Script generated by TTT

Title: Petter: Compilerbau (11.05.2017)

Date: Thu May 11 14:18:10 CEST 2017

Duration: 90:19 min

Pages: 34

Powerset Construction

... for example:

Berry-Sethi Approach

... for example:
Coa
5
E AN
a B <
; b ha
a | \
pd | | 7
b _7 /) a
\: "
7
b
Remarks:

@ This construction is known as Berry-Sethi- or

Glushkov-construction.
@ It is used for XML to define Content

@ The result may not be, what we had mming..-

Powerset Construction

odels

¢
s T,
... for example: b :
—~~ a | \ N~
~ a
b L a
\.:1j.
P
7

Powerset Construction Powerset Construction

(0’ (3
a) 5~
... for example: S I a
a | A
(2
_—)) o \ ‘ v b
For every non-deterministic automaton A = (Q.X.4.1,F) we can a
compute a deterministic automaton P (A4) with b \‘ 1 a ¥
L£(A) = L(P(A)) 7 Dy

7 <2
a A
b
a b
d a
° N b =
1)~——114)
b((| —

Powerset Construction Powerset Construction

Observation:

For every non-deterministic automaton A = (Q.X.6.1, F) we can There are exponentially many powersets of Q

compute a deterministic automaton 7P(A) with

LIA) = £IP(AY) @ |dea: Consider only contributing powersets. Starting with the set
e e Qp ={I} we only add further states by need

@ i.e., whenever we can reach them from a state in Qp

@ However, the resulting automaton can become enormously huge
... which is (sort of) not happening in practice

Powerset Construction Powerset Construction

.0 M3
... for example: S N NN a
—~ a ‘ N .
- SN Observation:
AR) 2 There are exponentially many powersets of @
3 ‘ Ya
7 Db = @ |dea: Consider only contributing powersets. Starting with the set
— Qp = {I} we only add further states by need
@ i.e., whenever we can reach them from a state in Q»
- @ However, the resulting automaton can become enormously huge
- __/ which is (sort of) not happening in practice
(o2—2—>{023)
7= e
a A
} b
a b
e a
PN S 5 AR
(1)=—714)
br(- \ —
Powerset Construction Remarks:
#0) K3
... for example: N NN a
nmnm ~~ _a | | ‘;2~ @ For an input sequence of length »n , maximally O(n) sets
AL \ . Db are generated
b _ a N @ Once a set/edge of the DFA is generated, they are stored within
(1) (s a hash-table.
(,,, 'b ' @ Before generating a new transition, we check this table for

already existing edges with the desired label.

Yy

['V\‘(,e,go— \

hapter 5:
Scanner design

Idea (cont'd):
@ The scanner manages two pointers (A. B) and the related states
{q4:qB) -

@ Pointer A points to the last position in the input, after which a
state ¢4 € FF was reached;

@ Pointer B tracks the current position.

[sTt[d[ouft[[w[r[ift[e[t]n] [(J"[H[a[I]I]o]"[)]:]

4

A | B

Idea:

@ Createthe DFA P(A.) = (Q,%,d,q0, F) for the expression
e=[e T Texl;

@ Define the sets:

! = q € I—l\ q llast[etl]l#ﬁi}

Fyl = fqe€ (F\Fll\q last[eq] I;EU)}

Frp = {¢e(F\(FLU...UF;1))]|qnNlastles] # 0}
@ Forinput w we find: 0*(qo, w) € F; iff the scanner

must execute action; for w

Extension: States
while [Wil o

@ Now and then, it is handy to differentiate between particular
scanner states.

@ In different states, we want to recognize different token classes
with different precedences.

@ Depending on the consumed input, the scanner state can be
changed

Example: Comments

Within a comment, identifiers, constants, comments, ... are ighored

Input (generalized):

(state) { e

a set of rules:

{ action; yybegin(state);}
{actiong yybegln state> }

€3
€f { action, yybegin(statey }
}
@ The statement yybegin (state;); resetsthe current state

to state;.

@ The start state is called (e.g.flex JFlex) YYINITIAL.

.. for example:

YYINITIAL)

"

x"” { yybegin(COMMENT): }

|(CDMMENj>

"% /" { yybegin(YYINITIAL); }

SN)

Discussion:

In general, parsers are not developed by hand, but generated from a

specification:

Specification Generator Parser

Remarks:

[matches all characters different from “\n”

@ For every state we|generate the scanner respectively.

@ Method vyybegin (STATE); switches between different
scanners.

@ Comments might be directly implemented as (admittedly overly
complex) token-class.

@ Scanner-states are especially handy for implementing
preprocessors, expanding special fragments in regular programs.

