Script generated by TTT

Title: Petter: Compilerbau (13.06.2016)
Date: Mon Jun 13 14:24:25 CEST 2016
Duration: 79:01 min

Pages: 48

Semantic Analysis

Scanner and parser accept programs with correct syntax.

@ not all programs that are syntacticallly correct make sense
@ the compiler may be able to recognize some of these

e these programs are rejected and reported as erroneous
e the language definition defines what erroneous means

Semantic Analysis

Scanner and parser accept programs with correct syntax.
@ not all programs that are syntacticallly correct make sense

Semantic Analysis

Scanner and parser accept programs with correct syntax.

@ not all programs that are syntacticallly correct make sense
@ the compiler may be able to recognize some of these

e these programs are rejected and reported as erroneous
e the language definition defines what erroneous means

@ semantic analyses are necessary that, for instance:

@ check that identifiers are known and where they are defined
e check the type-correct use of variables

Semantic Analysis

Scanner and parser accept programs with correct syntax.

@ not all programs that are syntacticallly correct make sense
@ the compiler may be able to recognize some of these

o these programs are rejected and reported as erroneous
e the language definition defines what erroneous means

@ semantic analyses are necessary that, for instance:
@ check that identifiers are known and where they are defined
e check the type-correct use of variables
@ semantic analyses are also useful to
e find possibilities to “optimize” the program
@ warn about possibly incorrect programs

Chapter 1:
Attribute Grammars

Semantic Analysis

Scanner and parser accept programs with correct syntax.

@ not all programs that are syntacticallly correct make sense
@ the compiler may be able to recognize some of these
o these programs are rejected and reported as erroneous
e the language definition defines what erroneous means
@ semantic analyses are necessary that, for instance:
@ check that identifiers are known and where they are defined
e check the type-correct use of variables
@ semantic analyses are also useful to
e find possibilities to “optimize” the program
e warn about possibly incorrect programs

~» a semantic analysis annotates the syntax tree with attributes

Attribute Grammars

@ many computations of the semantic analysis as well as the code
generation operate on the syntax tree
@ what is computed at a given node only depends on the type of
that node (which is usually a non-terminal)
@ we call this a /ocal computation:
@ only accesses already computed information from neighbouring

nodes
e computes new information for the current node and other

neighbouring nodes

Attribute Grammars
@ many computations of the semantic analysis as well as the code
generation operate on the syntax tree
@ what is computed at a given node only depends on the fype of
that node (which is usually a non-terminal)
@ we call this a local computation:
e only accesses already computed information from neighbouring
nodes
e computes new information for the current node and other
neighbouring nodes

Definition attribute grammar

An attribute grammar is a CFG extended by
@ a set of attributes for each non-terminal and terminal
@ local attribute equations

Example: Computation of the empty|r| Attribute

Consider the syntax tree of the regular expression (a|b)*a(a|b):

Attribute Grammars
@ many computations of the semantic analysis as well as the code
generation operate on the syntax tree
@ what is computed at a given node only depends on the fype of
that node (which is usually a non-terminal)
@ we call this a local computation:
e only accesses already computed information from neighbouring
nodes
e computes new information for the current node and other
neighbouring nodes

Definition attribute grammar
An attribute grammar is a CFG extended by

@ a set of attributes for each non-terminal and terminal
@ local attribute equations

@ in order to be able to evaluate the attribute equations, all
attributes mentioned in that equation have to be evaluated
already
~+ the nodes of the syntax tree need to be visited in a certain
sequence

Example: Computation of the empty|r| Attribute

Consider the syntax tree of the regular expression (a|b)*a(alb):

Example: Computation of the empty[r| Attribute Example: Computation of the empty[r] Attribute

Consider the syntax tree of the regular expression (alb)*a(alb): Consider the syntax tree of the regular expression (a|b)*a(alb):

~ equations for empty[r] are computed from bottom to top (aka

bottom-up)
Implementation Strategy Implementation Strategy
|0 attach an attribute empty to every node of the syntax tree . @ attach an attribute empty to every node of the syntax tree
@ compute the attributes in 4 depth-first post-order traversal:| @ compute the attributes in a depth-first post-order traversal:
e at a leaf, we can compute the value of empty without considering e at a leaf, we can compute the value of empty without considering
other nodes other nodes
o the attribute of an inner node only depends on the attribute of its e the attribute of an inner node only depends on the attribute of its
children children
@ the empty attribute is a synthetic attribute @ the empty attribute is a synthetic attribute
@ The local dependencies between the attributes are dependent on @ The local dependencies between the attributes are dependent on
the type of the node the type of the node
in general:
Definition

