Script generated by TTT

Title: Petter: Compilerbau (13.07.2015)
Date: Mon Jul 13 14:16:53 CEST 2015
Duration: 65:05 min

Pages: 35

The switch-Statement

|dea:

@ Suppose choosing from multiple options in constant time if
possible

@ use a jump table that, at the ith position, holds a jump to the ith
alternative

@ in order to realize this idea, we need an indirect jJump instruction

R jumpi Rif A Ri
PC PC

PC=A+ R;

The switch-Statement

Idea:

@ Suppose choosing from multiple options ih constant time if
possible

@ use a jump table that, at the ith position, holds a jump to the ith
alternative

@ in order to realize this idea, we need an indirect jump {nstruction

Consecutive Alternatives
Let switch s be given with k& consecutive case alternatives:
switch (e) {

case (0: sp;

case k—1: sx_1; break;
default: s;.; break;

Consecutive Alternatives
Let switch s be given with & consecutive case alternatives:

switch (e) {

case (: . break;
.]

case k—1: |s;p_1;| break;
default: s;; break;

1
Define code! s p as follows:
code’ s p| = (:u(h\h eb
check 0k B B :| |jump Ao
A 1. code’ s P |
jump C jump Ay

A+ codel sy P
jump C'

Translation of the check’ Macro

The macro check! checks ifl <R, <u Leth=u—L

o {T= 1< o} omps o 1]

e if R, <lor R, >uitjumpstoZ [l - i = B‘P,(

jump Ag

jump Ay,

Consecutive Alternatives
Let switch s be given with k consecutive case alternatives:

switch (e) {
case (: s3; break;

case k—1: sp_1; break;
default: s.; break;

}

Define code? s p as follows:
f

code! s p = (‘U(l(!i{ ep /7
B:

check* 0k B Jjump Ag
Ay : codel sg P : :
jump € jump Ay
L C:
A, codel sy P \\—)
jump C

check I u B checks if I < R; < u holds and jumps accordingly.

Translation of the check? Macro

The macro check? I u B checksif I < R; <wu. Letk =u — 1.
@ ifl<R,<wuitjumpsto B+ R, —1
e if R, <lorR; >wuitjumpsto C

we define:

checkBluB = loade Ry [1]

£eq RJ—‘Z -R: Ri—l
jumpz R, o|E
sub R; R; B
loadc I{J_,l T

geq Riio R Ris jump Ay
jumpz R; 0 D C

loadc R?; \L\

jumpi ||| B

B jump Ay

o[

Translation of the check’ Macro

The macro check? l w B checksif | < R, < u. Letk =u —1.
@ ifil<R, <wuitjumpsto B+ R, —1
e if R; <lor R, >uitjumpsto C

we define:

checkilu B = loade R, O
geq ;0 By Ria
jumpz R, o E
sub R, R; Riq
loade R, u T

£eq R:—‘Z RJ -R:—l jump ‘4k
jumpz R; 2 D C:

loadc I; (u. - (,)

jumpi R; B

B: jump Ay

T =

General translation of switch-Statements

In general, the values of the various cases may be far apart:

@ generate an if-ladder, that is, a sequence of if-statements

@ for n cases, an if-cascade (tree of conditionals) can be
generated ~ O(logn) tests

@ if the sequence of numbers has small gaps (< 3), a jump table
may be smaller and faster

@ one could generate several jump tables, one for each sets of
consecutive cases

@ an if cascade can be re-arranged by using information from
profiling, so that paths executed more frequently require fewer
tests

Improvements for Jump Tables

This translation is only suitable for certain switch-statement.

@ In case the table starts with 0 instead of « we don't need to
subtract it from e before we use it as index

e if the value of e is guaranteed to be in the interval [1, u], we canla ol
omit check Cow ple i¢f7

Chapter 4:
Functions

Ingredients of a Function Memory Management in Functions

int main(wvoid) {
int_n;
n = fac(2)| +|{fac(l)}
printf ("%sd", n);

The definition of a function consists of int|fac (int x) {

@ a hame with which it can be called; it (x==0) return I;
e . else return |x+fac(x-1);

@ a specification of its formal parameters; }

@ possibly g result type;

@ a sequence of statements.

}

At run-time several instances may be active, that is, the function has
In C we have: been called but has not yet returned.
The recursion tree in the example:

codel| flp = |loade R; _f | with _f starting address of f
main
Observe:

@ function names must have an address assigned to them fac fac printf
@ since the size of functions is unknown before they are translated, |

the addresses of forward-declared functions must be inserted fac fac

later |

fac
Memory Management in Function Variables Organization of a Stack Frame

@ stack representation: grows upwards
@ SP points to the last used stack cell

The formal parameters and the local variables of the various SP :

instances of a function must be kept separate local memory

. . . callee
|dea for implementing functions:
@ set up a region of memory each time it is called P : PCold organizational
@ in sequential programs this memory region can be allocated on FPold cells

the stack
@ thus, each instance of a function has its own region on the stack
@ these regions are calleq stack frames

Split of Obligations vor o p (%
L 07 7{ l[) q L’) n,, é

Definition
Let f be the current function that calls a function g.

@ fis dubbed caller
@ g is dubbed callee

)

The code for managing function calls has to be split between caller
and callee.

This split cannot be done arbitrarily since some information is only
known in that caller or only in the callee.

