Script generated by TTT

Title: Petter: Compilerbau (04.07.2016)
Date: Mon Jul 04 14:33:06 CEST 2016
Duration: 88:02 min

Pages: 42

Generating Code: Overview

We inductively generate instructions from the AST:

there is a rule stating how to generate code for each
non-terminal of the grammar

the code is merely another attribute in the syntax tree
code generation makes use of the already computed attributes

In order to specify the code generation, we require
a semantics of the language we are compiling (here: C standard)
a semantics of the machine instructions

Generating Code: Overview

We inductively generate instructions from the AST:

there is a rule stating how to generate code for each
non-terminal of the grammar

the code is merely another attribute in the syntax tree
code generation makes use of the already computed attributes

Generating Code: Overview

We inductively generate instructions from the AST:

there is a rule stating how to generate code for each
non-terminal of the grammar

the code is merely another attribute in the syntax tree
code generation makes use of the already computed attributes

In order to specify the code generation, we require
a semantics of the language we are compiling (here: C standard)
a semantics of the machine instructions

~+ we commence by specifying machine instruction semantics

Chapter 1:
The Register C-Machine

The Register C-Machine (R-CMa)

We generate Code for the Register C-Machine.
The Register C-Machine is a virtual machine (VM).

there exists no processor that can execute its instructions

... but we can build an interpreter for it

we provide a visualization environment for the R-CMa

the R-CMa has no double, float, char, short or long types

the R-CMa has no instructions to communicate with the
operating system
the R-CMa has an unlimited supply of registers

The R-CMa is more realistic than it may seem:

the mentioned restrictions can easily be lifted
the Dalvik VM or the LLVM are similar to the R-CMa
an interpreter of R-CMa can run on any platform

The Register C-Machine (R-CMa)

We generate Code for the Register C-Machine.
The Register C-Machine is a virtual machine (VM).

VAM

there exists no processor that can execute its instructions
... but we can build an interpreter for it

we provide a visualization environment for th@
the R-CMa has no double, float, char, short or léng types

the R-CMa has no instructions to communicate with the
operating system
the R-CMa has an unlimited supply of registers

Virtual Machines

A virtual machine has the following ingredients:

any virtual machine provides a set of| instructions |
instructions are executed or‘{ virtual hardware |

the virtual hardware is a collection of data structures that is
accessed and modified by the VM instructions

... and also by other components of the run-time system, namely
functions that go beyond the instruction semantics

the interpreter is part of the run-time system

Components of a Virtual Machine
Consider Java as an example:

D PC

0 [:] SP
A virtual machine such as the Dalvik VM has the following structure:
Sithe data store — a memory region in which cells can be stored
in LIFO order ~+ stack.
SH: (= stack pointer) pointer to the last used cell in S
beyond S follows the memary containing the heap

Executing a Program

the machine loads an instruction from C[PC] into the instruction
register IR in order to execute it

before evaluating the insg.yction, the PC is incremented by one

o
while (,tg*"{ég)‘ {
IR =/C[PC]; PC++;

execute (IR);

1

node: the PC must be incremented before the execution, since
an instruction may modify the PC

the loop is exited by evaluating g halt instruction that returns
directly to the operating system

Components of a Virtual Machine
Consider Java as an example:

0 1 T [::] PC

: [s»
A virtual machine such as the Dalvik VM has the following structure:
S: the data store —a memory region in which cells can be stored
in LIFO order ~ stack.
SP: (= stack pointer) pointer to the last used cell in S
beyond S follows the memory containing the heap
C s the memory storing code
each cell of C holds exactly one virtual instruction
C can only be read
PC (= program counter) address of the instruction that is to be
executed next
PC contains 0 initially

Chapter 2:
Generating Code for the Register C-Machine

Simple Expressions and Assignments in R-CMa Simple Expressions and Assignments in R-CMa

Task: evaluate the expression|(
that is, generate an instruction sequencet at

computes the value of the expression and
keeps its value accessible in a reproducable way

Task: evaluate the expression (1 + 7) * 3
that is, generate an instruction sequence that

computes the value of the expression and
keeps its value accessible in a reproducable way

ldea:

first compute the value of the sub-expressions
store the intermediate result in a temporary register
apply the operator

loop
Principles of the R-CMa The Register Sets of the R-CMa
The R-CMa is composed of a stack, heap and a code segment, just
like the JVM,l|t additionally has register sets: The two register sets have the following purpose:
local registers are Ry, Ro, ... Ry,
the local registers R;
global register are Ry, R_4,... R

Jreee save temporary results

store the contents of local variables of a function
C ’ | | | | | I ‘ can efficiently be stored and restored from the stack

