#### Script generated by TTT

Title: Petter: Compilerbau (02.05.2016)

Date: Mon May 02 14:25:31 CEST 2016

Duration: 90:26 min

Pages: 41

# **Special Derivations**

#### Attention:

In contrast to arbitrary derivations, we find special ones, always rewriting the leftmost (or rather rightmost) occurance of a nonterminal.

- These are called <u>leftmost</u> (or rather <u>rightmost</u>) derivations and are denoted with the index *L* (or *R* respectively).
- Leftmost (or rightmost) derivations correspond to a eft-to-right (or right-to-left preorder-DFS-traversal of the derivation tree.
- Reverse rightmost derivations correspond to a left-to-right postorder-DFS-traversal of the derivation tree

#### **Derivation Tree**

Derivations of a symbol are represented as derivation trees:

... for example:

$$\begin{array}{cccc} \underline{E} & \rightarrow^{0} & \underline{E} + T \\ \rightarrow^{1} & \underline{T} + T \\ \rightarrow^{0} & T * \underline{F} + T \\ \rightarrow^{2} & \underline{T} * \mathsf{int} + T \\ \rightarrow^{1} & \underline{F} * \mathsf{int} + T \\ \rightarrow^{1} & \mathsf{name} * \mathsf{int} + \underline{T} \\ \rightarrow^{1} & \mathsf{name} * \mathsf{int} + \underline{F} \\ \rightarrow^{2} & \mathsf{name} * \mathsf{int} + \mathsf{int} \end{array}$$



#### A derivation tree for $A \in N$ :

inner nodes: rule applications root: rule application for A leaves: terminals or  $\epsilon$ 

The successors of (B, i) correspond to right hand sides of the rule

69/282

# **Special Derivations**



70/282

# **Special Derivations**



Leftmost derivation: Rightmost derivation:

$$(E,0) (E,1) (T,0) (T,1) (F,1) (F,2) (T,1) (F,2) (E,0) (T,1) (F,2) (E,1) (T,0) (F,2) (T,1) (F,1)$$

# **Special Derivations**

... for example:



Leftmost derivation: Rightmost derivation: Reverse rightmost derivation:  $\begin{array}{c} (E,0) \ (E,1) \ (T,0) \ (T,1) \ (F,1) \ (F,2) \ (T,1) \ (F,2) \\ (E,0) \ (T,1) \ (F,2) \ (E,1) \ (T,0) \ (F,2) \ (T,1) \ (F,1) \\ \hline (F,1) \ (T,1) \ (F,2) \ (T,0) \ (E,1) \ (F,2) \ (T,1) \ (E,0) \end{array}$ 

71/282

# Unique Grammars

... for example:



gives rise to the concatenation:

 $\mathsf{name} * \mathsf{int} + \mathsf{int}$ 

# **Unique Grammars**

#### Definition:

Grammar G is called unique, if for every  $w \in T^*$  there is maximally one derivation tree t of S with yield(t) = w.

... in our example:

| $E \rightarrow E \perp T^0 + T^1$                                |  |
|------------------------------------------------------------------|--|
|                                                                  |  |
| $T \rightarrow T*F^{0} \mid F^{1}$                               |  |
| $F \rightarrow (E)^{0} \mid \text{name}^{1} \mid \text{int}^{2}$ |  |

The first one is ambiguous, the second one is unique

73/282

#### Conclusion:

- A derivation tree represents a possible hierarchical structure of a word.
- For programming languages, only those grammars with a unique structure are of interest.
- Derivation trees are one-to-one corresponding with leftmost derivations as well as (reverse) rightmost derivations.

Conclusion:

- A derivation tree represents a possible hierarchical structure of a word.
- For programming languages, only those grammars with a unique structure are of interest.
- Derivation trees are one-to-one corresponding with leftmost derivations as well as (reverse) rightmost derivations.
- Leftmost derivations correspond to a top-down reconstruction of the syntax tree.
- Reverse rightmost derivations correspond to a bottom-up reconstruction of the syntax tree.

74/282

74/282

# Syntactic Analysis

# Chapter 2: Basics of Pushdown Automata

# Basics of Pushdown Automata

Languages, specified by context free grammars are accepted by Pushdown Automata:



The pushdown is used e.g. to verify correct nesting of braces.

