Example:

Script generated by TTT =
- a |11
States: 0,1,2 T T
Start state: ([j 5
Final states: |0,2 - g =

Title: Petter: Compilerbau (18.05.2017)
Date: Thu May 18 14:16:50 CEST 2017
Duration: 99:49 min

Pages: 27

Example: -
Pushdown Automaton -
0jajll A pushdown automaton (PDA) is a tuple
States: 0,1,2 T (a1l M = (Q,T, 5, o, F) with: :
Start state: 0 TR : o ’ f jtm“ Lof t't Friedrich Baver Kiaus Samelson
. ey 2 a finite set of states;
Final states: 0,2 Dol 2

T aninput alphabet;

qo € @ the start state;

F C (@ the set of final states and

0 C QT x (TU{e}) x Q" afinite set of transitions

®© © 6 0 ¢

@ |We do not differentiate between pushdown symbols and states
@ The rightmost / upper pushdown symbol represents the state

@ Every transition consumes / modifies the upper part of the
pushdown

We define computations of pushdown automata with the help of
transitions; a particular computation state (the current configuration)

is a pair:
(w) ¢

consisting of the pushdown content and the remaining input.

A computation step is characterized by the relation - C (Q* x T*)?
with

(ay, zw) b (v, w) for (v, 2,9) €d

@ The relation - depends on the pushdown automaton A/
@ The reflexive and transitive closure of - is denoted by
@ Then, the language accepted by M is

LM) = fwle 7 |37 € F: (afw]El/ o

Pushdown Automata

M. Schiitzenberger A. Otinger

For each context free grammar & = (N, T, P, 5)
a pushdown automaton A/ with £(G) = £(M) can be built.

The theorem is so important for us, that we take a look at two
constructions for automata, motivated by both of the special
derivations:

@ L to build Leftmost derivations

° Jo build reverse Rightmost derivations

Deterministic Pushdown Automaton

The pushdown automaton A7 is deterministic, if every
configuration has maximally one successor configuration.

This is exactly the case if for distinct transitions
(v1,2,792), (71, 2',9%) € 0 we can assume:

Is v, a suffix of 7/, then = # 2’ A z # e # 2’ is valid.

... for example:

a|ll

]
e
b b

... this obviously holds

Item Pushdown Automaton — Example

Our example:

S — AB A = a B — b

Item Pushdown Automaton — Example Item Pushdown Automaton

We add another rule S — S for initialising the construction:
9 The item pushdown automaton A/% has three kinds of transitions:

Start state: [S"— o 9]
End state: [S"— S
Transition relations: Expansions: ([4A—«aeBf)e[A—aeBj|[B— eq]) for
A= aBfS, By e P
S"— e 5] e|[S" > e S][S— e AB] Shifts: ([A>aeapl,a,[A—>aaef]) for Aseaaf € P
|[S—]o AB]| e [|[S— o ABJ[[A— e d] Reduces: ([A=ae BB [B—~el,e,[A—aBej]) for
A— -u] a LW A—aBfp, By € P
S— e AB][A—ae] |e|[S—Ae DB
.S‘A,A-Bl € .S’A,A{-B[Benb]
B — el b | [B—bel ltems of the form: [A— «e| are also called complete
[[S5— A e F[B—be] [e[[S—ABs The item pushdown automaton shifts the bullet around the derivation
T = eS][S—ABe| | ¢| |5 —=35e tree ...

Iltem Pushdown Automaton ltem Pushdown Automaton

Discussion: . . o
The item pushdown automaton 174 has three kinds of transitions:

@ The expansions of a computation form a leftmost derivation

@ Unfortunately, the expansions are chosen nondeterministically Expansions: ([A—>«aeBf)e[A—>aeBj][B— ev]) for

A= aBp, B=~y€e P
Shifts: ([A=aeafl,a,[A—eaaef]) for A—aaf € P
Reduces: ([A—>aeBB|[B-—>ve],¢,[A—+aBej]) for

A—aBfB, B—y e P

@ For proving correctness of the construction, we show that for
every ltem [A—aeB] the following holds:

([A—aeBfl,w) - ([A—=aBe 3] €) iff B —="w

ltems of the form: [A-— «e] are also called complete
The item pushdown automaton shifts the bullet around the derivation

@ LL-Parsing is based on the item pushdown automaton and tries tree

to make the expansions deterministic ...

Item Pushdown Automaton ltem Pushdown Automaton

Example: S—e | aS0

Discussion:
The transitions of the according Iltem Pushdown Automaton:
@ The expansions of a computation form a leftmost derivation 0][9— & e[[S"— ¢S][S— e
@ Unfortunately, the expansions are chosen nondeterministically 1[5 o8 e | [S"— o S][S— eaSH]
21[9— eaSd al|lS—aeSh
. . 315 —aeSt S—aeSh[S—
@ For proving correctness of the construction, we show that for s Z : r;}j i — Z : . ; — '.] 57
very ltem [A—aeBj he following holds: — . —
every lte [e BA] the following holds S5 [S—aeSh[S— e e|[S—aSeb
([A—>aeBf], w) - (J[A—>aBef] € iff B —*w G| [S—aeSh[S—aShe]|e|[S—aSeh
7T1[S—aSeb b |[S—asSbhe
8[[5"— eS][S—] €| [S"—Se
@ LL-Parsing is based on the item pushdown automaton and tries 95" eS][S—aSbe] [e][5"—S5e

to make the expansions deterministic ...