The Register Sets of the R-CMa

The two register sets have the following purpose:
the local registers R;

save temporary results
store the contents of local variables of a function
can efficiently be stored and restored from the stack

the global registers R;

save the parameters of a function
store the result of a function

The Register Sets of the R-CMa

The two register sets have the following purpose:
the local registers R;
save temporary results
store the contents of local variables of a function
can efficiently be stored and restored from the stack
the global registers R,
save the parameters of a function
store the result of a function
Note:
for now, we only use registers to store temporary computations

Idea for the translation: use g register counter i:
registers R; with j < i are in use
registers 1?; with j > i are available

The Register Sets of the R-CMa

The two register sets have the following purpose:
the local registers R;

save temporary results
store the contents of local variables of a function
can efficiently be stored and restored from the stack

the global registers R,

save the parameters of a function
store the result of a function

Note:
for now, we only use registers to store temporary computations

Translation of Simple Expressions

Using variables stored in registers; loading constants:

instruction semantics intuition
loade ;e R, =c¢ load constant
move I?; |12 Ri =R, copy i to R,

Translation of Simple Expressions

Using variables stored in registers; loading constants:

instruction semantics intuition
loade R; ¢ R;=¢ load constant
move R; R; Ri=R; copy R, to R;

We define the following translation schema (with p x = a):

codeh ¢cp = loade R, ¢
(:u(h!f{ xp = move I R,
4
codég z =ep = (:u(l@e P

move 7,

Translation of Expressions

Let op = {add, sub, div, mul, mod, le, gr, eq, leq, geq, and, or}.

The R-CMa provides an instruction for each operator op.
op I Rj Ry

where R; is the target register, R, the first and R, the second
argument.

Correspondingly, we generate code as follows:

codep ey opea p = codeg ey p
(:u(h!}?’l e p

op BJ R: erl

Example: Translate 3« 4 with|i = 4:
(‘udt%l 34l p = ('o(h 3l p

Ld@_‘l_ 2
mul R, |fz4i

Translation of Expressions

Letop = {u..ufd.g sub, div, mul, mod, le, gr, eq, leq, geq, and, or}.
The R-CMa provides an instruction for each operator op.

op R R; Ry,

where %; is the target register, 1, the first and 12, the second
argument.

Correspondingly, we generate code as follows:

codel, e; opeg p = cod
cod e p

op B: Ri Bi—l

Translation of Expressions

Letop = {add, sub, div, mul, mod, le, gr, eq, leq. geq, and, or}.
The R-CMa provides an instruction for each operator op.

op R; R; Ry

where R, is the target register, 12, the first and 12, the second
argument.

Correspondingly, we generate code as follows:

codep ey opez p = codep ey p
(‘U(h\i?’l € p

op R: Ra Rafl
Example: Translate 3«4 with i = 4;

codel 34 p = loadc Ry 3
loadc R; 4
mul R_L R_; Rr,

Managing Temporary Registers Managing Temporary Registers

Observe that temporary registers are re-used: translate 3x4+3x4 Observe that temporary registers are re-used: translate 3« 4+3x4
with ¢t = 4: with ¢ = 4:
éo’
coded, 3x4+3+4 p = (:ud% 3x4 p coded, 3x4+3%4 p = codet 3x4 p
codéy 3+4 p coded, 3%4 p
add [@Iﬁ f@ add [ﬁ [ﬁ Rr)
where where
codel, 3%x4 p = loadc 3 codel, 3«4 p = loadc ;3
load€ 17, D4 loade 1,11 4
mul I@R,j B,j_-l mul Jrf,j B, R,_l
we obtain we obtain
codel, 3x4+3+4 p = codef, 3%4+3%4 p = loadc Ris
loadc [yF=
mul {7 @f
loadc 3 {@
loadc Iy 4
mul f; R
add RORH I
Semantics of Operators Translation of Unary Operators
The operators have the following semantics: Unary operators op = {neg] not | take only two registers:
add R; R; Ry Ri=R;+ Ry ('0(1('}-{ opelp = |codeblep
sub R; R; Ry, R; = R; — Ry @
div R; R; Ry R; = R, /Ry
mul B; R; Ry, R; = R; * Ry,
mod fi; [7; Iy, R; = signum () - £ WIT
Rl =n AR+ kAn>0,0<k<|R
le R; |R; Ry R, =if|R, < RyJthen| else[0 |
gr R, R, By R, =if B; > R then1else 0
eq R; RJ' Ry R; = |fRJ. = R, thenlelse 0
leq R; R; Ry R;=if R; < Rjthenlelse 0
geq R; R; R R;=if R; > R then 1 else 0
and R; RR; Ry Ri=R; & Ry, /I bit-wise and

or R; R; Ry, R;=R;|R, / bit-wise or

Translation of Unary Operators

Unary operators op = {neg, not} take only two registers:

codebopep = codel ep
op R; R,

Note: We use the same register.