# Example:

States: 0.1.2Start state: Final states: 0.2



#### Example:

0, 1, 2States: Start state: Final states: 0.2

| 0  | a | 11 |
|----|---|----|
| 1  | a | 11 |
| 11 | b | 2  |
| 12 | b | 2  |

#### Conventions:

- We do not differentiate between pushdown symbols and states
- The rightmost / upper pushdown symbol represents the state
- Every transition consumes / modifies the upper part of the pushdown

# **Definition:** Pushdown Automaton

A pushdown automaton (PDA) is a tuple

 $M = [Q, T, \delta, q_0, F]$  with:

- Q a finite set of states;
- T an input alphabet;
- $q_0 \in Q$  the start state;
- $F \subseteq Q$  the set of final states and
- a finite set of transitions

**Definition:** Pushdown Automaton

A pushdown automaton (PDA) is a tuple

 $M = (Q, T, \delta, q_0, F)$  with:



- T an input alphabet;
- $q_0 \in Q$  the start state;
- $F \subseteq Q$  the set of final states and
- $\delta \subseteq Q^+ \times (T \cup \{\epsilon\}) \times Q^*$  a finite set of transitions

We define computations of pushdown automata with the help of transitions; a particular computation state (the current configuration) is a pair:

consisting of the pushdown content and the remaining input.

... for example:

 $\begin{array}{ll} \textbf{States:} & 0,1,2 \\ \textbf{Start state:} & 0 \\ \textbf{Final states:} & 0,2 \end{array}$ 

| 0  | a | 1) |
|----|---|----|
| 1  | a | 11 |
| 11 | b | 2  |
| 12 | b | 2  |

... for example:

| 0  | a | 11 |
|----|---|----|
| 1  | a | 11 |
| 11 | b | 2  |
| 12 | b | 2  |

... for example:

 $\begin{array}{ll} \textbf{States:} & 0,1,2 \\ \textbf{Start state:} & 0 \\ \textbf{Final states:} & 0,2 \end{array}$ 



$$(0, aaabbb) \vdash$$



79/282

... for example:

 $\begin{array}{ll} \textbf{States:} & 0,1,2 \\ \textbf{Start state:} & 0 \\ \textbf{Final states:} & 0,2 \end{array}$ 

 $(0, aaabbb) \vdash$ 



79/282

... for example:

 $\begin{array}{ll} \textbf{States:} & 0,1,2 \\ \textbf{Start state:} & 0 \\ \textbf{Final states:} & 0,2 \end{array}$ 

| 1 a         | 11 |
|-------------|----|
|             | 11 |
| 11 b        | 2  |
| 12 <i>b</i> | 2  |



... for example:

 $\begin{array}{ll} \textbf{States:} & 0,1,2 \\ \textbf{Start state:} & 0 \\ \textbf{Final states:} & 0 \underline{2} \end{array}$ 

| 0  | a | 11 |
|----|---|----|
| 1  | a | 11 |
| 11 | b | 2  |
| 12 | b | 2  |

79/282

79/282

A computation step is characterized by the relation  $\ dash$   $\subseteq (Q^* imes T^*)^2$  with

$$(\alpha \gamma x w) \vdash (\alpha \gamma w) \text{ for } (\gamma, x, \gamma) \in \delta$$

A computation step is characterized by the relation  $\ dash$   $\subseteq (Q^* imes T^*)^2$  with

$$(\alpha \gamma, x w) \vdash (\alpha \gamma', w)$$
 for  $(\gamma, x, \gamma') \in \delta$ 

#### Remarks:

- ullet The relation  $\vdash$  depends of the pushdown automaton M
- The reflexive and transitive closure of ⊢ is denoted by ⊢\*
- ullet Then, the language accepted by M is

$$\mathcal{L}(M) = \{ w \in T^* \mid \exists f \in F : q_0 w \vdash^* f \in \}$$

#### **Definition:** Deterministic Pushdown Automaton

The pushdown automaton M is deterministic, if every configuration has maximally one successor configuration.

This is exactly the case if for distinct transitions  $(\gamma_1, x, \gamma_2), (\gamma_1, x', \gamma_2') \in \underline{\delta}$  we can assume: Is  $\gamma_1$  a suffix of  $\gamma_1'$ , then  $x \neq x' \land x \neq \epsilon \neq x'$  is valid.