An attribute is called
@ synthetic if its value is always propagated upwards in the tree (in
the direction leaf — root)
@ inherited if its value is always propagated downwards in the tree
(in the direction root — leaf)

Attribute Equations for empty

In order to compute an attribute locally, we need to specify attribute
equations for each node.
These equations depend on the fype of the node:

for leaves: r = we define empty[r] = (z=¢).

otherwise:
emptyl[lrl | igﬂl = empty[r] V emptyfrq
emptylll I = empty[r1] A empty[ra
empty|rt = 1
empty[r-l =

Specification of General Attribute Systems

General Attribute Systems

In general, for establishing attribute systems we need a flexible way to
refer to parents and children:

~» We use consecutive indices to refer to neighbouring attributes

attribute,[0] : the attribute of the current root node
attribute,[i] : the attribute of the i-th child (i > 0)

... in the example:

| [z] | empty)] == (z=¢)
m : empty[0] = empty[l] V empty[2]
-] empty[0)] = empty[l] A empty[2]
n : empty[0] =
: empty[0] =

Specification of General Attribute Systems

General Attribute Systems

In general, for establishing attribute systems we need a flexible way to
refer to parents and children:

~+ We use consecutive indices to refer to neighbouring attributes

[attribute,[0]: the attribute of the current root node
attribute,[7]|: the attribute of the i-th child (i > 0)
Observations

@ the /ocal attribute equations need to be evaluated using a global
algorithm that knows about the dependencies of the equations
@ in order to construct this algorithm, we need
@ [a sequence in which the nodes of the tree are visited |
© [FSTOUENTE Wi Sac o0 MTWIITIT e SqUATIONS are evaluared]
@ this evaluation strategy has to be compatible with the
dependencies between attributes

Observations

@ the /ocal attribute equations need to be evaluated using a global
algorithm that knows about the dependencies of the equations
@ in order to construct this algorithm, we need
@ asequence in which the nodes of the tree are visited
@ a sequence within each node in which the equations are evaluated

@ this evaluation straftegy has to be compatible with the
dependencies between attributes

We visualize the attribute dependencies D(p) of a production p in a
Local Dependency Graph:

{\M Letp=an—>N1‘N2 in
D(p)={ (empty[l],empty[0]),
emply emply (empty[2], empty[0]) }

~+ arrows point in the direction of information flow

Regular Expressions: Rules for Alternative

E—E|E| empty[0] = empty[l] V empty[2]

first[0] = first[1] U first[2]
next[1] = next[0]
next[2] = next[0]

D(E—E|E) = {

empt y[l], empt g,f[()]},
empt -y[?] sempl ;4,![0]),
Jirst[1], first[0]),
first[2], first[0]),
next[0], next[2])
next[0], next[1])}

e T L e e e

Simultaneous Computation of Multiple Attributes

Computing empty, first, next from regular expressions:

S—E:| empty[0] = empty[l]
first[0] = first[1]
next[1] =
E—x| empty|0] = (z=¢)
first[0] = {x|x# e}
// (no equation for next)
D(S—=FE):
o] E(E—»:f:} :
A flle

ﬁEJ 7]
e | @ [@ ()

D(S—E)={ |empty[l],empt r/[O]b. DAE) =
First[I], forst[0]) }

n

Regular Expressions: Rules for Concatenation

E-E-E| : empty[)] = empty[l] A empty[2]
first[0] = first[1] U (empty[1] 7 first[2] : ()
next[l] = {irst[2] D [empty[2]]? next[0]{D)
next[2] = next]0]
D(E—FE-F):
= f |e
4

!

D(E—E-E)={ (empty[l], empty[0]),
£ ‘] £ '
(empty[2], next[1]),
(first[1], first[0]),
(first[2], firstO])

ext]0], next]2]).
(next[0], next[1])}

Regular Expressions: Kleene-Star and ‘?’

: empty[0]

t

first[0] = first[1]
next[l] := first[1] U next[0]
: empty[0] = ¢
first[0] = first[1]
next[1] = next[(]
D(E—Ex): D(E E?):
f |e ; ‘e
el @0 (e (® [
D(E—=Ex) =4 (firstll], firstOD, g gy = ¢ (first[1], first[0])
(first[1], next[2]), T ”" f: ::.n 3'I)
(next[0], next[1])} (next[0], next[1])}

Challenges for General Attribute Systems

Static evaluation
Is there a static evaluation strategy, which is generally applicable?

