Script generated by TTT

Title: Petter: Compilerbau (18.05.2017)

Date: Thu May 18 14:16:50 CEST 2017

Duration: 99:49 min

Pages: 27

Example:

States: 0, 1, 2Start state: 0Final states: 0, 2

0	a	11
1	a	11
11	b	2
12	b	2

Conventions:

- We do not differentiate between pushdown symbols and states
- The rightmost / upper pushdown symbol represents the state
- Every transition consumes / modifies the upper part of the pushdown

Example:

States: 0,1,2Start state: 0Final states: 0,2

_				
	0	a	11	
	1	a	11	
	11	b	2	
	12	b	2	

77 / 00/

Definition: Pushdown Automaton

A pushdown automaton (PDA) is a tuple

- Q a finite set of states;
- T an input alphabet;
- $q_0 \in Q$ the start state;
- $F \subseteq Q$ the set of final states and
- $\delta \subseteq Q^+ \times (T \cup \{\epsilon\}) \times Q^*$ a finite set of transitions

We define computations of pushdown automata with the help of transitions; a particular computation state (the current configuration) is a pair:

consisting of the pushdown content and the remaining input.

78 / 283

A computation step is characterized by the relation $\vdash \subseteq (Q^* \times T^*)^2$ with

$$(\alpha \gamma, x w) \vdash (\alpha \gamma', w)$$
 for $(\gamma, x, \gamma') \in \delta$

Remarks:

- The relation \vdash depends on the pushdown automaton M
- The reflexive and transitive closure of ⊢ is denoted by ⊢*
- Then, the language accepted by M is

$$\mathcal{L}(M) = \{ w \in T^* \mid \exists f \in F : (q_0, w) \vdash^* (f, \epsilon) \}$$

Definition: Deterministic Pushdown Automaton

The pushdown automaton M is deterministic, if every configuration has maximally one successor configuration.

This is exactly the case if for distinct transitions (γ_1,x,γ_2) , $(\gamma_1',x',\gamma_2')\in \delta$ we can assume: Is γ_1 a suffix of γ_1' , then $x\neq x' \wedge x\neq \epsilon\neq x'$ is valid.

... for example:

0	a	11
1	a	11
11	b	2
12	b	2

... this obviously holds

Pushdown Automata

Theorem:

For each context free grammar G = (N, T, P, S) M. Schützenberger A. Ötting a pushdown automaton M with $\mathcal{L}(G) = \mathcal{L}(M)$ can be built.

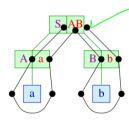
The theorem is so important for us, that we take a look at two constructions for automata, motivated by both of the special derivations:

- M_C^L to build Leftmost derivations
- MR to build reverse Rightmost derivations

Item Pushdown Automaton - Example

Our example:

 $S \rightarrow AB \quad A \rightarrow a \quad B \rightarrow b$



Item Pushdown Automaton - Example

We add another rule $S' \to S$ for initialising the construction:

Start state: $[S' \rightarrow \bullet \ S]$ End state: $[S' \rightarrow S \bullet]$

Transition relations:

$[S' \rightarrow \bullet S]$	ϵ	$[S' \to \bullet \ S] [S \to \bullet \ A B]$
$[S \rightarrow \bullet A B]$	ϵ	$[S \to \bullet \ A \ B][A \to \bullet \ a]$
$[A \rightarrow \bullet a]$	a	$[A \rightarrow a \bullet]$
$[S \to \bullet \ A \ B] [A \to a \bullet]$	ϵ	$[S \to A \bullet B]$
$[S \rightarrow A \bullet B]$	ϵ	$[S \to A \bullet B] [B \to \bullet b]$
B o ullet b	b	$[B \rightarrow b \bullet]$
$[S \to A \bullet B] [B \to b \bullet]$	ϵ	$[S \to A B \bullet]$
$[S' \to \bullet \ S] [S \to A B \bullet]$	ϵ	$[S' \to S \bullet]$

86/283

Item Pushdown Automaton

The item pushdown automaton M_C^L has three kinds of transitions:

Expansions: $([A \rightarrow \alpha \bullet B \beta], \epsilon, [A \rightarrow \alpha \bullet B \beta] [B \rightarrow \bullet \gamma])$ for $A \rightarrow \alpha B \beta, B \rightarrow \gamma \in P$