Observation:

The space requirement for parameters is only know by the caller:

Examplefprintf
flee,”

Managing Registers during Function Calls

The two register sets (global and local) are used as follows:
@ automatic variables live in local registers R;
@ intermediate results also live in local registers R,
@ parameters live in global registers ?; (with i < 0)
@ global variables:

Principle of Function Call and Return

actions taken on entering g:

1. compute the start address of g
2. compute actual parameters in globals
3. backup of caller-save registers } saveloc
4. backup of FF mark arein f
5. setthe new FP
6. back up of PC and call
jump to the beginning of ¢
7. copy actual params to locals b tis i

actions taken on leaving g:

1. compute the result into I3y

2. |restore FP, SP .

3. |return to the call site in f, return | (€Y
that is, restore PC

4. restore the caller-save registers restoreloc} isin f

Managing Registers during Function Calls

The two register sets (global and local) are used as follows:
@ automatic variables live in local registers R;
@ intermediate results also live in local registers R,
@ parameters live in global registers F?; (with i < 0)
@ global variables: let's suppose there are none
convention:

Managing Registers during Function Calls

The two register sets (global and local) are used as follows:

@ automatic variables live in local registers R;

@ intermediate results also live in local registers R;

@ parameters live in global registers 1, (with i < 0)

@ global variables: let's suppose there are none
convention:

@ the ith argument of a function is passed in register 2,

Translation of Function Calls
A function call g(ey, ... e,) is translated as follows:
code g(e1,...en) p = codel gp

code*#%e, p

move R_; R;4 l/
move R, Ri., /

saveloc 1 ;4
mark

call R;

restoreloc 7 R;_,
move [?; IR

Managing Registers during Function Calls

The two register sets (global and local) are used as follows:
@ automatic variables live in local registers R;
@ intermediate results also live in local registers R;
@ parameters live in global registers 12; (with i < 0)
@ global variables: let's suppose there are none
convention:
@ the i th argument of a function is passed in register ?;
@ the result of a function is stored in 1
@ local registers are saved before calling a function

Definition
Let f be a function that calls g. A register R; is called
@ caller-savedif f backs up R; and g may overwrite it

@ callee-saved if f does not back up R;, and ¢ must restore it
before returning

Translation of Function Calls
A function call g(ey, . .. e,) is translated as follows:
codep, gler,...en) p = codel gp

(:u(h!i{"l el p

(:u(h!i?’”’ en P

move R_ R

move R_, Ri.,

saveloc [[;_q

mark

call RR;

restoreloc 7] R;_

. . move [i; [y
New instructions:

@ saveloc It; I?; pushes the registers ?;, I, ... It; onto the stack
@ mark backs up the organizational cells

° |ca11 I?;|calls the function at the address in 12,

@ restoreloc ?; I?; pops [tj, [i;_1,... R; off the stack

Rescuing EP and FP

The instruction mark allocates stack space for the return value and
the organizational cells and backs up FP

mark
L |——

1
S[SP+# = FP;
SP =SP +2;

Result of a Function

The global register set is also used to communicate the result value
of a function:

code’ returne p = codep e p
move [ty R;

return

Calling a Function

The instruction call rescues the value of PC+1 onto the stack and
sets FP and PC.

K

SP = SP+1;
S[SP] = PC;
FP = SP;
PC =R;j;

Result of a Function

The global register set is also used to communicate the result value
of a function:

code" returne p = codep e p
move Iy R;

return

alternative without result value:

code’ return p = return

Result of a Function

The global register set is also used to communicate the result value
of a function:

code' returne p = codef e p
move [y R;

return
alternative without result value:

code' return p = return

global registers are otherwise not used inside a function body:
@ advantage: at any point in the body another function can be
called without backing up global registers

o disezimmaage:|on entering a function, all global registers| must be
saved

Translation of Functions

The translation of a function is thus defined as follows:

tr{ decls ss = enterq
move I 14
move ., R_,

codeltntl g5 pf
return

Assumptions:

Return from a Function

The instruction return relinquishes control of the current stack frame,
that is, it restores PC, EP and FP.

return

PC = S[FP]; EP = S[FP-2];
SP = FP-3; FP = S[SP+2);

Translation of Functions

The translation of a function is thus defined as follows:

codet ¢, f(wys) ssyp = entergq

move ;.1 R4

move Tn
(‘uds s

return

Assumptions:
@ the function has n parameters

Translation of Functions

The translation of a function is thus defined as follows:

code! t,. £(args){decls ss} p =

Assumptions:
@ the function has n parameters
@ the local variables are stored in registers Ry, ... R,
@ the parameters of the functionarein #_,,...R_,

@ /' is obtained by extending p with the bindings in decls and the
function parameters args

enter q
move ;.1 R_4

move 2., _,

codettntl ss

return

Translation of the fac-function

Consider:

int fac(int x) {

if (x<=0)

then

return 1;

else

return x+fac(x-1);

_fac:

orter-o—
move) R_,
move Ry R
loadc 25 0
]eq Rz Rz R;;
jumpz 1o _ A
loadc 75 1
move Ry Ro
return

jump _B

3 mark+call
save param.
if (x<=0)

to else
return 1

I
o

e

move Ry 7y
move 5 I3y
loade R4 1
sub .er;; R;; I{L
move R_, Rj
loadec R3 _fac
saveloc Ry Is
mark

call 15
restoreloc 7 R5
move R3 Ry
mul [{3 1?3 [{;g
move [[l
return

B: return

Il

code is deaa

x*+fac(x-1)
x—1

fac(x-1)

return x=*..

Translation of Whole Programs

A program P = Fiy;... F,, must have a single main function.

code! Pp = loadc R _main

mark

call 1?4

halt
_fir code' Fy p& py,
_fn: codel F, p& Pfn

End of presentation. Click to exit.

