ (FT ¢)/] ‘ " Start state: 57 {[S' —~ ¢S]}
(5 , _E e Final states: {¢ | 3IA—a € P: [A—ae] € ¢}
M T Transitions: [Aw;ﬁ] [[A—=de x| € 0}
SN p 4 F =
2} '_f H»;I__O::

LR(0)-Parser LR(0)-Parser

@ The parser manages a viable prefix ¢ = X; ... X, on the ... for example:
pushdown and uses LR(() , to identify reduction spots.
@ |t can reduce with A—~ , if [4 — v e] is admissible for « o = [{[¥ > Ed],
[E—=FE e +T]}

Optimization: @ = |{[E—=Ts, g = |{[E—=E+Ts),
We push the states instead of the X in order not to process the [T+ TexI} [T'—TexF}
pushdown’s content with the automaton anew all the time. o T F T oTaAF
Reduction with A — ~ leads to popping the uppermost || states and s {17 Fel} $10 ([T« e]}
continue with the state on top of the stack and input A. @ = {[F—inte]} a1 = {[F>(E)e]}

The final states ¢, ¢2, go contain more then one admissible item
> non deterministic!

Attention:

This parser is only deterministic, if each final state of the canonical
LR(0)-automaton is conflict free.

LR(0)-Parser LR(0)-Parser

LR(0)
States: QU {f} (f fresh) we show:
Start state: ¢
Final state: f The accepting computations of an LR(0)-parser are one-to-one
o related to those of a shift-reduce parser M/ 5.
Transitions:
we conclude:
Shift: (poa,pq) it g=0d(p,a)#0
Reduce: Pai- gmespq) i [A= X1 X8 € G,

@ The accepted language is exactly £(()

@ The sequence of reductions of an accepting computation for a
word w € T yields a reverse rightmost derivation of & for w

ga=0d(p. A
Finish: (q(ﬂ if [.‘f/%,‘f!] €Ep

with LR(G) = (Q.T,8,q0, F) .

LR(0)-Parser Reuvisiting the Conflicts of the LR(0)-Automaton

What differenciates the particular Reductions and Shifts?

Input: Eﬂ
*2 +40 Ej B Ej
(nr Eo el o
T M
1]

Attention:
Unfortunately, the Lz(0)-parser is in general non-deterministic.

We identify two reasons:

Reduce-Reduce-Conflict:
[A—=~e], [A/—=+"e] € ¢ with A#£A Vvy#£Y

Shitt-Reduce-Conflict:
[A=ye], [AAwaeaf] € ¢ with acT

int

g

forastate ¢e@.

N o
T — * 1 | F
F — (E) | int

Those states are called L72(0)-unsuited.

LR(k)-Grammars LR(k)-Grammars

|dea: Consider k-lookahead in conflict situations. for example:

(1) S—A| B A—=aAb |0 B—aBbb | 1

The reduced contextfree grammar (' is called LR(k)-grammar, if for
First, (w) = Firsty(z) with:

S =5 adw —= afw
2 B follows:a =o' A A= A" Aw' =x
S o AW - afz

b LALLY,
bl

LR(k)-Grammars

for example:

(8) S—aAc A—=bbA | b ..isnot Lz(0), but L12(1):

Let SopaXw—afw with {y} =First,(w) then
afBy is of one of these forms:

ab®be, ab®bbAc, aAc

4) S—aAc A—=bAb | b ... is not Li(k) for any & > 0:
Consider the rightmost derivations:

S—=rabt" Ab"e—ab"bb" ¢