Shifts: $\begin{array}{ll} \text{($[A \to \alpha \bullet a \, \beta], a, [A \to \alpha \, a \, \bullet \beta]$) for $A \to \alpha \, a \, \beta \in P$} \\ \text{Reduces:} & ([A \to \alpha \bullet B \, \beta] \, [B \to \gamma \bullet], \epsilon, [A \to \alpha \, B \, \bullet \, \beta]) \text{ for } \\ & A \to \alpha \, B \, \beta, \ B \to \gamma \, \in P \\ \end{array}$

Items of the form: $[A \to \alpha ullet]$ are also called complete The item pushdown automaton shifts the bullet around the derivation tree ...

07/000

Item Pushdown Automaton

Discussion:

- The expansions of a computation form a leftmost derivation
- Unfortunately, the expansions are chosen nondeterministically
- For proving correctness of the construction, we show that for every Item $[A \rightarrow \alpha \bullet B \beta]$ the following holds:

$$([A \to \alpha \bullet B \beta], w) \vdash^* ([A \to \alpha B \bullet \beta], \epsilon)$$
 iff $B \to^* w$

 LL-Parsing is based on the item pushdown automaton and tries to make the expansions deterministic ...

Item Pushdown Automaton

The item pushdown automaton M_G^L has three kinds of transitions:

Expansions: $([A \to \alpha \bullet B \beta], \epsilon, [A \to \alpha \bullet B \beta][B \to \bullet \gamma])$ for $A \to \alpha B \beta, B \to \gamma \in P$

Shifts: $([A \rightarrow \alpha \bullet a \beta], a, [A \rightarrow \alpha a \bullet \beta])$ for $A \rightarrow \alpha a \beta \in P$

Reduces: $([A \rightarrow \alpha \bullet B \beta] [B \rightarrow \gamma \bullet], \epsilon, [A \rightarrow \alpha B \bullet \beta])$ for

 $A \to \alpha B \beta, B \to \gamma \in P$

Items of the form: $[A\to \alpha \bullet]$ are also called complete The item pushdown automaton shifts the bullet around the derivation tree ...

Item Pushdown Automaton

Discussion:

- The expansions of a computation form a leftmost derivation
- Unfortunately, the expansions are chosen nondeterministically
- For proving correctness of the construction, we show that for every Item $[A \rightarrow \alpha \bullet B \beta]$ the following holds:

$$([A \to \alpha \bullet B \beta], w) \vdash^* ([A \to \alpha B \bullet \beta], \epsilon)$$
 iff $B \to^* w$

• LL-Parsing is based on the item pushdown automaton and tries to make the expansions deterministic ...

88/283

Item Pushdown Automaton

Example: $S \rightarrow \epsilon \mid aSb$

The transitions of the according Item Pushdown Automaton:

0	$[S' \to \bullet S]$	ϵ	$[S' \to \bullet S] [S \to \bullet]$
1	$[S' \to \bullet S]$	ϵ	$[S' \to \bullet S] [S \to \bullet a S b]$
2	$[S \rightarrow \bullet \ a \ S \ b]$	a	$[S \rightarrow a \bullet S b]$
3	$[S \rightarrow a \bullet S b]$	ϵ	$[S \rightarrow a \bullet S b] [S \rightarrow \bullet]$
4	$[S \rightarrow a \bullet S b]$	ϵ	$[S \rightarrow a \bullet S b] [S \rightarrow \bullet a S b]$
5	$[S \rightarrow a \bullet S b] [S \rightarrow \bullet]$	ϵ	$[S \rightarrow a \ S \bullet b]$
6	$[S \to a \bullet S b] [S \to a S b \bullet]$	ϵ	$[S \to a \ S \bullet b]$
7	$[S \to a \ S \bullet b]$	b	$[S \to a S b \bullet]$
8	$[S' \to \bullet S] [S \to \bullet]$	ϵ	$[S' \to S \bullet]$
9	$[S' \to \bullet S] [S \to a S b \bullet]$	ϵ	$[S' \to S \bullet]$

89/283

Topdown Parsing

Problem:

Conflicts between the transitions prohibit an implementation of the item pushdown automaton as deterministic pushdown automaton.

Idea 1: GLL Parsing

For each conflict, we create a virtual copy of the complete stack and continue deriving in parallel.