@ an evaluation strategy can only exist, if for any derivation tree the
dependencies between attributes are acyclic

@ itis DEXPTIME-complete to check for cyclic dependencies
[Jazayeri, Odgen, Rounds, 1975]

|deas

@ Let the User specify the strategy
© Determine the strategy dynamically
©@ Automate subclasses only

Challenges for General Attribute Systems

Static evaluation
Is there a static evaluation strategy, which is generally applicable?

@ an evaluation strategy can only exist, if for any derivation tree the
dependencies between attributes are acyclic

@ itis DEXPTIME-complete to check for cyclic dependencies
[Jazayeri, Odgen, Rounds, 1975]

Subclass: Strongly Acyclic Attribute Dependencies

Idea: For all nonterminals X compute a se{ R (X)|of relations
between its attributes, as an overapproximation of the global
dependencies between root attributes of every production for X.

Describe R(X)s as sets of relations, similar to D(p) by

® [setting up each production X —[X;...X)Js effect on the

relations of R(X)

@ |compute effect on all so far accumulated evaluations of each rhs
Xi!S R(Xi)

o| iterate until stable |

Subclass: Strongly Acyclic Attribute Dependencies

The 3-ary operator L[p.i| re-decorates relations from L

H[p.i] = {(p.ai],p.b[d]) | (a,b) € L}
o projects only onto relations between root elements only
mo(S) E {(a,b) | (p.a]0],p.b[0]) € S}

Subclass: Strongly Acyclic Attribute Dependencies

The 3-ary operator L[p.i| re-decorates relations from L
Lip,i| = {(p-ali]. p.b[i]) | (a,b) € L}
my projects only onto relations between root elements only

m0(S) = {(a,b) | (p.a[0],p.b[0]) € S}
root-projects the transitive closure of relations from the L;s and D(p)
[p]*(Ly,...,Ly) = mo((D(p) U Ly[p,1] U ... U Ly[p,E)™)

Subclass: Strongly Acyclic Attribute Dependencies

The 3-ary operator L[p.i| re-decorates relations from L
Lip.i] = {(p.ali],p.b[i]) | (a,b) € L}

7o projects only onto relations between root elements only

m0(S) = {(a,b) | (p.a[0],p.b]0]) € 5}
roof-projects the transitive closure of relations from the L;s and D(p)
lp)" (L, ..., L) = mo((D{p) U L[p,1] U ... U Lg[p,k)T)

Subclass: Strongly Acyclic Attribute Dependencies

The 3-ary operator L|p.i| re-decorates relations from L
Lip,i| = {(p.ald],p-b[i]) | (a,b) € L}
7o projects only onto relations between root elements only
m0(S) = {(a.b) | (p.a[0], p-b[0]) € S}
root-projects the transitive closure of relations from the L;s and D(p)
Wl (Lo L) = 7o (D [T [12 [O]Ee o k)
‘R maps symbols to relations (global attributes dependenmes)
RX}EQR (X1]. - [REXG) [p{X =X X | X e N
/4 R(X)20 |XeN A R@=0 |aeT

Subclass: Strongly Acyclic Attribute Dependencies

The 3-ary operator L[p.i| re-decorates relations from L
Lip.i] = {(p.alil, pb[i)) | (a,b) € L}
o projects only onto relations between root elements only
mo(S) = {(a,b) | (p.a]0],p.b[0]) € S}
root-projects the transitive closure of relations from the L;s and D(p)
[pl* (L1, -, L) = mo((D(p) U Li[p1] U.. .U Ly [p.k]) ™)
R maps symbols to relations (global attributes dependencies)
= | HIpl"(R(X1), ..., R(Xi)) [p: X = X1 ... Xp} [X €N

’R()20 |XeN A R(a)=0 |aeT

Strongly Acyclic Grammars

The system of inequalities R(X)
@ characterizes the class of strongly acyclic Dependencies
@ has a unigue least solution R*(X) K

Example: Strong Acyclic Test

Given grammaf S—1, L—a | b.|Dependency graphs D,:

h

P
@ this

Subclass: Strongly Acyclic Attribute Dependencies

Strongly Acyclic Grammars

If all D(p) UR*(X1)[p. 1] U...UR"(Xy)[p, k] are acyclic for all p € G,
(7 is strongly acyclic.

