Script generated by TTT

Title: Petter: Compilerbau (13.06.2016)

Date: Mon Jun 13 14:24:25 CEST 2016

Duration: 79:01 min

Pages: 48

Semantic Analysis

Scanner and parser accept programs with correct syntax.

- not all programs that are syntactically correct make sense
- the compiler may be able to *recognize* some of these
 - these programs are rejected and reported as erroneous
 - the language definition defines what erroneous means

Semantic Analysis

Scanner and parser accept programs with correct syntax.

• not all programs that are syntactically correct make sense

163/292

Semantic Analysis

Scanner and parser accept programs with correct syntax.

- not all programs that are syntactically correct make sense
- the compiler may be able to *recognize* some of these
 - these programs are rejected and reported as erroneous
 - the language definition defines what erroneous means
- semantic analyses are necessary that, for instance:
 - check that identifiers are known and where they are defined
 - check the type-correct use of variables

Semantic Analysis

Scanner and parser accept programs with correct syntax.

- not all programs that are syntactically correct make sense
- the compiler may be able to recognize some of these
 - these programs are rejected and reported as erroneous
 - the language definition defines what erroneous means
- semantic analyses are necessary that, for instance:
 - check that identifiers are known and where they are defined
 - check the type-correct use of variables
- semantic analyses are also useful to
 - find possibilities to "optimize" the program
 - warn about possibly incorrect programs

Semantic Analysis

Chapter 1: **Attribute Grammars**

Semantic Analysis

Scanner and parser accept programs with correct syntax.

- not all programs that are syntactically correct make sense
- the compiler may be able to recognize some of these
 - these programs are rejected and reported as erroneous
 - the language definition defines what erroneous means
- semantic analyses are necessary that, for instance:
 - check that identifiers are known and where they are defined
 - check the type-correct use of variables
- semantic analyses are also useful to
 - find possibilities to "optimize" the program
 - warn about possibly incorrect programs
- → a semantic analysis annotates the syntax tree with attributes

Attribute Grammars

- many computations of the semantic analysis as well as the code generation operate on the syntax tree
- what is computed at a given node only depends on the type of that node (which is usually a non-terminal)
- we call this a *local* computation:
 - only accesses already computed information from neighbouring
 - computes new information for the current node and other neighbouring nodes

Attribute Grammars

- many computations of the semantic analysis as well as the code generation operate on the syntax tree
- what is computed at a given node only depends on the type of that node (which is usually a non-terminal)
- we call this a *local* computation:
 - only accesses already computed information from neighbouring nodes
 - computes new information for the current node and other neighbouring nodes

Definition attribute grammar

An attribute grammar is a CFG extended by

- a set of attributes for each non-terminal and terminal
- local attribute equations

165/292

Attribute Grammars

- many computations of the semantic analysis as well as the code generation operate on the syntax tree
- what is computed at a given node only depends on the *type* of that node (which is usually a non-terminal)
- we call this a *local* computation:
 - only accesses already computed information from neighbouring nodes
 - computes new information for the current node and other neighbouring nodes

Definition attribute grammar

An attribute grammar is a CFG extended by

- a set of attributes for each non-terminal and terminal
- local attribute equations
- in order to be able to evaluate the attribute equations, all attributes mentioned in that equation have to be evaluated already
 - → the nodes of the syntax tree need to be visited in a certain sequence

165/292

Example: Computation of the empty[r] Attribute

Consider the syntax tree of the regular expression (a|b)*a(a|b):

Example: Computation of the empty[r] Attribute

Consider the syntax tree of the regular expression (a|b)*a(a|b):

Example: Computation of the empty[r] Attribute

Consider the syntax tree of the regular expression (a|b)*a(a|b):

Example: Computation of the empty[r] Attribute

Consider the syntax tree of the regular expression (a|b)*a(a|b):

 \rightarrow equations for empty [r] are computed from bottom to top (aka bottom-up)