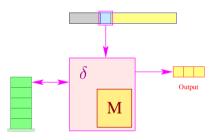
Idea 2: Recursive Descent & Backtracking

Depth-first search for an appropriate derivation.

Idea 3: Recursive Descent & Lookahead

Conflicts are resolved by considering a lookup of the next input symbol.

Structure of the LL(1)-Parser:



- The parser accesses a frame of length 1 of the input;
- it corresponds to an item pushdown automaton, essentially;
- table M[q, w] contains the rule of choice.

91/283

Topdown Parsing

Idea:

- Emanate from the item pushdown automaton
- Consider the next input symbol to determine the appropriate rule for the next expansion
- ullet A grammar is called LL(1) if a unique choice is always possible

Topdown Parsing

Idea:

- Emanate from the item pushdown automaton
- Consider the next input symbol to determine the appropriate rule for the next expansion
- ullet A grammar is called LL(1) if a unique choice is always possible

Definition:

A reduced grammar is called LL(1), Philip Lewis Richard Steams if for each two distinct rules $A \to \alpha' \in P$ and each derivation $S \to_L^* uA$ with $u \in T$ the following is valid:

 $\mathsf{First}_1(\alpha\,\beta) \,\cap\,\, \mathsf{First}_1(\alpha'\,\beta) = \emptyset$

20/202

Topdown Parsing

Example 1:

is LL(1), since $First_1(E) = \{id\}$

Example 2:

.. is not LL(k) for any k > 0.

Lookahead Sets

Definition: First₁-Sets

For a set $L \subseteq T^*$ we define:

$$\mathsf{First}_1(L) \ = \ \big\{ \epsilon \mid \epsilon \in L \big\} \cup \big\{ u \in T \ \exists \, v \in T^* \, : \, \big| \, uv \in L \big\}$$

Example: $S \rightarrow \epsilon \mid aSb$

= the yield's prefix of length 1

94/283

Lookahead Sets

Arithmetics:

First₁(_) is compatible with union and concatenation:

$$\begin{array}{lcl} \operatorname{First}_1(\emptyset) & = & \emptyset \\ \operatorname{First}_1(L_1 \, \cup \, L_2) & = & \operatorname{First}_1(L_1) \, \cup \, \operatorname{First}_1(L_2) \\ \operatorname{First}_1(L_1 \, \cdot \, L_2) & = & \operatorname{First}_1(\operatorname{First}_1(L_1) \, \cdot \, \operatorname{First}_1(L_2)) \\ & := & \operatorname{First}_1(L_1) \bigodot \operatorname{First}_1(L_2) \end{array}$$

⊙ being 1 – concatenation

95/283

Lookahead Sets

for example...

with empty(E) = empty(T) = empty(F) = false

... we obtain:

Lookahead Sets

Arithmetics:

First₁(_) is compatible with union and concatenation:

$$\begin{array}{lll} \mathsf{First}_1(\emptyset) & = & \emptyset \\ \mathsf{First}_1(L_1 \cup L_2) & = & \mathsf{First}_1(L_1) \cup \mathsf{First}_1(L_2) \\ \mathsf{First}_1(L_1 \cdot L_2) & = & \mathsf{First}_1(\mathsf{First}_1(L_1) \cdot \mathsf{First}_1(L_2)) \\ & = & \mathsf{First}_1(L_1) \odot \mathsf{First}_1(L_2) \end{array}$$

⊙ being 1 – concatenation

Definition: 1-concatenation

Let $L_1, L_2 \subseteq T \cup \{\epsilon\}$ with $L_1 \neq \emptyset \neq L_2$. Then:

$$L_1 \odot L_2 = \left\{ egin{array}{ccc} L_1 & ext{if} & \epsilon
otin L_1 \ (L_1 ackslash \{\epsilon\}\} \ L_2 \ \end{array}
ight. & ext{otherwise}
ight.$$

If all rules of G are productive, then all sets $\mathsf{First}_1(A)$ are non-empty.

95/283

Fast Computation of Lookahead Sets

Observation:

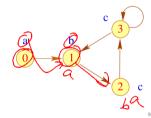
• The form of each inequality of these systems is:

$$x \supseteq y$$
 resp. $x \supseteq d$

for variables x, y und $d \in D$.

- Such systems are called pure unification problems
- Such problems can be solved in linear space/time.

for example: $D = 2^{\{a,b,c\}}$



B/283