ldea: we compute the least solution 72*(X) of 2(X) by a fixpoint
computation, starting from| 2(X) =

Example: Strong Acyclic Test

Start with computing R(L) 5 [L—a|*[) U [L—b]"():

hiLm\, n [(L) [

@ terminal symbols do not contribute dependencies

Subclass: Strongly Acyclic Attribute Dependencies

The 3-ary operator L[p.i| re-decorates relations from L
Lip.i] = {(p.alil, pb[i)) | (a,b) € L}
o projects only onto relations between root elements only
mo(S) = {(a,b) | (p.a]0],p.b[0]) € S}
root-projects the transitive closure of relations from the L;s and D(p)
[pl* (L1, -, L) = mo((D(p) U Li[p1] U.. .U Ly [p.k]) ™)
R maps symbols to relations (global attributes dependencies)
= | HIpl"(R(X1), ..., R(Xi)) [p: X = X1 ... Xp} [X €N

’R()20 |XeN A Rla)=0| |aeT

Strongly Acyclic Grammars

The system of inequalities R(X)
@ characterizes the class of strongly acyclic Dependencies
@ has a unigue least solution R*(X) K

Example: Strong Acyclic Test

Start with computing R(7) = [L—a]*() U [L—b[*():

i L {[i][¥] [L] [i][¥]
" ’
b

2] |

@ terminal symbols do not contribute dependencies

@ transitive closure of all relations in (D(L—a))* and (D(L—b))"

Example: Strong Acyclic Test

Start with computing R(L) = [L—a|*() U [L—b]*():

hiLm ho] (L[] [k]
\7' é

@ terminal symbols do not contribute dependencies

Example: Strong Acyclic Test

Start with computing R (L} [L—al¥().L—»b ‘()

@ terminal symbols do not contribute dependencies

@ transitive closure of all relations in (D(L—a))" and (D(L—b))"

@ apply m

Example: Strong Acyclic Test Example: Strong Acyclic Test
Continue with R(5) = [S—L|*(R(L)):

h [i]
Start with computing R(L) = [L—a|*() LU [L—b[*(): @
i

(L)
v [(L) [[(L) @ !

Pl] = =z
hl[i L k j
@ terminal symbols do not contribute dependencies ’\ I /7
@ transitive closure of all relations in (D(L-—a))* and (D(L-—b))™" O

@ apply 1
Q R(L)={(k,), (i, h)} @ re-decorate R(L) via L[S L,1]
Example: Strong Acyclic Test Example: Strong Acyclic Test
Continue with R(5) = |[S—L[*(R(L)): Continue with R(S) = [S—L|*(R(L)):
@
hi [h
@ re-decorate R(L) via L|S—L,1] @ re-decorate R(L) via L[S—L.1]
@ transitive closure of all relations @ transitive closure of all relations

(D(S—L)YJ{(p.k[1],p.7[1)} U {(p.i[1]), p.R[1])})T (D(S—L)U {(pk[1],p.g[1)} U {(p.i[1]), p.R[IN})T

Example: Strong Acyclic Test Example: Strong Acyclic Test
Continue with R(5) = [S—L|*(R(L)):

i [1]
Start with computing R(L) = [L—a|*() LU [L—b[*(): @ *

(L)
n [(L) 0 n [(L) O] v~
n [(T) 0J[

@ terminal symbols do not contribute dependencies
@ transitive closure of all relations in (D(L-—a))* and (D(L-—b))™"

@ apply 1
Q R(L)={(k, i), (i, h)} @ re-decorate R(L) via L|5—L.1]
@ transitive closure of all relations
(D(S—L) U {(p-k[1],p5[1)} U {(peif1], p.h 1)}
Example: Strong Acyclic Test Strong Acyclic and Acyclic
Gontinue with R(5) = [S—L["(R(L)): The grammar|S— L, L—a | b has only two derivation trees which are
both acyclic:
e @ @
| | 6
It'is not sirongly acyclic since the dependence grap for the
non-terminal L contribute to a cycle when computing R(5):
h @ [i]
@ re-decorate R(L)via L[S—L.1] ‘ i;
@ transitive closure of all relations ,/T

(D(S—=L)U{(pk[], pi[AD)} UA{(p-2[1], p-R[A)H)T {

n
Q apply

From Dependencies to Evaluation Strategies
Possible strategies:

