Script generated by TTT

Title: Petter: Compilerbau (02.05.2016)
Date: Mon May 02 14:25:31 CEST 2016
Duration: 90:26 min

Pages: 41

Special Derivations

Attention:
In contrast to arbitrary derivations, we find special ones, always

rewritin

g the leftmost (or rather rightmost) occurance of a

nonterminal.

@ These are called leftmost (or rather rightmost) derivations and
are denoted with the index L (or i respectively).

@ Lef

ftmost (or rightmost) derivations correspondt to a |eft-to-right

(or

right-to-left) joreorder-DF S-traversal of the derivation tree.

@ Reverse rightmost derivations correspond to a left-to-right
postorder-DFS-traversal of the derivation tree

Derivation Tree

Derivations of a symbol are represented as derivation trees:

... for example:

, 0 E_._'l‘
s T4+ T
s 0 T« F+T

Txint+ 7T
Fxint+ T
name * int + 1
name * int + [
name #* int + int

A derivation tree for A € N:
inner nodes: rule applications
root: rule application for

leaves: terminals or e

|T1/“ |ﬂ|‘F 2] | [Tt
I
name

A

The successors of (B,4) correspond to right hand sides of the rule

Special Derivations

... for example:

Leftmost derivation:

E,0)

(T,0)

T, 1

,‘:]_)

(7,2) (1,1) (F,2)

Special Derivations

... for example:

L]

name

Leftmost derivation:
Rightmost derivation:

Unique Grammars

The concatenation of leaves of a derivation tree ¢

yield(t) .
... for example:

E

o]

]

1]
puitiy

1 [
0

[+]

int

(12,0) (B, 1).(T,0

H,,
-

El
B

z.ofT. 1)

el
——
N

are often called

e
1]

name

gives rise to the concatenation:

name * int + int

Special Derivations

... for example:

=
1]

Leftmost derivation:
Rightmost derivation:

7]
[¥]
[name]

name

Reverse rightmost derivation:

Unique Grammars

Definition:
Grammar &

is called unique, if for every

— " H
= o H

(2,0 (£,1) (T,0) (T, 1) (F,

I
E.0) (T 1) (F,2) (E 1) (T.
D] 0 [1) | BB

we T

there is

maximally one derivationtree ¢ of S with yield({) = w.
. in our example:
|F — FE+E" | ExE' | (E)® | name’ | int?
E — E+T7 | T1
T — TxF° | F! |
F o (E)” | name! | int?

The first one is ambiguous, the second one is unique

Conclusion:

@ A derivation tree represents a possible hierarchical structure of a
word.

@ For programming languages, only those grammars with a unique
structure are of interest.

@ Derivation trees are one-to-one corresponding with leftmost
derivations as well as (reverse) rightmost derivations.

Chapter 2:
Basics of Pushdown Automata

Conclusion:

@ A derivation tree represents a possible hierarchical structure of a
word.

@ For programming languages, only those grammars with a unique
structure are of interest.

@ Derivation trees are one-to-one corresponding with leftmost
derivations as well as (reverse) rightmost derivations.

@ Leftmost derivations correspond to 4 top-down|reconstruction of
the syntax tree.

@| Reverse rightmost derivations [correspond to a bottom-up
reconsiruction of the syniax ree.

Basics of Pushdown Automata

Languages, specified by context free grammars are accepted by
Pushdown Automata:

=

The pushdown is used e.g. to verify correct nesting of braces.

Example:

States: 0,1,2
Start state: 0
Final states: 0,2

Definition: Pushdown Automaton

A pushdown automaton (PDA) is a tuple
M =1{Q,T,é,qq, F) with:

o a finite set of states;
° an input alphabet;

® |1 € Q |the start state;
@ | C ()| the set of final states and

OHap 1l
7| L1

11 (b 2

1216 2

Friedrich Bauer

o o C[o [x[rulex[0r| afinite set of transitions

Klaus Samelson

Example:
[11
States: 0,1,2 0 |a
1 |a|ll
Start state: 0 :
Final states: 0.2 1ILjb| 2
' 2] 2

Conventions:

ol We do not differentiate between pushdown symbols and states

@ The rightmost / upper pushdown symbol represents the state

@ Every transition consumes / modifies the upper part of the
pushdown

Definition: Pushdown Automaton
A pushdown automaton (PDA) is a tuple
M =(Q.,T,4,q, F) with:

) afinite set of states;

T an input alphabet;

qo € @ the start state;

F C @ the set of final states and
0 C QT x (T'U{e}) x Q° afinite set of transitions

Friedrich Bauer Klaus Samelson

We define computations of pushdown automata with the help of
transitions; a particular computation state (the current configuration)

is a pair:
@

consisting of the pushdown content and the remaining input.

. for example:

States:
Start state:
Final states:

. for example:

States:
Start state:
Final states:

0,1,2 Lol «]d)
()’ ' T jalll
0.9 1102

’ 12 6] 2

— (A1 | aabbb)

. 0 |al|ll

8" 1,2 1 Jalll
0.2 b2
12 16| 2

aaabbb) | 11, aabbb)

(l. abbb)

. for example:

States:
Start state:

Final states:

. for example:

States:
Start state:

Final states:

aaabbb)

aaabbb)

a | 11

@) 11

1216 2

(JJ bbb)

0 al|ll

2 1 | a|ll

e 2 |
12161 2
aabbb)

abbb)

) b)

. for example: ... for example:

States: 0,1,2 (1) S ﬁ States: 0,1,2 (1) 2 i
Start state: 0 11 z‘ 5 Start state: 0 TR
Final states: 0,2 d Final states: 0[Z])

12 [[p] 2 12102

===

(0, aaabbb) | (11, aabbbd) (0, | ' (11, aabbbd)
(111, abbb) ' (111, abbb)
(1111, bbb) (1111, bbb)
a2 b - (12, bh)
' (12, b)
3 o
A computation step is characterized by the relation - C (Q* x T%) A computation step is characterized by the relation - C (Q* x T™)
with with
(v zw)b (o', w) for [y, x,+") €0 (v, zw) - (ay',w) for (v, z,4") €9
Remarks:

@ The relation - depends of the pushdown automaton A7
@ The reflexive and transitive closure of - is denoted by +*
@ Then, the language accepted by M is

L(M)|= ku;ETI|3J'EF:

]

Definition: Deterministic Pushdown Automaton

The pushdown automaton A is deterministic, if every
configuration has maximally one successor configuration.

This is exactly the case if for distinct transitions
(Rdfz]re) - (v,) €_0 we can assume:

Is v, a suffix of], then A x # e # x'is valid.

Pushdown Automata

Theorem:

For each context free grammar ¢ = (IV, T, [, 5) M Sehdtzenerger A Ginger
a pushdown automaton A/ with £(G) = £(M) can be built.

The theorem is so important for us, that we take a look at two
constructions for automata, motivated by both of the special
derivations:

® M to build Leftmost derivations
@ M} to build reverse Rightmost derivations

Definition: Deterministic Pushdown Automaton

The pushdown automaton A/ is deterministic, if every
configuration has maximally one successor configuration.

This is exactly the case if for distinct transitions
(71, 2,792), (7].2',94) € 0 we can assume:
Is v, a suffix of 41, then = # =’ A = # e # ' is valid.

... for example:

a | 11
al 11
bl 2
bl 2
... this obviously holds

E=1

—_
o

Chapter 3:
Top-down Parsing

ltem Pushdown Automaton

Construction: Item Pushdown Automaton m

@ Reconstruct a Leftmost derivation.
@ Expand nonterminals using a rule.
@ Verify successively, that the chosen rule matches the input.

The states are now ltems (= rules with a bullet):
[A —aef], A—-aff € P

The bullet marks the spot, how far the rule is already processed

ltem Pushdown Automaton — Example

Our example:

S — AB A —= a B — b

[tem Pushdown Automaton

Construction: Item Pushdown Automaton 7%

@ Reconstruct a Leftmost derivation.

@ [Expand nonterminals using a rule. |

@ Verify successively, that the chosen rule matches the input.
The states are now{ ltems |(=|ru|es with & bulletH

[A —a e

|A —~af € P |

The bullet marks the spot, how far the rule is already processed

ltem Pushdown Automaton — Example

Our example:

S — AB A — a B — b

ltem Pushdown Automaton — Example

Our example:

S —- AB A — a B — b

ltem Pushdown Automaton

The item pushdown automaton A7/ has three kinds of transitions:

Expansions: ([A—+aeBpjl.e,[A—+aeBf][B— ev]) for
A—aBp, B—~y € P

Shifts: ([A—aeaf.alA—aaef]) for A—aafp € P

Reduces: (|A— o|leBB|B /58]l e,[A—aBej]) for
A—aBfp, B—vy € P

ltems of the form: [A — «e] are also called complete
The item pushdown automaton shifts the bullet around the derivation
free ...

ltem Pushdown Automaton — Example

We add another rule | 5 — 5| for initialising the construction:

Start state:
End state:
Transition relations:
[S"— o 5] e[S~ o SIS o AB]
S — e AB] e [[S— o AL] A— o4
|A— e (J‘} a [—i —a -]]
[S— o AB].:A"'(}-D: el|s +AeB
[5—Ae D] e|[[S—AeB][B— el
B e} bl[B-—be)
S—AeB[[B—be |e|[S—=ABe
S e S[[S=ABe | e [T —50

ltem Pushdown Automaton — Example

We add another rule 5/ — S for initialising the construction:

Start state: (5" — e 5]
End state: [S"— S
Transition relations:
BRI W5 = « S5 =4 Bl
[S— b AlB] e |[S— e AB|[A— e a|
[A— |oall al|fA—le
|5 — bIAB|[E) ||| [S— A[e] B]
=Ry c[[S2AeB[[B el]
[B— ol b |[B—bd
7 S Alfey
5" Sef]

ltem Pushdown Automaton

Discussion:

@ The expansions of a computation form a leftmost derivation
@ |[Unfortunately, the expansions are chosen nondeterministically

@ For proving correctness of the construction, we show that for
every ltem [A—«e B3] the following holds:

([A—>aeBf, -w) ([A—~aBef] ¢ iff B-u.!

[tem Pushdown Automaton

Example:

S — €

| aSh

The transitions of the according ltem Pushdown Automaton:

@|LL-Parsing is based on the item pushdown automaton and tries
to make the expansions deterministic ...

Topdown Parsing

Problem:

Conflicts between the transitions prohibit an implementation of the
item pushdown automaton as deterministic pushdown automaton.

ldea 1: GLL Parsing

For each conflict, we create a virtual copy of the complete stack and
continue deriving in parallel.

0[S — &8 e[S — o5][S—]
1[5~ eS8 el [8"— o5][S— ea S
215 eaS b] a||lS—aeSh
31[5—aeSh e [S—aeSh[S—e]
41[S—=aeSh e[[S—aeSH[S— eal bl
50[5—raeSh[S—e] el[S—aSeb

6|9 >aeSh[S—+aShe] | e|[SraSeb
T1[5—aSeb b|[S—als b-]

81 [5"— eS5][S— 9] e[S —=S5e

91 [5"— e5|[S—aSbhe] €| [5 —Se

Topdown Parsing

Problem:

Conflicts between the transitions prohibit an implementation of the
item pushdown automaton as deterministic pushdown automaton.

ldea 1: GLL Parsing

For each conflict, we create a virtual copy of the complete stack and
continue deriving in parallel.

Idea 2: Recursive Descent & Backtracking
Depth-first search for an appropriate derivation.

Topdown Parsing

Problem:

Conflicts between the transitions prohibit an implementation of the
item pushdown automaton as deterministic pushdown automaton.

ldea 1: GLL Parsing

For each conflict, we create a virtual copy of the complete stack and
continue deriving in parallel.

ldea 2: Recursive Descent & Backtracking
Depth-first search for an appropriate derivation.

ldea 3: Recursive Descent & Lookahead

Conflicts are resolved by considering a lookup of the next input
symbol.

Structure of the L1.(1)-Parser:

0 (1 T]

Output

M

@ The parser accesses a frame of length 1 of the input;
@ it corresponds to an item pushdown automaton, essentially;
@ table M ¢, w] contains the rule of choice.