Implementation Strategy

- attach an attribute empty to every node of the syntax tree
- compute the attributes in a depth-first post-order traversal:
 - at a leaf, we can compute the value of empty without considering other nodes
 - the attribute of an inner node only depends on the attribute of its children
- the empty attribute is a *synthetic* attribute
- The local dependencies between the attributes are dependent on the *type* of the node

Implementation Strategy

- attach an attribute empty to every node of the syntax tree
- compute the attributes in a *depth-first* post-order traversal:
 - at a leaf, we can compute the value of empty without considering other nodes
 - the attribute of an inner node only depends on the attribute of its children
- the empty attribute is a synthetic attribute
- The local dependencies between the attributes are dependent on the type of the node

in general:

Definition

An attribute is called

- synthetic if its value is always propagated upwards in the tree (in the direction leaf \rightarrow root)
- inherited if its value is always propagated downwards in the tree (in the direction root \rightarrow leaf)

Attribute Equations for empty

In order to compute an attribute *locally*, we need to specify attribute equations for each node.

These equations depend on the *type* of the node:

Specification of General Attribute Systems

General Attribute Systems

In general, for establishing attribute systems we need a flexible way to *refer to parents and children*:

→ We use consecutive indices to refer to neighbouring attributes

169/292

100/292

Specification of General Attribute Systems

General Attribute Systems

In general, for establishing attribute systems we need a flexible way to *refer to parents and children*:

 $\,\,\leadsto\,$ We use consecutive indices to refer to neighbouring attributes

```
\mathsf{attribute_k}[0]: the attribute of the current root node \mathsf{attribute_k}[i]: the attribute of the i-th child (i > 0)
```

... in the example:

Observations

- the *local* attribute equations need to be evaluated using a *global* algorithm that knows about the dependencies of the equations
- in order to construct this algorithm, we need
 - a sequence in which the nodes of the tree are visited
 - a sequence within each node in which the equations are evaluated
- this *evaluation strategy* has to be compatible with the *dependencies* between attributes

Observations

- the *local* attribute equations need to be evaluated using a *global* algorithm that knows about the dependencies of the equations
- in order to construct this algorithm, we need
 - a sequence in which the nodes of the tree are visited
 - a sequence within each node in which the equations are evaluated
- this evaluation strategy has to be compatible with the dependencies between attributes

We visualize the attribute dependencies D(p) of a production p in a Local Dependency Graph:

→ arrows point in the direction of information flow

Simultaneous Computation of Multiple Attributes

Computing empty, first, next from regular expressions:

 $D(E \rightarrow x)$:

E

172/292

Regular Expressions: Rules for Alternative

```
E \rightarrow E \mid E \mid
                      empty[0] := empty[1] \lor empty[2]
                                     := first[1] \cup first[2]
                       first[0]
                                     := next[0]
                       next[1]
                       next[2]
                                     := next[0]
                        D(E \rightarrow E \mid E):
```


$$D(E \rightarrow E | E) = \{ \begin{array}{c} (empty[1], empty[0]), \\ (empty[2], empty[0]), \\ (first[1], first[0]), \\ (first[2], first[0]), \\ (next[0], next[2]), \\ (next[0], next[1]) \} \end{array}$$

Regular Expressions: Rules for Concatenation

Regular Expressions: Kleene-Star and '?'

```
E \rightarrow E*
                                               empty[0]
                                                                 := t
                                                                  := first[1]
                                                                 := first[1] \cup next[0]
                                               next[1]
                   E \rightarrow E?
                                               empty[0]
                                                                 := t
                                                                  := first[1]
                                               first[0]
                                               next[1]
                                                                  := next[0]
         D(E \rightarrow E*):
                                                                    D(E \rightarrow E?):
          fe
          f e
                                                                    f e
 \begin{array}{ll} D(E {\rightarrow} E*) = \{ & (first[1], first[0]), \\ & (first[1], next[2]), \\ & (next[0], next[1]) \} \end{array} 
                                                           D(E \rightarrow E?) = \{
                                                                                  (first[1], first[0]), \\ (next[0], next[1])\}
```

Challenges for General Attribute Systems

Static evaluation

Is there a static evaluation strategy, which is generally applicable?