#### **Definition:** Deterministic Pushdown Automaton

The pushdown automaton M is deterministic, if every configuration has maximally one successor configuration.

This is exactly the case if for distinct transitions  $(\gamma_1, x, \gamma_2), (\gamma_1', x', \gamma_2') \in \delta$  we can assume: Is  $\gamma_1$  a suffix of  $\gamma_1'$ , then  $x \neq x' \land x \neq \epsilon \neq x'$  is valid.

... for example:

| 0   | a | 11 |
|-----|---|----|
| 1   | a | 11 |
| 1[1 | b | 2  |
| 12  | b | 2  |

... this obviously holds

81/282

# Pushdown Automata





# Theorem:

For each context free grammar G = (N, T, P, S)a pushdown automaton M with  $\mathcal{L}(G) = \mathcal{L}(M)$  can be built.

The theorem is so important for us, that we take a look at two constructions for automata, motivated by both of the special derivations:

- $M_C^L$  to build Leftmost derivations
- M<sup>R</sup><sub>C</sub> to build reverse Rightmost derivations

Syntactic Analysis

Chapter 3: Top-down Parsing

# Item Pushdown Automaton

# Construction: Item Pushdown Automaton



- Reconstruct a Leftmost derivation.
- Expand nonterminals using a rule.
- Verify successively, that the chosen rule matches the input.
- The states are now Items (= rules with a bullet):

$$[A \to \alpha \bullet \beta], \qquad A \to \alpha \beta \in P$$

The bullet marks the spot, how far the rule is already processed

# Construction: Item Pushdown Automaton $M_C^L$

- Reconstruct a Leftmost derivation.
- Expand nonterminals using a rule.
- Verify successively, that the chosen rule matches the input.
- → The states are now Items (= rules with a bullet):

Item Pushdown Automaton

 $[A \to \alpha \bullet \beta]$ ,  $A \to \alpha \beta \in P$ 

The bullet marks the spot, how far the rule is already processed

# Item Pushdown Automaton - Example

# Our example:

$$S \rightarrow AB \quad A \rightarrow a \quad B \rightarrow b$$



# Item Pushdown Automaton - Example

# Our example:

 $S \rightarrow AB \quad A \rightarrow a \quad B \rightarrow b$ 



# Item Pushdown Automaton - Example

# Our example:

$$S \rightarrow AB \quad A \rightarrow a \quad B \rightarrow b$$



# Item Pushdown Automaton - Example

We add another rule  $S' \to S$  for initialising the construction:

Start state: End state:

**Transition relations:** 

| $[S' \rightarrow \bullet S]$               | $\epsilon$       | $[S' \rightarrow \bullet \ S][S \rightarrow \bullet \ A \ B]$ |
|--------------------------------------------|------------------|---------------------------------------------------------------|
| $[S \rightarrow \bullet AB]$               | $\epsilon$       | $[S  ightarrow \bullet A E][A  ightarrow \bullet a]$          |
| $[A \rightarrow \bullet a]$                | $\boldsymbol{a}$ | $[A \rightarrow a \bullet]$                                   |
| $[S \to \bullet AB][A \to a \bullet]$      | $\epsilon$       | $[S \rightarrow A \bullet B]$                                 |
| $[S \rightarrow A \bullet B]^{\circ}$      | $\epsilon$       | $[S \to A \bullet B][B \to \bullet b]$                        |
| $B \to \bullet b$                          | b                | $[B \rightarrow b \bullet]$                                   |
| $[S \to A \bullet B] [B \to b \bullet]$    | $\epsilon$       | $[S \rightarrow A B \bullet]$                                 |
| $[S' \to \bullet \ S] [S \to A B \bullet]$ | $\epsilon$       | $[S' \to S \bullet]$                                          |
|                                            |                  | ,                                                             |

# Item Pushdown Automaton

The item pushdown automaton  $M_C^L$  has three kinds of transitions:

**Expansions:**  $([A \to \alpha \bullet B \beta], \epsilon, [A \to \alpha \bullet B \beta] [B \to \bullet \gamma])$  for

 $A \rightarrow \alpha B \beta, B \rightarrow \gamma \in P$ 

 $([A \to \alpha \bullet a \beta], \underline{a}, [A \to \alpha a \bullet \beta])$  for  $A \to \alpha a \beta \in P$ Shifts:

Reduces:

Items of the form:  $[A \rightarrow \alpha \bullet]$  are also called complete

The item pushdown automaton shifts the bullet around the derivation tree ...