Chapter 1:
Basics of Contextfree Grammars

Basics: Context-free Grammars Conventions

@ Programs of programming languages can have arbitrary
numbers of tokens, but only finitely many Token-classes.

@ This is why we choose the set of Token-classes to be the finite

The rules of context-free grammars take the following form:
alphabet of terminals 7.

A —fallwith |AeN|lae (NUT)"
@ The nested structure of program components can be described

elegantly via context-free grammars...

Context-Free Grammar

A context-free grammar (CFG) is a
4-tuple &' = (N, T, P, S) with:

Noa;lchomsky John Backus
@ N the set of nonterminals,
@ T the set of terminals,

@ P> the set of productions or rules, and

o N the start symbol

Conventions

... a practical example:

The rules of context-free grammars take the following form: S

— (stmt)
(stmt) — (if) ||| {while) ||| (rexp);
A—a with AeN, aec(NUI)" (if) — if ((rexp)) (stmiy-else (stmt)
(while) — while ((rexp)) {stmt)
{rexp) — int (lexp) (lexp) = (rexp)
... for example: ‘_flexg; N name‘) Pl | {lexp) = {rexp) |
S = aSb
S — €

Specified language: {a™b™ | n > 0}

In examples, we specify nonterminals and terminals in general
implicitely:

@ nonterminals are: A, B, (..., (exp), (stmt), ...;
o terminals are: a,b,c¢, ...,int,name,...;

... a practical example:

S — (stmt) 1 Pair of grammars:
Gt] = (HC) [(while)] | (rexpdt
(if) — if ((rexp)) (stmt) else (stmt)
(while) — while ((rexp)) (stmt)
(rexp) — int | (lexp) | (lexp) = (rexp) | [E — FE+E | ExE | (E) | name [int
(lexp) — name | E — E+T | T
T — TxF | F
F — (E) | name | int

@ For every nonterminal, we collect the right hand sides of rules
and list them together.

@ The j-thrulefor A can be identified via the pair (A4, j)
(with j > 0).

Both grammars describe the same language

(Cshnts | 1) 1

Derivation Derivation Tree

Derivations of a symbol are represented as derivation trees:

... for example: IEE

£ frEer pofiolion
2]

@ Therelation — depends on the grammar

— . T+T

@ In each step of a derivation, we may choose: ol 7 T Eﬂ
% a spot, determining where we will rewrite.] T+ T
« arule, determining how we will rewrite. _ ;

Ez‘ int

int

T xint + T E

name # int + 1T
name * int + I I:
F

name * int + int
name

@ The language, specifiedby G is:

£y ={we | s> w)

2
1
1
1
2

EREl
o

AeN
inner nodes: rule applications
root: rule application for A
leaves: terminals or e
The successors of (5,7) correspond to right hand sides of the rule

Special Derivations

Attention:

In contrast to arbitrary derivations, we find special ones, always
rewriting the leftmost [or rathe occurance of a
nonterminal.

@ These are calletmost orrathe htmost) derivations and
are denoted with The indexrspectively).

@ Leftmost (or rightmost) derivatio orrespondt to a left-to-right
(or right-to-left) preorder-DFS-traversal of the derivation tree.

° rightmost derivations correspond to a left-to-right
postorder-DFS-traversal of the derivation tree

Special Derivations &L

... for example:

Leftmost derivation: (E,0) (E,1)(T,0)(T7,1) (F,1) (F,2) (T,1) (F,2)
Rightmost derivation: (E,0) (T, 1) (F,2) (E,1) (T,0) (F,2) (T,1) (F,1)
Reverse rightmost derivation: (F, 1) (T, 1) (F,2)(T,0) (E,1) (F,2)(T,1) (£,0)

Special Derivations

... for example:

Unique Grammars

The concatenation of leaves of a derivationtree ¢ are often called
yield(t) .

... for example:

[E[e]
H [T
[F]2]

e
| B [m

-
[F[1]

name

gives rise to the concatenation: name # int + int.

Unigque Grammars Conclusion:

Grammar (' is called unique, if for every w € T* thereis
maximally one derivationtree ¢t of S with yield(t) = w.

@ A derivation tree represents a possible hierarchical structure of a
word.

@ For programming languages, only those grammars with a unique
structure are of interest.

@ Derivation trees are one-to-one corresponding with leftmost
derivations as well as (reverse) rightmost derivations.

&
... in our example: /l\
= + =
€

= EiET | BB TEY [nage[\] nt”] -

E — EfI0 | T1! ' 7N

U B PR OR S i C’R
F — (B)° | name! | int?

E oy Ev £

The first one is ambiguous, the second one is unique

Chapter 2:
Basics of Pushdown Automata