- an evaluation strategy can only exist, if for *any* derivation tree the dependencies between attributes are acyclic
- it is *DEXPTIME*-complete to check for cyclic dependencies [Jazayeri, Odgen, Rounds, 1975]

176/292

Challenges for General Attribute Systems

Static evaluation

Is there a static evaluation strategy, which is generally applicable?

- an evaluation strategy can only exist, if for any derivation tree the dependencies between attributes are acyclic
- it is *DEXPTIME*-complete to check for cyclic dependencies [Jazayeri, Odgen, Rounds, 1975]

Ideas

- Let the User specify the strategy
- Determine the strategy dynamically
- Automate <u>subclasses</u> only

Subclass: Strongly Acyclic Attribute Dependencies

Idea: For all nonterminals X compute a set $\mathcal{R}(X)$ of relations between its attributes, as an *overapproximation of the global dependencies* between root attributes of every production for X.

Describe $\mathcal{R}(X)$ s as sets of relations, similar to D(p) by

- setting up each production $X \mapsto X_1 \dots X_k$'s effect on the relations of $\mathcal{R}(X)$
- compute effect on all so far accumulated evaluations of each rhs X_i 's $\mathcal{R}(X_i)$
- iterate until stable

Subclass: Strongly Acyclic Attribute Dependencies

The 3-ary operator L[p,i] re-decorates relations from L

$$I[p,i] = \{ (p.a[i], p.b[i]) \mid (a,b) \in L \}$$

 π_0 projects only onto relations between root elements only

$$\pi_0(S) = \{(a, b) \mid (p.a[0], p.b[0]) \in S\}$$

Subclass: Strongly Acyclic Attribute Dependencies

The 3-ary operator L[p,i] re-decorates relations from L

$$L[p,i] = \{(p.a[i], p.b[i]) \mid (a,b) \in L\}$$

 π_0 projects only onto relations between root elements only

$$\pi_0(S) = \{ (a, b) \mid (p.a[0], p.b[0]) \in S \}$$

root-projects the transitive closure of relations from the L_i s and D(p)

$$[\![p]\!]^{\sharp}(L_1,\ldots,L_k) = \pi_0((D(p) \cup L_1[\![p,1]\!] \cup \ldots \cup L_k[\![p,k]\!])^+)$$

170/000

Subclass: Strongly Acyclic Attribute Dependencies

The 3-ary operator L[p,i] re-decorates relations from L

$$L[p,i] = \{(p.a[i], p.b[i]) \mid (a,b) \in L\}$$

 π_0 projects only onto relations between root elements only

$$\pi_0(S) = \{(a, b) \mid (p.a[0], p.b[0]) \in S\}$$

root-projects the transitive closure of relations from the L_i s and D(p)

$$[p]^{\sharp}(L_1,\ldots,L_k)=\pi_0((D(p)\cup L_1[p,1]\cup\ldots\cup L_k[p,k])^+)$$

Subclass: Strongly Acyclic Attribute Dependencies

The 3-ary operator L[p,i] re-decorates relations from L

$$L[p,i] = \{ (p.a[i], p.b[i]) \mid (a,b) \in L \}$$

 π_0 projects only onto relations between root elements only

$$\pi_0(S) = \{ (a, b) \mid (p.a[0], p.b[0]) \in S \}$$

root-projects the transitive closure of relations from the L_i s and D(p)

$$[p]^{\sharp}(L_1,\ldots,L_k) = \pi_0((D(p)\cup L_1[p,1]\cup . \cup L_k[p,k])^+)$$

R maps symbols to relations (global attributes dependencies)

$$\mathcal{R}(X) = \bigcup_{k \in \mathbb{N}} \mathcal{R}(X_1), \dots \mathcal{R}(X_k) \mid p \mid X \to X_1 \dots X_k \mid X \in \mathbb{N}$$

$$\mathcal{R}(X) \supseteq \emptyset \quad \mid X \in \mathbb{N} \quad \land \quad \mathcal{R}(a) = \emptyset \quad \mid a \in \mathbb{T}$$

