Script generated by TTT

Title: Petter: Compilerbau (11.07.2016)

Date: Mon Jul 11 14:30:38 CEST 2016
Duration: 84:41 min

Pages: 34

General Conditional

=z N
— c 1 ee //(—O
~ I
Translationof if (c¢) ttelse ce.
) codep forc
code’ if(c) tt elseeep =
(-u(h\h cp jumpz @

gjumpz R 4 code for tt

code® tt p

jump B jump [
%{;U‘M ks code for ee -

i

Simple Conditional

We first consider s = if (¢}
...and present a translation without basic blocks.
Idea:

@ emit the code of ¢ and ss in sequence
@ insert a jump instruction in-between, so that correct control flow
is ensured

code* sp = |codeh ep coder forc
R
djumpz R A I

Zcode® ss p Jumpz o
: o code for ss

Example for if-statement

Let p = {x — 4,y > 7} and let s be the statement

i /* (i) */
X = X - V; S (4d) #/

} else {

1

Then code’ s p yields:

Example for if-statement lterating Statements

Let p = {z — 4,y — 7} and let s be the statement

| if (x>y) | [+ () */ | We only consider the loop s zwhils’. For this statement we
S ZREN () B define:
} else {
y =y - X; Jw (i6d) */ _ _
) | code’ while sp =A: (‘.u(luhﬁf codeg fore |-
Then code’ s p yields: jump? R jumpz °
code’ 5 p
ode for s’
g jump A o
(i) (i (111 - —
\ \ \ B- jump L
move I?; R,y move ; Iy move [7; By R ee0e e
move ;.4 Ii7 move ;.1 I~ move [7,.q [y
SUbR; Ri Rifl SUbRi Ri R,’,'J_

gr Ry Ry Ry
jumpz Ii; [A |

ot 1

jump U >

Example: Translation of Loops Example: Translation of Loops
Letp ={a— 7,b— 8, ¢+— 9} and let s be the statement: Let p = {a+ 7,b+— 8,¢+— 9} and let s be the statement:
while (a>0) ({ /% (i) */ while (a>d) { Jx (i) */
c=c+ 1; Jx (it) +/ c=c+ 1; /x (1) =/
a =a - b; S (i08) «/ a=a - b; Sw (Qdi) o+
} }
Then code® s p evaluates to: Then code? s p evaluates To:

(i) (ii) (iii)

A |move R; R~ move I?; Rg move I7; R~
loadc ;.1 0 loade ;.4 1 move ;.1 Ry
gr B, R, Ry add R; R; R;.1 sub R; R; Ry
jumpz |1R;| B move Rg I; move R+ R;

jump A

S~ 3

for-Loops

The for-loop s = for (ey; ea; e3) s is equivalent to the statement
sequence ¢;; while (e3) {s’ e3; } —as long as s’ does not contain a
continue statement.

Thus, we translate: /

A4
code’ for(el es) sp = codey e p
A: codej eq p

jumsz

code' s p

codel; ez p

jump A

The switch-Statement

|dea:

@ Suppose choosing from multiple options in constant time if
possible

@ use a jump table that, at the ith position, holds a jump to the ith
alternative

@ in order to realize this idea, we need an indirect jJump instruction

jumpi Ri A

[a]
| | Dm
PC

PC=A+R;

The switch-Statement

Idea:

@ Suppose choosing from multiple options in constant time if
possible

@ use a jump table that, at the ith position, holds a jump to the ith
alternative

@ in order to realize this idea, we need an indirect jump instruction

Consecutive Alternatives
Let switch s be given with k consecutive case alternatives:
switch (e)

case ' S07 break

case |k: — 1|: Sk—1; |break; |

[default] si; |break;|
}

Consecutive Alternatives

Let switch s be given with & consecutive case alternatives:

switch (e) |
case (: sp; brzak;

case k—1: sp_1; brezak;
default: s;; break;

efine code’ s p as follows:

&
code}; € p
check' 0k B

code sq p

code®* sp =

jump C'

code* s p

jump C'

Translation of the check’ Macro

B | | jump Aﬁ/

jump Ak\

A

The macro check? [w B checksif] < R; < u. Letk =u — 1.

@ ifl <R, <wuitjumpsto B+ R, —1
@ if R, <lor R, >witjumpsto Ay

B:

jump Ag

jump Ay,

Consecutive Alternatives
Let switch s be given with k consecutive case alternatives:

switch (e) {
case (: s3; break;

case k—1: sp_1; break;
default: s.; break;
}

Define code! s p as follows:
codek e p

check* Ok B B:

Ay : codel sg P :
/ jump A,

S C:
Ay : code® g p

, jump C
check® I u B checks if | < I; < u holds and jumps accordingly.

code* sp =

jump Ag

jump C

Translation of the check? Macro

The macro check? I u B checksif I < R; <wu. Letk =u — 1.
@ ifl<R,<wuitjumpsto B+ R, —1
e if R, <lor R, =wuitjumpsto Ay

we define:
checkilu B = |loadc ;.1
£eq RJ—‘Z -R: Ii—l | .
jumpz R0 B | [B: jump A,
sub R; R; Ry : :
loade R, 1 u o
jump Ay,

oeq fi,.0 It lf-_|!

(\ umpz R, D | C:
FE: loadc R, u—1

D: |jumpi R; B

Improvements for Jump Tables

This translation is only suitable fo} certain switch-statement. |

@ In case the table starts with 0 instead of © we don’t need to
subtract it from e before we use it as index

o if the value of e is guaranteed to be in the interval [I, u], we can
omit check

Ingredients of a Function

The definition of a function consists of
@ a name with which it can be called;
@ a specification of its formal parameters;
@ possibly a result type;
@ a sequence of statements.