Topdown Parsing Structure of the LL(1)-Parser:

Problem:

Conflicts between the transitions prohibit an implementation of the
item pushdown automaton as deterministic pushdown automaton.

y
GLL Parsing 5 ~TT]
For each conflict, we create a virtual copy of the complete stack and > Output
continue deriving in parallel.
M
Recursive Descent & Backtracking

Depth-first search for an appropriate derivation.

@ The parser accesses a frame of length 1 of the input;
@ it corresponds to an item pushdown automaton, essentially;
@ table Mg, w] contains the rule of choice.

Recursive Descent & Lookahead

Conflicts are resolved by considering a lookup of the next input
symbol.

Topdown Parsing Topdown Parsing

Idea:
@ Emanate from the item pushdown automaton

@ Consider the next input symbol to determine the appropriate rule
for the next expansion

@ A grammaris called LL(1) if a unique choice is always possible

Idea:
@ Emanate from the item pushdown automaton

@ Consider the next input symbol to determine the appropriate rule
for the next expansion

@ A grammar is called LL(1) if a unique choice is always possible

A reduced grammar is calleg-LLt PrilpLowis Richard Stoams

if for each two distinct rules € P and each

derivation S —7 'u,A ith u € e following is valid:
Firstl M First; l =0

Topdown Parsing Lookahead Sets

First;-Sets

For a se we define:

Example 1:

S — if(FE)SelseS |

hile () S _
WE:Ie() | First1(L) = [{e| e€ L} { JveT:
E — id
Example: S —=e | aSh
is LL(1), since First; (E) = {id} Firet (S
Example 2: - 1(5)
S & f(E)SelseS | Zibb
f(E)S | la
while (E) S5 | juubbb
E;
E — id

.. is not LL(k) forany & > 0. = the yield's prefix of length 1

Lookahead Sets Lookahead Sets

First;(_) is compatible with union and concatenation:

0

FiI’StL(Ll) u FiI’Stl(Lg)

First, (First;(Ly) - First;(Ls))
Fil’StL(Ll) O] FifStJ(LQ)

First;(_) is compatible with union and concatenation:

0

FirStJ(Ll) U] FirStJ(Lg)

Firsty (First (L) - First;(L2))
First1(L1)|®|Firsti(Le2)

Firsty (0)
Firstl(Ll U] Lz)
Firsti (L1 - Lq)

First, (0)
FiI’Stl(Ll @] Lg)
Firsty (L1 - La)

© being 1 — concatenation © being 1 — concatenation
1-concatenation
Let L1, Ly CTU{e}with Ly # 0 # L. Then:

L if ed L

Lo L, = { (L \{e} otherwise

If all rules of ¢ are productive, then all sets First; (A) are hon-empty.

Lookahead Sets Fast Computation of Lookahead Sets

@ The form of each inequality of these systems is:

for example... xJy resp. x 3Jd

for variables x,y und d € D.
@ Such systems are called pure unification problems
@ Such problems can be solved in linear space/time.

. _ 9{a.bec
with empty(E) = empty(T') = empty(F') = false for example: D = 2{ebe)
... we obtain:

FUAS) 2 F(B) | FAE)| 2 F.(E) 203 {a}
Lelf) |2 L.1] |.[“(1) 2 L(T) ! - ,1‘_§{b} T 2D Tg ry D xy
F(T) 2 FF) | |1‘s(1‘) - {(,name,int} | 2 2 {c} Ty Da

,1;2{(‘} T3 2 T2 r3 2 T3

Fast Computation of Lookahead Sets Fast Computation of Lookahead Sets

>y [*Pe
... for our example grammar:

... for our example grammar:

Firsty : Firsty :
(N (, int, name (N (, int, name
Y oy \—r -
(T)= (T =<

Iltem Pushdown Automaton as LL(1)-Parser Item Pushdown Automaton as LL(1)-Parser

back to the example: S e]| [aSb

The transitions in the according IterrPushdewn Automaton: ..indetail: S—¢" | aSh!
0[5 5] e | [9— o 5][S—]e | Firsty(input) [[e [a | b |
1][5"— &S] e [[S"— oS][S—feasSd ‘ 3 H 7 ‘ 7 ‘ 7 ‘
21 [S— eas b} a||[S—aeSh B
3 [S—aeSh el [S—=aeSh[S— e
1] [S—aeSh el [S—aeSh[S— eaSD
5| [S—aeSh[S— e e|[S—aSeb
6[S—>aeSH[S—aSbe]|c|[S—aSeb ‘
T1[S—aS e b | [S—aSbe]
B[]5"— eS][S— e e | [9—=Se /
9|5 — eS|[5—aSbe e | [Se D= ‘

Conflicts arise between transations (0, 1) or (3, 4) resp..

w € Firsty (] w € First; ()