Subclass: Strongly Acyclic Attribute Dependencies

The 3-ary operator L[p,i] re-decorates relations from L

$$L[p,i] = \{ (p.a[i], p.b[i]) \mid (a,b) \in L \}$$

 π_0 projects only onto relations between root elements only

$$\pi_0(S) = \{ (a, b) \mid (p.a[0], p.b[0]) \in S \}$$

root-projects the transitive closure of relations from the L_i s and D(p)

$$[p]^{\sharp}(L_1,\ldots,L_k)=\pi_0((D(p)\cup L_1[p,1]\cup\ldots\cup L_k[p,k])^+)$$

R maps symbols to relations (global attributes dependencies)

$$\mathcal{R}(X) = \bigcup \{ \llbracket p \rrbracket^{\sharp}(\mathcal{R}(X_1), \dots, \mathcal{R}(X_k)) \mid p : X \to X_1 \dots X_k \} \mid X \in N$$

$$\mathcal{R}(X) \supseteq \emptyset \quad \mid X \in N \quad \land \quad \mathcal{R}(a) = \emptyset \quad \mid a \in T$$

Strongly Acyclic Grammars

The system of inequalities $\mathcal{R}(X)$

- characterizes the class of strongly acyclic Dependencies
- has a unique least solution $\mathcal{R}^*(X)$ (as [.] \sharp is monotonic)

Subclass: Strongly Acyclic Attribute Dependencies

Strongly Acyclic Grammars

If all $D(p) \cup \mathcal{R}^*(X_1)[p,1] \cup \ldots \cup \mathcal{R}^*(X_k)[p,k]$ are acyclic for all $p \in G$, G is strongly acyclic.

Idea: we compute the least solution $R^*(X)$ of R(X) by a fixpoint computation, starting from $R(X) = \emptyset$.

179/292

Example: Strong Acyclic Test

Given grammar $S \rightarrow L$, $L \rightarrow a \mid b$. Dependency graphs D_p :

Example: Strong Acyclic Test

Start with computing $\mathcal{R}(L) = \llbracket L \rightarrow a \rrbracket^{\sharp}) \sqcup \llbracket L \rightarrow b \rrbracket^{\sharp} ()$:

terminal symbols do not contribute dependencies

Subclass: Strongly Acyclic Attribute Dependencies

The 3-ary operator L[p,i] re-decorates relations from L

$$L[p,i] = \{ (p.a[i], p.b[i]) \mid (a,b) \in L \}$$

 π_0 projects only onto relations between root elements only

$$\pi_0(S) = \{ (a, b) \mid (p.a[0], p.b[0]) \in S \}$$

root-projects the transitive closure of relations from the L_i s and D(p)

$$[p]^{\sharp}(L_1,\ldots,L_k)=\pi_0((D(p)\cup L_1[p,1]\cup\ldots\cup L_k[p,k])^+)$$

R maps symbols to relations (global attributes dependencies)

$$\mathcal{R}(X) = \bigcup \{ [\![p]\!]^{\sharp} (\mathcal{R}(X_1), \dots, \mathcal{R}(X_k)) \mid p : X \to X_1 \dots X_k \} \mid X \in N$$

$$\mathcal{R}(X) \supseteq \emptyset \quad \mid X \in N \quad \land \quad \boxed{\mathcal{R}(a) = \emptyset} \quad \mid a \in T$$

Strongly Acyclic Grammars

The system of inequalities $\mathcal{R}(X)$

- characterizes the class of strongly acyclic Dependencies
- has a unique least solution $\mathcal{R}^*(X)$ (as [.] \sharp is monotonic)

Example: Strong Acyclic Test

Start with computing $\mathcal{R}(L) = [\![L \rightarrow a]\!]^{\sharp}() \sqcup [\![L \rightarrow b]\!]^{\sharp}()$:

terminal symbols do not contribute dependencies

181/292

Example: Strong Acyclic Test

Start with computing $\mathcal{R}(L) = [\![L \rightarrow a]\!]^{\sharp}() \sqcup [\![L \rightarrow b]\!]^{\sharp}()$:

- terminal symbols do not contribute dependencies check for cycles!
- $lackbox{ }$ transitive closure of all relations in $(D(L
 ightarrow a))^+$ and $(D(L
 ightarrow b))^+$

Example: Strong Acyclic Test

Start with computing $\mathcal{R}(L) = [\![L \rightarrow a]\!]^{\sharp}() [\![\sqcup]\!] L \rightarrow b]\!]^{\sharp}()$:

- terminal symbols do not contribute dependencies
- 2 transitive closure of all relations in $(D(L \rightarrow a))^+$ and $(D(L \rightarrow b))^+$
- **3** apply π_0

Example: Strong Acyclic Test

Start with computing $\mathcal{R}(L) = [\![L \rightarrow a]\!]^{\sharp}() \sqcup [\![L \rightarrow b]\!]^{\sharp}()$:

- terminal symbols do not contribute dependencies
- 2 transitive closure of all relations in $(D(L\rightarrow a))^+$ and $(D(L\rightarrow b))^+$
- \odot apply π_0
- **3** $\mathcal{R}(L) = \{(k, j), (i, h)\}$

Example: Strong Acyclic Test

Continue with $\mathcal{R}(S) = [S \rightarrow L]^{\sharp}(\mathcal{R}(L))$:

• re-decorate $\mathcal{R}(L)$ via $L[S \rightarrow L, 1]$

Example: Strong Acyclic Test

Continue with $\mathbb{R}(S) = [S \to L]^{\sharp}(\mathbb{R}(L))$:

- re-decorate $\mathcal{R}(L)$ via $L[S \rightarrow L, 1]$
- transitive closure of all relations $(D(S \rightarrow L) \cup \{(p.k[1], p.j[1])\} \cup \{(p.i[1], p.h[1])\})^+$

check for cycles!

Example: Strong Acyclic Test

Continue with $\mathcal{R}(S) = [S \to L]^{\sharp}(\mathcal{R}(L))$:

- re-decorate $\mathcal{R}(L)$ via $L[S \rightarrow L, 1]$
- 2 transitive closure of all relations $(D(S \rightarrow L) \cup \{(p.k[1], p.j[1])\} \cup \{(p.i[1], p.h[1])\})^+$

Example: Strong Acyclic Test

Start with computing $\mathcal{R}(L) = [\![L \rightarrow a]\!]^{\sharp}() \sqcup [\![L \rightarrow b]\!]^{\sharp}()$:

- terminal symbols do not contribute dependencies
- 2 transitive closure of all relations in $(D(L\rightarrow a))^+$ and $(D(L\rightarrow b))^+$
- **apply** π_0

Example: Strong Acyclic Test

Continue with $\mathcal{R}(S) = [S \rightarrow L]^{\sharp}(\mathcal{R}(L))$:

- re-decorate $\mathcal{R}(L)$ via $L[S \rightarrow L, 1]$
- 2 transitive closure of all relations $(D(S \rightarrow L) \cup \{(p.k[1], p.j[1])\} \cup \{(p.i[1], p.h[1])\})^+$

check for cycles

Example: Strong Acyclic Test

Continue with $\mathcal{R}(S) = [S \rightarrow L]^{\sharp}(\mathcal{R}(L))$:

Strong Acyclic and Acyclic

The grammar $S \rightarrow L$, $L \rightarrow a \mid b$ has only two derivation trees which are both acyclic:

It is not strongly acyclic since the dependence graph for the non-terminal L contribute to a cycle when computing $\mathcal{R}(S)$:

• re-decorate $\mathcal{R}(L)$ via $L[S \rightarrow L, 1]$

transitive closure of all relations $(D(S \rightarrow L) \cup \{(p.k[1], p.j[1])\} \cup \{(p.i[1], p.h[1])\})^+$

3 apply π_0