Example: Translate -4 into i5:

code? -4 p = |code? 4|p
R B

Rr, Rs

Applying Translation Schema for Expressions
Suppose the following function yoid £ (void) |

is given: int[x,v,z;

Let p = {x — 1fjy — 2|[z — 3} be the

Let |74 |be the first-fEe register, that is|i = 4
'] 9

(:u(h x=y+z*x3 p = |code: y+z+3p
Y £ R Y f
OVE 117 114

address environment.

Translation of Unary Operators

Unary operators op = {ney, not} take only two registers:

codeb,opep = codel ep
op R; R;

Note: We use the same register.

Example: Translate -4 into 15:

code}, -4 p = loadc Rs 4
neg Iis s

The operators have the following semantics:

not R; R, R+ if then else
neg I; R, R, +

Applying Translation Schema for Expressions
Suppose the following function yoid f (void) !

is given: int x,y,z;
X = y+tz+3;

}
Letp ={x+ 1,y — 2,2+ 3} be the address environment.

Let R, be the first free register, that is, i = 4.

codel, y+z+3p

move 11, fi4

('o(h'f{ yHzx3lp = mOVPT__
code? z*3 p

add _R_; R_L fr',

—

codg? x=y+z+3p

Applying Translation Schema for Expressions
Suppose the following function yoid f (void) |

is given: int x,vy,z;
X = y+z=*3;

_ }
Letp={or—1,y— 2z |—> be the address environment.

Let 124 be the first free[register, that is, i = 4.

code? x=y+g+3p = codef, y+z*3p
move R, R,

move R, R-
(‘ud z*3 p
add R4]—{4 Rr‘,
('U(h‘EI z43 p| = mov
codey 3 p
mul /75 fi5 Iig

. 4 I3
codey y+z+3p

Applying Translation Schema for Expressions
Suppose the following function yoid £ (void) |

is given: int x,y,z;
X = y+tz*3;

. b
Let p = {& — 1,y — 2, z — 3} be the address environment.

Let R, be the first free register, that is, i = 4.

codef, y+zx3p
move [Iy

code? x=y+z+3p

(‘ud(‘ﬁ y+z+*3 p = move [y [s
code}, z*3 p
add R_L R_; Rr,

(‘u(h‘i z+=3 p = move 5 3
codef, 3p
mul Ii]r', R,r; Ii](;

code® 3 p = loadc Rg 3

~ the assignment x=y+z*3 is translated as

move [y Io;move Ry Ry;loade Rg 3;mul R; Ry Rg;add Ry Ry Rs;move Ry Ry

Applying Translation Schema for Expressions
Suppose the following function yoid f (void) ¢

is given: int x,vy,z;
X = yt+z*3;
}
Letp ={xr— 1,y — 2,z — 3} be the address environment.
Let R, be the first free register, that is, i = 4.

code?* x=y+z*x3p = coded y+z«3p
move R, R4

(:u(h!‘?i y+zx3 p = move [y R»
(‘u(l("’?{ zx3

add I{4 R4 Ii'r',

codey z+*3p = move Rs R3
codel, 3 p
mul Rr, Rr, R(;

code® 3p = loadec H; 3

Chapter 3:
Statements and Control Structures

About Statements and Expressions

General idea for translation:
codet s p : generate code for statement s

codek, e p : generate code for expression e into R,
Throughout:[7,7 + I,. . -|are free (unused) registers

About Statements and Expressions

General idea for translation:
code® s p : generate code for statement s

codel; e p : generate code for expression e into R;
Throughout: i,i + 1, ... are free (unused) registers

For an expression x,= e with p x = a we defined:

codey r =ep = codel ep
move 17, It;

However, |z = dis also an expression statement:
Define:

cade’ e1|=ea; p = |codeller =exp

The temporary register R; is ignored here. More general:

code’le; p ={codegle p

About Statements and Expressions

General idea for translation:
codet s p : generate code for statement s

codel;, e p : generate code for expression e into R;
Throughout: i,i + 1, ... are free (unused) registers

For an expressionx = e|with p x = a we defined:

. - — : X
code, t =ep = codelep
move R, I?;

Howeveris also an expression statement:

Translation of Statement Sequences

The code for a sequence of statements is the concatenation of the
instructions for each statement in that sequence:

code’ |(sss)lp = |codet sp
code’ ss p
code’ € p = W/ empty sequence of instructions

Note here: s is a statement, ss is a sequence of statements

Jumps

In order to diverge from the linear sequence of execution, we need

jumps:
B o O m
PC

PC

1 - I

Simple Conditional

We first consider s z| if (c¢) t’,,mkj_|
...and present a translation withbut/asic blocks.

Idea:

emit the code of ¢ and ss in sequence
insert a jump instruction in-between, so that correct control flow

is ensured
+ g = K H
code’ sp (.U(h! c|p codep forc
jumpz m A
code® .s.’?',o jumpz il
A code for ss
[N N

Conditional Jumps

A conditional jump branches depending on the value in R;:

Ri Ri
L]
PC

Ri jumpz Ri A
|
PC

if (R, == 0) PC = A;