# Item Pushdown Automaton - Example

We add another rule  $S' \to S$  for initialising the construction:

 $[S' \to \bullet S]$ Start state:  $[S' \to S \bullet]$ End state:

**Transition relations:** 



#### Item Pushdown Automaton

# Discussion:

- The expansions of a computation form a leftmost derivation
- Unfortunately, the expansions are chosen nondeterministically
- For proving correctness of the construction, we show that for every Item  $[A \rightarrow \alpha \bullet B \ \beta]$  the following holds:

$$([A \to \alpha \bullet B \beta], w) \vdash^* ([A \to \alpha B \bullet \beta], \epsilon) \quad \text{iff} \quad B \to^* w$$

• LL-Parsing is based on the item pushdown automaton and tries to make the expansions deterministic ...

#### Item Pushdown Automaton

Example:

$$S \to \epsilon$$

 $a\,S\,b$ 

The transitions of the according Item Pushdown Automaton:

| 0 | $[S' \rightarrow \bullet S]$                                          | $\epsilon$ | $[S' \to \bullet S][S \to \bullet]$           |
|---|-----------------------------------------------------------------------|------------|-----------------------------------------------|
| 1 | [S' 	o ullet S]                                                       | $\epsilon$ | $[S' \to \bullet S] [S \to \bullet a S b]$    |
| 2 | $[S \rightarrow \bullet \ a \ S \ b]$                                 | a          | $[S \to a \bullet S b]$                       |
| 3 | $[S \rightarrow a \bullet S b]$                                       | $\epsilon$ | $[S \to a \bullet S b] [S \to \bullet]$       |
| 4 | $[S \rightarrow a \bullet S b]$                                       | $\epsilon$ | $[S \to a \bullet S b] [S \to \bullet a S b]$ |
| 5 | $oxed{\left[S  ightarrow a ullet S b ight] \left[S  ightarrow ullet}$ | $\epsilon$ | $[S \rightarrow a S \bullet b]$               |
| 6 | $[S \rightarrow a \bullet S b] [S \rightarrow a S b \bullet]$         | $\epsilon$ | $[S \to a \ S \bullet b]$                     |
| 7 | $[S \rightarrow a \ S \bullet b]$                                     | b          | $[S \rightarrow a S b \bullet]$               |
| 8 | $[S' \to \bullet S] [S \to \bullet]$                                  | $\epsilon$ | $[S' \to S \bullet]$                          |
| 9 | $[S' \to \bullet S] [S \to a S b \bullet]$                            | $\epsilon$ | $[S' \rightarrow S \bullet]$                  |

89/283

# **Topdown Parsing**

#### Problem:

Conflicts between the transitions prohibit an implementation of the item pushdown automaton as deterministic pushdown automaton.

# Idea 1: GLL Parsing

For each conflict, we create a virtual copy of the complete stack and continue deriving in parallel.

# **Topdown Parsing**

#### Problem:

Conflicts between the transitions prohibit an implementation of the item pushdown automaton as deterministic pushdown automaton.

# Idea 1: GLL Parsing

For each conflict, we create a virtual copy of the complete stack and continue deriving in parallel.

# Idea 2: Recursive Descent & Backtracking

Depth-first search for an appropriate derivation.

# **Topdown Parsing**

# Problem:

Conflicts between the transitions prohibit an implementation of the item pushdown automaton as deterministic pushdown automaton.

# Idea 1: GLL Parsing

For each conflict, we create a virtual copy of the complete stack and continue deriving in parallel.

# Idea 2: Recursive Descent & Backtracking

Depth-first search for an appropriate derivation.

# Idea 3: Recursive Descent & Lookahead

Conflicts are resolved by considering a lookup of the next input symbol.

# Structure of the LL(1)-Parser:



- The parser accesses a frame of length 1 of the input;
- it corresponds to an item pushdown automaton, essentially;
- table M[q, w] contains the rule of choice.