In C we have:
codel, fp = loadc R; _f with_f starting address of f

Observe:
@ function names must have an address assigned to them

@ since the size of functions is unknown before they are translated,
the addresses of forward-declared functions must be inserted
later

General translation of switch-Statements

In general, the values of the various cases may be far apart:

@ |generate an if-ladder, that is, a sequence of if-statements |

@ for n cases, an if-cascade (tree of conditionals) can be
generated ~+ O(log n) tests

@ if the sequence of numbers has small gaps (< 3), a jump table
may be smaller and faster

@ one could generate several jump tables, one for each sets of
consecutive cases

@ an if cascade can be re-arranged by using information from
profiling, so that paths executed more frequently require fewer
tests

Memory Management in Functions

int main(void) {
int n;
n = |fac(2) + |fac(l)}
printf ("%d", n);

int fac(int =x) {
if (x<=0) return 1;
else return x4fac|(x-1);

I)

At run-time several instances may be active, that is, the function has
been called but has not yet returned.
The recursion tree in the example:

main
mé fac printf
! |
fac fac

|
fac

Memory Management in Function Variables

@ stack representation: grows upwards
@ SP paints to the last used stack cell

Organization of a Stack Frame

The formal parameters and the local variables of the various SP .
instances of a function must be kept separate local memory
, . . callee

|dea for implementing functions:

@ set up a region of memory each time it is called P PCold organizational

@ in sequential programs this memory region can be allocated on FPold cells

the stack
@ thus, each instance of a function has its own region on the stack
@ these regions are called stack frames
Split of Obligations Principle of Function Call and Return
actions taken on entering g:

Definition 1. compute the start address of g
Let f be the current function that calls a function g. 2. compute actual parameters in globals

@ fis dubbed caller 3. backup of caller-save registers } saveloc

. 4. backup of FP mark
o
g is dubbed callee 5 setthe new FP
6. back up of PC and call

The code for managing function calls has to be split between caller jJump to the beginning of g —
and callee 7. copy actual params to locals } o pising

This split cannot be done arbitrarily since some information is only
known in that caller or only in the callee.

Observation:

The space requirement for parameters is only know by the caller:
Example: printf

actions taken on leaving g:

are in f

} are in g
return

1. compute the resultinto Rq
2. restore FP, SP
3. return to the call site in f,
that is, restore PC |
4. restore the caller-save registers } restoreloc

isin f

Managing Registers during Function Calls

The two register sets (global and local) are used as follows:
@ automatic variables live in local registers R;
@ intermediate results also live in local registers R;
@ parameters live in global registers 1, (with i < 0)
@ global variables: let's suppose there are none
convention:
@ thel: thlargument of a function is passed in registef 12_;
@ the result of a function is stored in |/,
@ local registers are saved before calling a function

Translation of Function Calls
A function call g(ey, ... e,) is translated as follows:
code g(e1,...en) p = codel gp

codti ey p G g

(‘U(l&?’” En P

move R_; R;4

move R_,, R,

| saveloc [y R, |

move [?; IR

Managing Registers during Function Calls

The two register sets (global and local) are used as follows:
@ automatic variables live in local registers R;
@ intermediate results also live in local registers R;
@ parameters live in global registers 12; (with i < 0)
@ global variables: let's suppose there are none
convention:
@ the i th argument of a function is passed in register I?_;
@ the result of a function is stored in 1
@ local registers are saved before calling a function

Definition
Let f be a function that calls g. A register R; is called
@ | caller-saved if f backs up R; and g may overwrite it

@ |callee-saved if [does not back up R;, and ¢ must restore it
before returning

Calling a Function

The instruction call rescues the value of PC+1 onto the stack and
sets FP and PC.

FP —»

[a]
Ri call Ri Ri
PC PC
[p] [q]
SP = SP+1;
S[SP] = PC;
FP = SP;

PC =R;i;

Result of a Function

The global register set is also used to communicate the result value
of a function:

(:u(h\“lreturn €]) = (:u(h!}i ep

movelfr‘UE_l

Return from a Function

The instruction return relinquishes control of the current stack frame,
that is, it restores PC and FP.

PC PC
FP p FP

return

| FP = S[SP+1];

Result of a Function

The global register set is also used to communicate the result value
of a function:

code' returne p = Joulf] e

alternative without result value:

code’ return p = return [/

Translation of Functions

The translation of a function is thus defined as follows:

codel t,. £(args){decls ss} p = move Ry R,
move R, R_,
coddmi! g Py
return

Assumptions:

Translation of Whole Programs

A program P = Fy; ..

code! P p

loadc Ry _main

mark
call 1?4
halt
| _fi (-udtll—lFl pbpy
_fa vudt‘l_IFn PDpy,

End of presentation. Click to exit.

. F,, must have a single main function.

Translation of the fac-function

Consider:
int fac(int x) {
if (x<=0) then
return 1;
else

eturn ¥+fac(x-1)4
, §

fac: move Ry R,

i =2 move Ry Ry
loade 3 0
leq Rg Ifg R;;
jumpz Ry _A
loade 5 1
move 7y Ro
return
jump _B

A: move 25 Iy xxfac(x-1)
i=3 move 3 I X—1
i=4 loadc Ry 1

save param.
if (x<=0)

call i3

| restoreloc R, iy |
move {35y

to else mul f2of R At
return 1 move Ii; Iis

return
, B: C) return
code is dead

return x«*..

